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ABSTRACT

The development of embedded system has been toward the
multicore architectures in the recent years. It raises concerns
in the community of supporting programming models and
languages to derive maximal performance from the architec-
tures. Among the diversity of models for programming mul-
ticore processors, remote procedure call (RPC) is one of the
most relevant programming techniques for supporting an ex-
plicit parallel programming model. Although such promising
programming technique provides an easy way of modeling
the applications on multiple processors, it remains an inter-
esting and challenging problem of how to provide an effec-
tive system of programming data-intensive applications un-
der the programming scenario of RPC. In this paper, we pro-
pose a streaming mechanism called streaming RPC to pro-
vide a system for modeling data-intensive and stream-based
applications to efficiently utilize the constituents of the mul-
ticore processors. Streaming RPC is based on the framework
of RPC and implemented as a middleware support to pro-
vide a library-based programming model with parallelism by
mandatory. We also propose design patterns for the stream-
ing mechanism and present experiences of developing high
performance multimedia applications. Experimental results
show that our streaming RPC framework is efficient to sup-
port multicore programming for multimedia applications.

Index Terms— Parallel processing, Multiprocessor, Re-
mote procedure calls

1. INTRODUCTION

The development of embedded system has been toward the
multicore architectures that combine processors connected
through bus-level interfaces into a multi-processor system-
on-chip(MPSoC) package in recent years. As MPSoCs are
coming into the mainstreams of commercial products such
as hand-held devices, the number of processors to be used
are also predicted to grow rapidly for supporting increasingly
added application features. It raises concerns in the commu-
nity for supporting programming models and languages to
drive performance from the architecture [1, 2].
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Among the diversity of models for programming multi-
core processors, remote procedure call (RPC) is one of the
most relevant programming techniques for supporting an ex-
plicit parallel programming model. Such mechanism has been
a promising programming paradigm in distributed computing
to support ubiquitous components communications in hetero-
geneous environments. There are several well-known soft-
ware layers in the area such as Java remote method invocation
(RMI), .NET Remoting, and CCA remoting. Research has
been proposed for provide features and optimization in this
layer. Thiruvathukal et al. [3] proposed an open RMI imple-
mentation to provide a better use of object-oriented features
of Java; Raje et al. [4], and Maassen et al. [ 5] improved the ba-
sic RMI mechanism to provide a system with features of ex-
tended RMI functionality. In 1999, Nester et al. implemented
KaRMI to exploit the hardware features of Myrinet that im-
proves the RMI performance by reducing communication la-
tency. The possibility of using remote-invocation as universal
programming model is evidenced by the work in supporting
Java RMI over heterogeneous wireless network [6].

Although such promising programming technique pro-
vides an easy way of modeling the applications on distributed
environments, it remains an interesting and challenging prob-
lem of how to provide the programming scenario of RPC for
more tightly multicore systems compared to distributed envi-
ronments. In recent years, streaming programming has been
proposed to provide optimizations and specifications con-
trolling data flow of for multimedia applications. Research
work such as Streamlt [7] and Brook [8] provide language
supports for this application space. It then looks an inter-
esting issue to investigate how to combine two promising
programming paradigms, remoting and streaming, together.
Yang et.al [9] earlier successfully proposed a streaming pro-
gramming model based on Java RMI over the remoting layer
for component software on distributed programming and pro-
vided a good indicator that this layer of model is a possible
direction for embedded multicore programming.

In this paper, we propose a streaming mechanism called
streaming RPC to provide a system for modeling stream-
based applications based on the RPC programming paradigm.

SiPS 2008



Streaming RPC is implemented as a middleware support to
provide a library-based programming model with parallelism
and to efficiently deploy the constituents of the multicore
processors. To make it easy to write efficient and reusable
programs on multicore processors, we also propose design
patterns for the streaming mechanism with the aspects and
sample implementations. The design patterns provide struc-
tural suggestion of writing streaming RPC programs. The
design patterns are based on experiences of developing high
performance multimedia applications on multicore processors
using RPC with streaming mechanism.

This paper is organized as follows. Section 2 presents the
background information of and the programming model of
streaming RPC. Section 3 describes motivation and aspects
of the proposed design patterns in streaming RPC. Section 4
discusses the effect and efficiency of streaming RPC and the
proposed programming model on multicore processors. Fi-
nally, section 5 concludes this paper.

