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ABSTRACT
RISC-V vector extension (RVV) provides wide vector registers,
which is applicable for workloads with high data-level parallelism
such as machine learning or cloud computing. However, it is not
easy for developers to fully utilize the underlying performance
of a new architecture. Hence, abstractions such as primitives or
software frameworks could be employed to ease this burden. Scan,
also known as all-prefix-sum, is a common building block for many
parallel algorithms. Blelloch presented an algorithmic model called
the scan vector model, which uses scan operations as primitives,
and demonstrates that a broad range of applications and algorithms
can be implemented by them. In our work, we present an efficient
support of the scan vector model for RVV. With this support, par-
allel algorithms can be developed upon those primitives without
knowing the details of RVV while gaining the performance that
RVV provides. In addition, we provide an optimization scheme
related to the length multiplier feature of RVV, which can further
improve the utilization of the vector register files. The experiment
shows that our support of scan and segmented scan for RVV can
achieve 2.85x and 4.29x speedup, respectively, compared to the
sequential implementation. With further optimization using the
length multiplier of RVV, we can improve the previous result to
21.93x and 15.09x speedup.

CCS CONCEPTS
• Computer systems organization → Single instruction, mul-
tiple data.
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1 INTRODUCTION
RISC-V vector extension (RVV)[5] is an extension of the open stan-
dard RISC-V ISA. It provides a wide vector register file that can
process a large number of data at once. This results is not only with
better performance but also lower energy consumption when pro-
cessing workloads with high data-level parallelism for fields like sci-
entific computing, multimedia, machine learning, cryptography[9],
or cloud computing. As a relatively young SIMD ISA extension
compared to its predecessors like the AVX to x86 or the Neon to
the Cortex series processors, RVV incorporates many powerful fea-
tures in the hope of striking the balance between high performance
and scalability. However, it is not easy for high-level algorithms
to fully utilize the underlying hardware resources. Hence, abstrac-
tions like primitive instructions or software frameworks can bridge
the gap between them. They can provide higher-level interfaces
that are easier to express the semantics while hiding the details
of the underlying ISA. Scan, also called all-prefix-sum, is a com-
mon building block for many parallel algorithms [2]. It takes a
binary operator ⊕ and an array [𝑎0, 𝑎1, ..., 𝑎𝑛−1] of n elements and
returns an array of the sum of all preceding elements for each el-
ement [𝑎0, (𝑎0 ⊕ 𝑎1), ..., (𝑎0 ⊕ ... ⊕ 𝑎𝑛−1)]. This is the definition
of the inclusive scan operation. For exclusive scan operation, the
output array starts with a left identity 𝐼⊕ of the binary operator ⊕
which is [𝐼⊕, 𝑎0, (𝑎0 ⊕𝑎1), ..., (𝑎0 ⊕ ...⊕𝑎𝑛−2)]. The scan operations
have been supported on many different architectures including
the Connection Machine[1], GPUs[10], and also on the AVX-512
extensions[15]. With efficient support of scan operations, parallel
algorithms built upon them can execute efficiently. Otherwise, they
would be the bottleneck of the overall performance. The scan oper-
ation is popularized by Blelloch[1], who presented an algorithmic
model called the scan vector model. There are three classes of primi-
tive vector instructions in this model, the elementwise instructions,
the permutation instructions, and the scan instructions. Parallel
algorithms can exploit these general-purpose primitives as a high-
level interface to the low-level parallel computing resource that
hardware provides.

In our work, we present an efficient support of the scan vec-
tor model for RVV. With this support, parallel algorithms can be
developed upon those primitives without knowing the details of
RVV while gaining the performance that RVV provides. We sup-
port both scan and segmented scan primitives for RVV. In addition,
we provide an optimization scheme related to the length multi-
plier feature of RVV, which can further improve the utilization of
the vector register files. The experiment shows that our support
of scan and segmented scan for RVV can achieve 2.85x and 4.29x
speedup, respectively, compared to the sequential implementation.
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With further optimization using the length multiplier of RVV, we
can improve the previous result to 21.93x and 15.09x speedup.