2. OVERVIEW OF STREAMING RPC

2.1. Operating Systems and Middleware Support

The runtime system of the proposed streaming RPC is based
on the communication model of RPC. The early version of
streaming RPC is implemented with the support of a middle-
ware called pCore Bridge which provides basic RPC commu-
nication modules on multicore architectures. pCore Bridge is
running on an environment of multiple operating system with
Linux running on main processing unit (MPU) and pCore [10]
running on specialized processing units (SPUs). pCore is
a multi-threaded, priority-based, preemptive, and multi-core
supportive kernel designed for the SPUs on heterogeneous
multicore architectures. With transparent kernel modules and
well-defined design patterns, pCore cooperates well with the
OS on the MPU. Moreover, as a highly flexible and config-
urable system, pCore supports the developers to easily adopt
various programming models according to different needs to
provide a high-productivity runtime environment with effi-
cient execution model on the multicore processors.
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Fig. 1. Software framework of streaming RPC.
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The basic execution unit of streaming RPC is a thread.
The client and server of streaming RPC are executable threads
implemented with C-code running on different processors.
Figure 1 shows the software framework of streaming RPC
which illustrates the application software stack on multicore
processors. As shown in Figure 1, a multicore application is
partitioned into several parts: main thread, local functions (If,
in MPU’s view point), and remote functions (rf). Each part of
the program is modeled as a executable thread which is under
the control of main thread. The main thread invokes remote
threads by using the application interfaces(APIs) provided by
pCore Bridge and streaming RPC. The remote invocation of
pCore Bridge is asynchronous RPC. Thus, the execution of
the executable threads can be sequential or parallel which is
determined by the main thread.

The middleware support of pCore Bridge is designed to
provide light-weighted communication modules for multicore
processors. The APIs comprise several key categories: en-
vironment initialization, RPC invocation, signal exchanging,
data communication, and resource releasing. The following
lists several important APIs provided by pCore Bridge.

e void pb_load(char *exec_name) Load pCore and user
programs to SPU. This API should be invoked before
any further action.

e void pb_boot() Boot SPU and start execution of pCore.

o TASKID pb_create(const char * p_task, int prio) Create
a remote procedure p_task with priority prio on SPU.

o void pb_rpe(TASKID tid) Asynchronously invoke a re-
mote procedure of task identifier #id. The procedure to
be invoked must be created by using pb_create() first.

o void pb_wait(TASKID tid) Wait event from previous is-
sued remote procedure of task identifier fid. Issuing
pb_wait() after pb_rpc to implement a synchronous re-
mote procedure call,

2.2. Communication Model

Streaming RPC is based on the communication model of RPC
which is a promising technique in distributed system. The
simple, and ease-to-use mechanism of RPC provides an ef-
ficient way of programming multicore processors which al-
lows a remote procedure to be invoked to execute on a differ-
ent processor. The process that invokes a remote procedure
is the client whereas the remote process is called the server.
Based on the communication mechanism, streaming RPC is
implemented as a middleware to provide a design flow for the
multicore applications.

Figure 2 shows the typical streaming RPC operations.
Associated with the streaming channels, an RPC request
is allowed to transmit data between the client and server
by flagging a predefined stream identifier sI D to the API
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Fig. 2. Typical streaming RPC operations.

stream_create(sID). Once the channel is established, the
sender is able to use stream_put() to gather the data for
streaming communication. The gathered data is then trans-
mitted to the receiver through streaming channel by using
stream_push(). To retrieve data from the sender, the re-
ceiver uses stream_get() to gather data from streaming
channel. When the gathered data is not needed for further
computation, the receiver frees the stream data by using
stream_pop().

2.3. Pushing and Aggregating

Once the streaming channel is initialized, the RPC client and
server are then allowed to transmit data through the stream-
ing channel. To support efficient data transmitting, streaming
RPC introduces the pushing and aggregating mechanism
which precludes call-and-wait of typical RPC. Moreover, the
mechanism exploits the underling architectural benefits in
data communication, such as direct memory access(DMA).

The thread in which a sender pushes data to the streaming
channel is called the transmitter, while the thread in which
a receiver aggregates data is called the aggregator. In the
communication process, the data streaming is initialized by
giving the handler of the transmitter when invoking RPC. For
example, to transmit data described in the transmitter when
invoking a remote process rf_spul, the main thread uses
stream_rpe(r f _spul, transmitter) which first initializes
a streaming channel for the transmitter to perform data
streaming, then it invokes the remote process r f _supl that is
the corresponding receiver (aggregator) of the data streaming.