The remainder of the paper is organized as follows. We first
introduce RVV and the scan vector model to illustrate why the
architecture is a good fit for the model in Section 2. Then we intro-
duce how to program with RVV intrinsic API in Section 3. Next,
we present our approach to support the scan model with split radix
sort as a running example in Section 4. In Section 5, we describe the
support of a more general scan operation, segmented scan. Next, in
Section 6, we present the experiment results and an optimization
scheme based on the vector grouping feature of RVV. And finally,
we conclude this paper in Section 7.

2 BACKGROUND
2.1 RISC-V Vector Extension
RISC-V Vector Extension (RVV) is an optional extension of the base
RISC-V ISA. RISC-V is an open standard ISA with a modular design,
which allows processor vendors to freely select a set of extensions
to be implemented on their products that are tailored to their needs.
RVV as an extension provides parallel computing capability to the
base RISC-V ISA. Unlike the RISC-V P extension which uses the
general-purpose register (GPR) to perform packed-SIMD execution
that is limited to 32 or 64 bits with respect to whether the base ISA
in use is RV32 or RV64, RVV adds an additional 32 vector register
file to perform the SIMD operations. In addition, RVV does not set
the vector length as an architecture constant. Instead, the vector
length is an implementation-defined constant, allowing different
vector lengths among different microarchitectures. This feature
enables RVV programs to scale across different implementations of
the architecture automatically without being compiled or rewritten
again. Research communities have found the feature useful for
environments such as TVM [3, 7]. Vector optimizations are also in
an area of studies in the academic community [8, 13, 14].

2.2 The Scan Vector Model
Blelloch [1] presented an algorithmic model called the scan vector
model and demonstrated that a broad range of parallel algorithms
can be described by these primitives. The scan vector model is a
parallel vector model with three classes of primitive vector instruc-
tions: elementwise instructions, scan instructions, and permutation
instructions. The elementwise instructions possess high data-level
parallelism since every element can be processed, independently.
The permutation instructions also possess the same level of paral-
lelism if there is additional storage for out-of-place replacements.
The scan instructions, however, require the sum of all previous
elements, which seems hard to be processed in parallel. In fact, the
scan operations can be vectorized by many different algorithms.
It can perform parallel prefix optimization assuming associativity
with reduction operations.

3 PROGRAMMINGWITH RISC-V VECTOR
EXTENSION INTRINSIC

The RISC-V International vector working group creates the RVV
intrinsic APIs[4] that have been supported in GCC and LLVM com-
pilers. With the help of the intrinsic APIs, developers can program

in C language while having more direct access to the RVV instruc-
tions. Different from programming with inline assembly, intrinsic
is more expressive and readable and allows compilers to perform
further optimization.

3.1 Vector Length Agnostic Programming Model
Because of the implementation-defined vector register length fea-
ture of RVV, developers need to develop their application in a vector
length agnostic (VLA) fashion. In VLA programming model, the
vector register length is treated as an unknown parameter that is
determined at runtime. This provides direct support for a parallel
computing technique called strip-mining. Strip-mining is a common
approach for handling a large number of elements with a size that
exceeds that of a vector register can be fit into. It works by handling
a number of elements each iteration and iterates until all elements
have been processed. For ISA with vector length specific design,
using strip-mining needs an additional loop to handle the case that
the vector length can not divide the number of elements without
remainder. For example, if an ISA’s SIMD instructions can process 4
elements. When it processes 13 elements, it needs to handle the re-
maining 1 element after 3 strip-mining iterations. This could result
in a larger code size and worse performance. As for RVV, with the
help of the configuration-setting instructions, there is no need to
handle the remainder elements. We illustrate an example of strip-
mining on RVV in C code using RVV intrinsic and its corresponding
RVV assembly in Listing 1 and Listing 2.

1 // Perform element -wise addition between a and b.

2 // Store the result to a.

3 void vector_add(size_t n, int *a, int *b) {

4 size_t vl;

5 for (; n > 0; n -= vl) {

6 vl = vsetvl_e32m1(n);

7 vint32m1_t va = vle32_v_i32m1(a, vl);

8 vint32m1_t vb = vle32_v_i32m1(b, vl);

9 va = vadd(va, vb, vl);

10 vse32(a, va, vl);

11 a += vl;

12 b += vl;

13 }

14 }

Listing 1: Example of strip-mining for RVV in C

Listing 1 demonstrates how to vectorize a pairwise addition
operation by using the strip-mining technique with RVV intrinsic.
This vector_add function takes the number of elements size_t n
and two integer array a and b as input. The result of the function
is stored in a. In each iteration inside the for-loop, the application
vector length (AVL), in this case is the n in line 6, will be passed as
an argument to the vector configuration instruction - vsetvl. The
e32m1 suffix after it is the selected element width (SEW) and the
length multiplier (LMUL). The SEW specifies the element width on
which the vector operations will be operated. In this example, since
the type int is 32-bit long, the SEW is set to 32 by the e32 suffix.

1 # assume

2 # a0 stores n

3 # a1 stores address pointing to a[]

4 # a2 stores address pointing to b[]

5 vector_add:

6 beqz a0, End

7 Loop:
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8 vsetvli a3, a0, e32 , m1, ta, mu

9 # load vl=a3 elements of data from a[] and b[]

10 vle32.v v8, (a1)

11 vle32.v v9, (a2)

12 # add data from a[] and b[] to v8

13 vadd.vv v8, v8, v9

14 # store the result to a[]

15 vse32.v v8, (a1)

16 slli a4, a3, 2

17 # a += vl

18 add a1, a1, a4

19 # n -= vl

20 sub a0, a0, a3

21 # b += vl

22 add a2, a2, a4

23 bnez a0, Loop

24 End:

25 ret

Listing 2: Example of strip-mining for RVV in assembly

Listing 2 is the assembly of Listing 1. The vsetvl_e32m1 intrinsic
from the C code example in Listing 1 corresponds to the vsetvli
RVV instruction in Listing 2.

3.2 Vector Masking
RVV also provides selected execution with vector masking. RVV
always uses vector register v0 to store the mask value. This can
save the encoding for specifying the mask register. The behavior of
masked elements is specified by themask policy. There are two types
of mask policy that can be configured by the vsetvl instruction.
They are the mask agnostic policy and the mask undisturbed policy.
If using the mask agnostic policy, the masked value is undefined
after the execution. Listing 3 is the function signature of a masked
add instruction. The mask policy is encoded by the maskedoff
argument. If it is passed with a vundefined(), which is the vector
initialization function from RVV intrinsic API, then the agnostic
policy is used. Otherwise, it uses the mask undisturbed policy and
lets the masked elements have values from maskedoff.

1 vint32m1_t vadd_vv_i32m1_m (vbool32_t mask ,

2 vint32m1_t maskedoff ,

3 vint32m1_t op1 ,

4 vint32m1_t op2 ,

5 size_t vl);

Listing 3: Function signature of masked add instruction

3.3 Vector Length Multiplier
RVV allows grouping multiple vector registers together with the
length multiplier (LMUL). The value of LMUL is specified by a
3-bit control state register vlmul. The LMUL values that every
implementation must support are integers 1, 2, 4, and 8. For LMUL
being larger than 1, multiple vector registers with consecutive
numbers will form a vector register group. Instructions should
reference the first vector register from the group. For instance, if
the value of LMUL is 8, there are 4 groups v0-7, v8-15, v16-23, and
v24-31. Then if a vector instruction uses v8 as an operand, it operates
on the vector group v8-15. The type system in the RVV intrinsic
API has explicit LMUL settings. One can not pass an incompatible
type to functions.

4 SUPPORT OF THE SCAN VECTOR MODEL
The scan vector model consists of three classes of primitive instruc-
tions - elementwise instructions, scan instructions, and permuta-
tion instructions. In this section, we will present how we support
these primitive instructions, and together we can develop parallel
algorithms purely based on these primitive instructions without
concerning how the primitives are mapped to RVV.