For example, to transmit s to the receiver through stream-
ing channel of sI D, the transmitter uses stream_put(sID, s)
to gather the data elements for transmission. The gathered
data is then transmitted to the receiver by pushing the data to
streaming line using stream_push(sID). On the other hand,
the aggregator uses stream_get(sID,r) to retrieve the data
element from the streaming channel and store it to . When
the transmitted data is not needed for further computation, the
aggregator frees the stream data by using stream._pop(sID).

Such API design allows the developers to aggregate the
stream element before the transmission really takes place. For
example, to transmit an data array list[m] from the sender to
the receiver, the programmer can transmit the data element
one by one if the receiver only requires one or few data ele-
ments for computing.

for(i = 0;
{

i <m; i++)
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stream_put(sID, list[i]);
stream _push (sID);

}

The corresponding aggregator code is as follows:

for(i = 0;

{
stream_get (sID,
stream _pop (sID);

}

i <m; itt)

list[i]);

On the other hand, if the receiver requires a large portion
or even the whole array to proceed computing, the developers
can gather all the data required to transmit it to the receiver as
shown in the following code:

for(i = 0; 1 <m; i++)

{

stream_put(sID, list[i]);
}

stream_push (sID);

The corresponding aggregator code is listed in the following:

for(i = 0; i <m; i++)

{

stream_get (sID, list[i]);
}

stream _pop (sID);

3. SOFTWARE DESIGN PATTERNS

In this section, we describe the streaming RPC programming
model with three design patterns: source, pipe, and sink. Fig-
ure 3 shows the simplified streaming RPC system compo-
nents. An application is composed of three structural com-
ponents: a source that retrieves data from the data source
to dispatch it to the remote processes, a pipe that serves as
a computation unit, and a sink that aggregates the data for
integration. In the following of this section, we follow the
description proposed in Design Patterns [11] but in more
paper format to describe the proposed design patterns.

3.1. Source

A source presents as a data originator to transmit streaming
data from a non-streaming RPC data source, e.g. file or de-
vice input, to a remote process which requires the data for
computation. It is motivated by the requirements for data
source while processing multimedia applications, for exam-
ple, to read data input from the camera device for image en-
coding or to open a video file for displaying. To achieve this
goal, the developers have various way of the implementation
and abstraction. A simple way to implement the data source
is to transmit data to the remote process by using streaming
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Fig. 3. Streaming RPC system components.

APIs without further partitioning or modifying the applica-
tion. It is possible to exploit performance in this way, but
not much. One of the important features of streaming RPC
is to overlap communication and computation in a efficient
and flexible way. A better approach to solve the problem is to
separate the operation of data transmission into a specialized
function called transmitter. Figure 4 depicts the structure
of'a source.
The pattern is applicable when:

e A thread needs to transmit data to a remote process as
a dispatcher or just a data transmitter.

e To retrieve data from a source file or input device for
dispatching/transmitting it to remote processes.

e The source has no input data streaming from a remote
process.

The following sample code illustrates the implementa-
tion of a source. A source transmits data element from a]
to a remote function 7f1. A source first builds a function
transmitter that is responsible for transmitting data stored
in a[] to the receiver.

void transmitter (void x p){
STREAM.ID sID = 0;
stream_create (sID);

int a[] ;

/x Computation ,
for (i){
stream_put(sID, a[i]);
stream_push (sID);

}

setting data source %/

[ application_|

data_source

stream_rpc(rf2, transmitter)

Fig. 4. Design pattern: source.

266

}

The source then uses stream_rpc to invoke the corre-
sponding remote process 7f_1 by giving the handle of
transmitter and the corresponding remote process 7f_1.
The transmitter is then scheduled as a single concurrent ex-
ecutable unit which transmits the data defined in the function
body.

void source( )

{

stream_rpc(rfl , transmitter);
/¥ Computation */

[ sink | [ applicaiton ]
ransmitter aggregator()  —[ data _destination |
Y —
stream_rpe(sink, transmitter)ﬁl
Fig. 5. Design pattern: sink.
3.2. Sink

A sink gathers streaming data from remote processes by
forming a aggregated data stream to a non-streaming RPC or
local destination, e.g. a file, a output device. It is with the
motivation for displaying the result of streaming multimedia
application and for the applications that requires gathering
data from multiple remote processes. The aggregated data is
sent to a local file or display devices, such as a monitor, after
aggregation. The design of a sink is to build a single ag-
gregator for gathering data from other transmitters. Figure 5
depicts the structure of a sink.
The pattern is applicable when:

e A thread aggregates streaming data into a file or output
to a device, e.g. VGA output.

e The sink does not invoke any streaming RPC for trans-
mitting data to a remote process.