4.1 Elementwise Instructions
The elementwise instructions operate on two vectors with the same
length. They perform arithmetic or logical primitive such as +,−,∗,
logical and, and logical or on each element and produce a vector
with the same length as the input vector. To vectorize this class
of instructions for RVV, we use strip-mining to iterate through
all blocks of elements in the vector. Listing 4 is the example of
how we vectorize the one of the elementwise instructions - p-add
instruction. The p-add instruction adds two vectors together. In this
example, we implement a variant that take an array of unsigned
int, a, and a scalar x which will perform elementwise addition of a
and a vector with broadcast value x. We first pass the AVL n to the
vsetvl instruction to get the actual vector length vl. Then we add
the vector variable va with the scalar a by the vadd intrinsic. The
result is stored back to a by the vse32 instruction. Finally, we let
the pointer a point to the next element to be processed and subtract
the AVL by vl.

1 void p_add(int n, unsigned int *a, unsigned int x) {

2 size_t vl;

3 for (; n > 0; n -= vl) {

4 vl = vsetvl_e32m1(n);

5 vuint32m1_t va = vle32_v_u32m1(a, vl);

6 va = vadd(va, x, vl);

7 vse32(a, va, vl);

8 a += vl;

9 }

10 }

Listing 4: Elementwise instruction - p-add

4.2 Permutation Instructions
The permutation instructions move elements based on an index
array that specifies the new index of an element. We can achieve
this by using the indexed store instructions - VSUXEI in RVV. Since
the in-place permute operation will create data dependency, we
support the out-of-place permutation. Listing 5 is the code of the
permute instruction.

1 void permute(int n, unsigned int *src , unsigned int *dst ,

unsigned int *index) {

2 size_t vl;

3 for (; n > 0; n -= vl) {

4 vl = vsetvl_e32m1(n);

5 vuint32m1_t v = vle32_v_u32m1(src , vl);

6 vuint32m1_t vindex = vle32_v_u32m1(index , vl);

7 vindex = vsll(vindex , 2, vl);

8 vsuxei32(dst , vindex , v, vl);

9 src += vl;

10 index += vl;

11 }

12 }

Listing 5: Permutation instruction - permute
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4.3 Unsegmented Plus-scan
Scan operations are the most important class of primitives for the
scan vector model. Algorithms built upon the scan vector model
assume that scan operations have low time complexity. As a result,
the support for the scan operations on the actual target machine
will directly affect the performance. In our support, we once again
use the strip-mining technique to handle the array with a large
number of elements. Listing 6 is the code of our support of the
plus-scan instructions. The scan instruction is composed of the
outer loop that strip-mining through every element and an inner
loop that performs in-register scan. In each iteration, there are
three steps. First, one is performing the in-register scan. Second,
one is adding the carry number from previous iteration. The last is
to update the carry number by retrieving the value from the last
element in this iteration.

Figure 1: In-register scan steps

To support the in-register scan for VLA architecture like RVV, we
need to treat the vector register length as a parameter. In Figure 1,
we can observe that a vector containing 8 elements needs three
iterations to complete. It turns out that the number of iteration
required is ⌈lg𝑁 ⌉ for 𝑣𝑙 = 𝑁 .

1 void plus_scan_ui(int n, unsigned int *src) {

2 size_t vl;

3 size_t vlmax = vsetvlmax_e32m1 ();

4 unsigned int carry = 0;

5 vuint32m1_t x, y, vec_zero;

6 vec_zero = vmv_v_x_u32m1 (0, vlmax);

7 for (; n > 0; n -= vl) {

8 vl = vsetvl_e32m1(n);

9 x = vle32_v_u32m1(src , vl);

10 for (size_t offset = 1; offset < vl;

11 offset = offset << 1) {

12 y = vslideup_vx_u32m1(vec_zero , x,

13 offset , vl);

14 x = vadd_vv_u32m1(x, y, vl);

15 }

16 x = vadd_vx_u32m1(x, carry , vl);

17 vse32(src , x, vl);

18 carry = src[vl - 1];

19 src += vl;

20 }

21 return;

22 }

Listing 6: Scan instruction - unsegmented plus-scan

4.4 Split Radix Sort
Here we present how we can deploy useful applications to RVV
with primitives mentioned in the previous sections by a running
example of the radix sort algorithm. Aside from the primitive vector
instructions, there are also several useful operations that can be
built from primitive vector instructions. For instance, the enumerate
and the split operations in the split radix sort algorithm. With the
primitives and the operations, an algorithm can be built upon them
efficiently and hide all the details related to RVV. For an array with
elements that are 32-bit unsigned integers, we iterate from the less
significant bit to the most significant bit and split the array in each
iteration based on the value of the bit. In 𝑖𝑡ℎ iteration, elements with
𝑖𝑡ℎ bit value equal to 1 will be moved to the right, and elements with
𝑖𝑡ℎ bit value equal to 0 will be moved to the left while preserving
the original order. Figure 2 shows the sorting process of the split
radix sort algorithm.

Figure 2: Sorting process of the split radix sort algorithm

We first examine the split operation that is used extensively in
the scan vector model. The split operation is a form of permuta-
tion that uses a vector of flags to split the source vector into two
halves. Figure 3 shows an example that the source vector src is
split according to their flags value. Elements with flag value 0 (1,
3, 5) will be put at the bottom (starting at index 0). Elements with
a flag value 1 will be packed to the destination vector after the last
element with flag value 0.
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Figure 3: An example of split operation

Since the operation includes permute, we need an additional
storage buffer to store the vector after permutation. In addition,
there are also intermediate results.

1 void split(int n, unsigned int *src , unsigned int *dst ,

unsigned int *flags) {

2 unsigned int *i_up

3 = malloc(n * sizeof(unsigned int));

4 unsigned int *i_down

5 = malloc(n * sizeof(unsigned int));

6 unsigned int count

7 = enumerate(n, flags , i_up , 0);

8 enumerate(n, flags , i_down , 1);

9 p_add(n, i_down , count);

10 p_select(n, flags , i_down , i_up);

11 permute(n, src , dst , i_up);

12 free(i_up);

13 free(i_down);

14 }

Listing 7: Split Operation

Enumerate is an operation that takes a vector of flags as input
and outputs a vector of integer that the value of an element is set
to 𝑖 if its flag is the 𝑖𝑡ℎ true flag. The enumerate instructions are
essentially an exclusive plus-scan on a flags vector that true flag is
set to 1. Unlike the general plus-scan, the enumerate operation puts
a restriction on the input vector. The input flags should contain
only value 1 or 0. This restriction gives chances for optimization.
In Listing 8, instead of using the unsegmented scan mentioned in
the previous section, we exploit the viota instruction of RVV. The
viota instruction is essentially an in-register enumerate operation,
it allows only mask register as input, and outputs an exclusive scan
vector with specified SEW and LMUL. To support the whole vector
enumerate instruction, we need to propagate the in-register result
to the next strip-mining iteration. This is where vcpop instruction
comes in handy. In line 13, vcpop(mask, vl) returns the value to
an unsigned integer variable count. Then, in every iteration, the
result of the viota will add count to all the elements.

1 unsigned int enumerate(int n, unsigned int *flags ,

unsigned int *dst , bool setBit) {

2 size_t vl;

3 unsigned int count = 0; // count number of bits set

4 unsigned int carry;

5 for (; n > 0; n -= vl) {

6 vl = vsetvl_e32m1(n);

7 vuint32m1_t v = vle32_v_u32m1(flags , vl);

8 vbool32_t mask = vmseq(v, setBit , vl);

9 v = viota_m_u32m1(mask , vl);

10 v = vadd(v, count , vl);

11 vse32(dst , v, vl);

12 count += vcpop(mask , vl);

13 flags += vl;

14 dst += vl;

15 }

16 return count;

17 }

Listing 8: Enumerate operation

Listing 9 is the code for the complete split radix sort algorithm.
On lines 2 and 4, we allocate new storage space for split operation
and the bit flags. Since we are sorting the type unsigned int, we
need to iterate over 32 bits from lines 6 to 13. In every iteration,
we first get the 𝑖𝑡ℎ bit flags, then we split the vector src by these
flags. After the split, buffer contains the new vector. Thus we
swap the memory spaces buffer and src pointing to, making sure
src is always pointing to the new vector. Since there are 32 bits
for type unsigned int, which is an even number, the original
memory space pointed by src will contain the sorted vector after
all iterations have ended.