To illustrate, the following sample code lists the usage of
sink pattern. A sink is a running thread that acts as a data ag-
gregator that get a 32-bits integer from the streaming channel
and write the data to a device.

void sink ( ){
STREAM.ID rID = 0;

u32 a;

stream_create (rID);
for (i){
stream_get(rID, a);
stream_pop (rID);
iowrite32(a, io_addr)
}

}
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3.3. Pipe

A pipe first gathers streaming data from remote processes to
form an aggregated data stream for computation or dispatch-
ing. It then transmits the aggregated data stream to remote
processes require the data. It is motivated with the pipelined
execution which is a promising technique in programming
streaming applications on multicore processor. It is often
complex to schedule the program for pipelined communica-
tion. This pattern provides a simple and ease-to-use way of
implementing pipelined parallelism by using streaming RPC.
Figure 7 depicts the structure of a pipe.
Pipe is applicable when:

o A thread that acts as a pipe or filter that aggregating data
streaming from remote processes and then transmits the
data to remote processes requires it.

The sample code illustrated a pipe that creates two stream-
ing channel with sI' D and rI D for transmitting and aggregat-
ing streaming data.

void pipe( ){
STREAM.ID sID
STREAM.ID rID 1;
stream_create (sID);
stream_create (rID);
u32 a;

while (true){

0;

stream._get(sID, a);
[ rf1 ] 7 | rf3 ]
' R [aggregator) |
el aggregator
[ w2 | ~ transmitter()

aggregator
\
stream_rpc(rf4, transmitter)

Fig. 7. Design pattern: pipe.

’ \

- ’
transmitter| ’ \
z

stream_rpc(pipe, transmitter)

267

stream_pop (sID);
/x Compute a x/
stream_put(sID, a);
stream _push (sID);

4. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of
streaming RPC. The early evaluation was performed on the
parallel architecture core (PAC) [12] which comprises a 300-
MHz ARM 926EJ-S processor with 32-KB cache as MPU,
and a novel digital signal processor(DSP) running at 250-
MHz as SPU. An MP3 decoder is implemented to evaluate
the performance of streaming RPC over conventional RPC in
multimedia applications. Figure 6 (a) shows the simplified
flow of a conventional MP3 decoder. As shown in Figure 6
(b), about 45% of the decoder is partitioned to run on DSP
including IMDCT, overlap, and frequency inversion. In the
stage, the input data are divided into 32 subbands for fur-
ther processing. The decoding processes of subbands are
independent, thus reveals a potential parallelism in the pro-
gram. Thus, we partitioned the MP3 decoder for the dual-core
processor where MPU and DSP are responsible equally 16
subbands for the decoding. The performance of the MP3
decoder was improved by 38% over conventional RPC im-
plementation as shown in Figure 6 (c).

Although the streaming RPC is able to attain high per-
formance improvement on multimedia application compared
to naive use of RPC, observing from the implementation, the
discrepancies in processing speed and I/O latency between
processors affects the performance of the applications. Such
discrepancies results in the differences between the produc-
tion rate of the sender and the consumption rate of the re-
ceiver. Thus, the thread with faster processing speed has to
wait for data communication. To avoid the blocking overhead,
the streaming RPC adopts a data-driven operations. Instead of



blocking, thread that waits for data is suspended by a stream-
ing monitor associated to a streaming channel. Although the
data-driven mechanism solved the problem of blocking, it in-
creases the internal handshaking while performing stream-
ing RPC. A thread with fast processing speed suffers from
frequent triggering for suspension and waking-up. To avoid
such unnecessary overhead, the streaming channel is associ-
ated with a threshold number. Instead of waking up the sus-
pended thread immediately, the streaming monitor waits until
the number of transmitted streaming data is over the thresh-
old value. Figure 8 shows the effects of threshold number in
internal handshaking times by running an MP3 decoder with
different threshold values. As the figure depicted, by setting
a larger number of threshold, the performance of the applica-
tion is improved as the internal handshaking reduces.
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Fig. 8. Internal handshaking times reduction.

5. CONCLUSION

Supporting streaming programming for the remoting pro-
gramming paradigms is a novel way to achieve performance
on multicore architectures and it benefits data-intensive appli-
cations by utilizing the potential parallelism with increasing
the efficiency of data transmission. In this paper, we pre-
sented a mechanism called streaming RPC to support data
streaming on remoting with a novel programing model. We
also presented the design patterns of streaming RPC on mul-
ticore processors. The evaluation showed that streaming RPC
is able to attain great improvement on multimedia applica-
tions.
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