1 void split_radix_sort(int n, unsigned int *src) {

2 unsigned int *buffer

3 = malloc(n * sizeof(unsigned int));

4 unsigned int *flags

5 = malloc(n * sizeof(unsigned int));

6 for (int i = 0; i < 32; i++) {

7 get_flags(n, src , flags , i);

8 split(n, src , buffer , flags);

9 // swap src and buffer

10 unsigned int* tmp = src;

11 src = buffer;

12 buffer = tmp;

13 }

14 free(buffer);

15 free(flags);

16 return;

17 }

Listing 9: Split radix sort

5 SUPPORT OF THE SEGMENTED SCAN FOR
RISC-V VECTOR EXTENSION

It is useful to split one array into several segments that can execute
scan operations independently. For instance, an algorithm like quick
sort needs to split the whole array into different segments and then
sort each segment recursively. To represent different segments,
Blelloch [2] suggested using structures called the segment-descriptor.
There are three possible segment-descriptor: head-flags, lengths, and
head-pointers. The head-flags uses an array of flags to indicate the
starting index of each segment. The lengths specifies the length of
each segments. The head-pointers uses an array of pointers pointing
to the starting element of each segment.

In our work, we choose the head-flags as our segment-descriptor,
since it can be mapped to RVV instructions more directly without
additional interpretation.

5.1 Segmented Plus-scan
We now use the segmented version of the plus-scan operation
to demonstrate how we exploit RVV to support this operation.
Listing 10 is the code of our segmented scan. The strip-mining
part is similar to the unsegmented scan, with one difference in
handling the carry propagation. Unlike unsegmented plus-scan
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that all the elements can add the carry value after the in-register
scan. Segmented scan can only add carry values to the elements
before the start of the next new segment. So we need to find the
position of the next new head-flag and create a mask that can add
carry values only to elements before this head-flag. With the help
of the vmsbf instruction in line 15, we can get a mask exactly as we
want by providing a mask value created by the head-flags to this
instruction. In the next section, we will discuss how we implement
the in-register segmented scan in detail.

1 void seg_plus_scan_ui(int n, unsigned int *src , unsigned

int *head_flags) {

2 size_t vl;

3 size_t vlmax = vsetvlmax_e32m1 ();

4 unsigned int carry = 0;

5 vuint32m1_t x, y, vec_zero , vec_one;

6 vuint32m1_t flags , flags_slideup;

7 vbool32_t mask , carry_mask;

8 vec_zero = vmv_v_x_u32m1 (0, vlmax);

9 vec_one = vmv_v_x_u32m1 (1, vlmax);

10 for (; n > 0; n -= vl) {

11 vl = vsetvl_e32m1(n);

12 x = vle32_v_u32m1(src , vl);

13 flags = vle32_v_u32m1(head_flags , vl);

14 mask = vmsne_vx_u32m1_b32(flags , 0, vl);

15 carry_mask = vmsbf(mask , vl);

16 flags = vmv_s_x_u32m1(flags , 1, vl);

17 for (size_t offset = 1; offset < vl;

18 offset = offset << 1) {

19 mask = vmsne_vx_u32m1_b32(flags , 1, vl);

20 y = vslideup_vx_u32m1(vec_zero ,

21 x, offset , vl);

22 x = vadd_vv_u32m1_m(mask , x, x, y, vl);

23 flags_slideup = vslideup_vx_u32m1(vec_one ,

24 flags ,

25 offset ,

26 vl);

27 flags = vor_vv_u32m1(flags ,

28 flags_slideup ,

29 vl);

30 }

31 x = vadd_vx_u32m1_m(carry_mask , x, x, carry , vl);

32 vse32(src , x, vl);

33 carry = src[vl - 1];

34 src += vl;

35 head_flags += vl;

36 }

37 return;

38 }

Listing 10: Segmented plus-scan

5.2 In-register Segmented Plus-scan
Just like the unsegmented scan, the in-register segmented scan re-
quires lg𝑁 slideup instructions for vector register with 𝑁 elements.
Since if there are no head-flags appearing in this strip-mining itera-
tion, it needs to produce the same result as an unsegmented scan
does. To support the segmented scan, we want to disable certain
elements to add their prefix result within in-register scan operation.
Figure 4 illustrates this idea. In Figure 4, we can see that if we derive
the correct mask, we can use the same slideup-and-add instructions
sequence as the one used in the unsegmented scan. It turns out
that the mask itself can be derived by sliding up the previous mask
and performing a pairwise logical and. However, the mask register

Figure 4: In-register segmented scan steps

does not provide slideup instruction. Thus we need to use a whole
vector register to perform these operations. On lines 23 and 27 of
Listing 10, we update the flags (which is the inverse of the mask)
for the next iteration.

6 EXPERIMENTS
6.1 Experiment Environment
Our experiment result is evaluated on an open-source RISC-V ISA
simulator called Spike[6], with RVV configured to 256-bit, 512-
bit, and 1024-bit vector register length to test the performance
scalability. Since Spike is only a functional model of RISC-V, which
means that it is not cycle-accurate, we use dynamic instruction
count instead as the performance metric.

6.2 Evaluation of the Support of the Scan Vector
Model for RVV

In this study, we implement the segmented and unsegmented scan.
We also implement the primitive vector instructions and operations
required by the split radix sort algorithm mentioned in Section 4.
This includes elementwise instructions p-add and p-select, the per-
mutation instruction permute, the operation enumerate, and split.
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N split_radix_sort() qsort() speedup
102 23988 17158 0.7152743038
103 94842 277480 2.92570802
104 803690 3470344 4.318013164
105 19603490 43004753 2.193729433
106 195102988 511107188 2.619678936

Table 1: Spike simulation result comparing dynamic instruc-
tion counts of split-radix-sort for RVV and a baseline qsort
from stdlib

N p_add() p_add_baseline() speedup
102 66 632 9.575757576
103 297 6002 20.20875421
104 2826 60001 21.23177636
105 28134 600001 21.32654439
106 281259 6000001 21.33265424

Table 2: Spike simulation result comparing dynamic instruc-
tion counts of p-add for RVV and a baseline sequential p-add
implementation

N plus_scan() plus_scan_baseline() speedup
102 311 626 2.012861736
103 2670 6026 2.256928839
104 26281 60026 2.284007458
105 262531 600026 2.285543422
106 2625031 6000026 2.285697197

Table 3: Spike simulation result comparing dynamic instruc-
tion counts of plus-scan for RVV and a baseline sequential
plus-scan implementation

In this section, we show the performance of comparing our RVV
support version to the sequential version baseline. The baseline is
also RVV directly from LLVM to RVV without our scan support.
The baseline is a pure C code without the use of RVV intrinsics.
The following experiment is conducted on the Spike simulator
with 1024-bit vector length configuration, which can have 32 32-bit
elements, using LMUL value 1.

Table 1 is the experiment result of comparing the split radix sort
algorithm implemented by our support of the scan vector model to
the qsort() from the C standard library stdlib.o. Table 2 is the
experiment result of comparing the elementwise instruction - p-add
and a baseline sequential implementation. Table 3 is the experiment
result of comparing the unsegmented plus-scan instruction and a
baseline sequential implementation. Table 4 is the experiment result
of comparing the segmented plus-scan instruction and a baseline
sequential implementation.

6.3 Evaluation of Length Multiplier
Optimization

As discussed in Section 4, RVV intrinsics provide explicit LMUL
setting. We can specify the LMUL by changing the suffix - m<lmul>
in the intrinsic function and also for the data types. Intuitively, a

N seg_plus_scan() seg_plus_scan_baseline() speedup
102 331 1124 3.395770393
103 2639 11024 4.177339901
104 25693 110024 4.282255867
105 256289 1100024 4.292123345
106 2562539 11000024 4.292626961

Table 4: Spike simulation result comparing dynamic instruc-
tion counts of segmented plus-scan for RVV and a baseline
sequential segmented plus-scan implementation

Instruction count of seg_plus_scan()
N/LMUL 1 2 4 8
102 331 1124 145 2090
103 2639 11024 887 2668
104 25693 110024 8377 9284
105 256289 1100024 82907 74650
106 2562539 11000024 828205 728586

Table 5: Dynamic instruction count of the segmented plus
scan instruction with different LMUL setting

larger LMULmeans a larger number of elements a vector instruction
can operate on, which should result in less dynamic instruction
count. However, that is not always the case. The reason is that
the size of the whole vector register files is fixed for a given RVV
microarchitecture. Grouping multiple vector registers as one will
result in less number of vector registers for register allocation. This
causes more register pressure and hence more register spilling
would occur. As a result, we can observe performance anomaly
when we set too large LMUL.

In Table 5, we can see that if we set the LMUL to 8, seg_plus_scan
experiences a slowing down when the number of elements is 102
and 103 compared to the case that LMUL is 1. This is because the
compiled result contains many instructions for register spilling
and loading the data back, which causes great overhead. This is
not completely the start-up overhead since we are comparing two
vectorized code instead of comparing sequential implementation
with vectorized implementation. When the number of elements to
be processed is small, the overhead of the register spilling can not
be covered by the advantage of a smaller iteration. Still, when the
number of elements of the vector is greater than 104, the advantage
of smaller strip-mining iterations starts to appear. And another
observation is that, in Table 6, the ratio of LMUL to speedup over
LMUL=1 is decreasing when using larger LMUL. This is because
when using larger LMUL, the number of instructions that are for
register spilling will increase. Here we provide a conclusion and a
suggestion for choosing LMUL. In conclusion, for workloads with
small vector size, the overhead of register spilling can be significant.
For workloads with very large vector size, the dynamic instruction
count can be covered. However, the proportion of memory copy
instructions will increase, which may lead to lower performance
even if the instruction count is smaller.
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Ratio of (speedup to LMUL=1)/(current LMUL)
N/LMUL 2 4 8
102 0.7290748899 0.5706896552 0.01979665072
103 0.8551523007 0.7437993236 0.1236413043
104 0.8695931767 0.7667721141 0.3459311719
105 0.8720338349 0.772820751 0.4291510382
106 0.872330539 0.7735219541 0.4396425062

Table 6: Ratio of different LMUL setting’s speedup comparing
to LMUL set to 1 divided by current LMUL setting

segmented plus-scan p-add
vlen instruction count instruction count
128 115039 22534
256 72539 11284
512 43789 5659
1024 25693 2851

Table 7: Instruction count over different 𝑣𝑙𝑒𝑛 for segmented
plus-scan and p-add

6.4 Evaluation of Performance Scalability over
Different Microarchitectures

The vector length agnostic design of RVV allows processor vendors
to choose their own implementation that meets their product re-
quirements. Commercial RVV IPs like the Andes’s NX27V[12] and
Sifive’s Intelligence X280 [11] provide a configurable vector register
length up to 512-bit. Compared to other VLS SIMD architecture, it
is easier for RVV code to scale over different microarchitectures.
However, not every algorithm can have the same scalability. Table 7
shows the instruction count of segmented plus-scan and p-add over
different vlen setting. In Figure 5, we can see that the speedup com-
pared to vlen=128 has nearly the same value as vlen/128 (the ideal
speedup). However, operations that are not elementwise parallel
such as scan, can not scale as much as elementwise instructions. In
Figure 5, we can see that even vlen=1024 has 8 times the length of
the vector register compared to vlen=128, the speedup is only 4.65.

Figure 5: Speedup compared to vlen = 128 over different vlen
for segmented plus-scan and p-add

7 CONCLUSION
In this paper, we support the scan vector model for RISC-V vector
extension (RVV). We provide design details for our support with
the three classes of primitive instructions in the model. We sup-
port both scan and segmented scan primitives for RVV. Then we
demonstrate how to use these primitive instructions as an inter-
face to deploy parallel computing workloads to RVV. Finally, in
the experiment, we show that with our support of the scan vector
model, primitive instructions and algorithms can be executed on
RVV target efficiently. For scan and segmented scan instructions,
our support can achieve 2.85x and 4.29x speedup, respectively. With
further optimization using the length multiplier of RVV, we can
improve results to 21.93x and 15.09x speedup.
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