Compiler Analysis and Supports for Leakage
Power Reduction on Microprocessors*

Yi-Ping You, Chingren Lee, and Jenq Kuen Lee

Department of Computer Science,
National Tsing Hua University,
Hsinchu 300, Taiwan
{ypyou, crlee}@pllab.cs.nthu.edu.tw, jklee@cs.nthu.edu.tw

Abstract. Power leakage constitutes an increasing fraction of the to-
tal power consumption in modern semiconductor technologies. Recent
research efforts also indicate architecture, compiler, and software partic-
ipations can help reduce the switching activities (also known as dynamic
power) on microprocessors. This raises interests on the issues to employ
architecture and compiler efforts to reduce leakage power (also known
as static power) on microprocessors. In this paper, we investigate the
compiler analysis techniques related to reducing leakage power. The ar-
chitecture model in our design is a system with an instruction set to
support the control of power gating in the component levels. Our com-
piler gives an analysis framework to utilize the instruction to reduce the
leakage power. We present a data flow analysis framework to estimate
the component activities at fixed points of programs with the consid-
eration of pipelines of architectures. We also give the equation for the
compiler to decide if the employment of the power gating instructions
on given program blocks will benefit the total energy reductions. As
the duration of power gating on components on given program routines
is related to program branches, we propose a set of scheduling policy
include Basic_Blk_Sched, MIN_Path_Sched, and AVG_Path_Sched mecha-
nisms and evaluate the effectiveness of those schemes. Our experiment is
done by incorporating our compiler analysis and scheduling policy into
SUIF compiler tools [32] and by simulating the energy consumptions
on Wattch toolkits [6]. Experimental results show our mechanisms are
effective in reducing leakage powers on microprocessors.

1 Introduction

The demands of power-constrained mobile and embedded computing applica-
tions increase rapidly. Reducing power consumption hence becomes a crucial
challenge for today’s software and hardware developers. While maximization of

* The work was supported in part by NSC-90-2218-E-007-042, NSC-90-2213-E-007-
074, NSC-90-2213-E-007-075, MOE research excellent project under grant no. 89-E-
FA04-1-4, and MOEA research project under grant no. 91-EC-17-A-03-S1-0002 of
Taiwan.

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 45-60] 2005.
© Springer-Verlag Berlin Heidelberg 2005

46 Y.-P. You C. Lee, and J.K. Lee

battery life is an obvious goal, the reduction of heat dissipations is important as
well. The reduction of power consumptions is also with the similar objective as
the reduction of heat dissipations. Minimization of power dissipation can be con-
sidered at algorithmic, architectural, logic and circuit levels [II]. Studies on low
power design are abundant in the literature [BIAI5TI27I29I37] in which various
techniques were proposed to synthesize designs with low transitional activities.

Recently, new research directions in reducing power consumptions have be-
gun to address the issues on the aspect of architecture designs and on software ar-
rangements at instruction-level to help reduce power consumptions
BIT2202425/33134U35]. The architecture and software efforts to reduce energy
consumptions in the recent attempt have been primarily on the dynamic com-
ponent of power dissipation (also known as dynamic power). The energy, E,
consumed by a program, is given by £ = P x T, where T is the number of exe-
cution cycles of the program [25] and P the average power. The average power
P is given by P = % -C-Vdd? - f-E, where C is the load capacitance, Vdd
the supply voltage, f the clock frequency, and E the transition count. In or-
der to reduce the dynamic power, several research works have been proposed
to reduce the dissipations. For example, software re-arrangements to utilize the
value locality of registers [12], the swapping of operands for booth multiplier [25],
the scheduling of VLIW instructions to reduce the power consumption on the in-
struction bus [24], gating clock to reduce workloads [20/3435], cache sub-banking
mechanism [33], the utilization of instruction cache [5], etc.

As transistors become smaller and faster, another mode of power dissipation
has become important. This is static power dissipation or the leakage current in
the absence of any switching activities. For example, consider two Intel’s Pentium
IIT processors manufactured on 0.18um process, the Pentium III 1.0 GHz and
the Pentium IIT 1.13 GHz [21]. The datasheet lists the 1.0 GHz processor has
a total power dissipation of 33.0 Watts and a deep sleep (i.e., static) power
of 3.74 Watts while the maximum power dissipation at 41.4 Watts and the
static power at 5.40 Watts for the 1.13 GHz one. The static power is up by
44% and comprises 13% of the total power dissipation while the total power is
increased by only 25%. Figure [l and Figure [2 show the growing ratio of static
power among the total power [14J36]. Figure [gives the growing trend of static
power. It’s growing in a fast paste. Figure 2l again shows the the growing trend
of static power in terms of temperatures in the hardware devices. This raises
the importance of reducing static power dissipations. Recently, academic results
have tried to characterize the engineering equation and cost model for analyzing
static powers [14/36]. This is important, as the architecture designers and system
developers can then deploy the architecture and software designs to reduce the
static power according to the cost model. Previously, the availability of the cost
equation for dynamic powers have prompted fruitful research results in the efforts
to reduce dynamic power. The recent result in characterizing static power has
the following equation. Psiatic = Voo - N - Kdesign 'fleak, where Voo is the supply
voltage, N is the number of transistors in design, kgesign is the characteristic of

Compiler Analysis and Supports for Leakage Power Reduction 47

1.E+02 100

* 90 I 56%
1.E+01 80 |- W Dynamic M Static 49%
0.1um, 15mm die, 0.7V
1.E+00 | F70F 41%
= =1 33%
z S 60
S 1E01 | = 149, 19% 26
3 S50 Fgw 9% %
£ 1.E-02 g 40
I < 30
1.E-03 - 20 |
@ Active M Leakage
1.E-04 - 10 |
0

1.E-05 - - - - - - 30 40 50 60 70 80 90 100 110
1.0 08 06 03 025 018

Technology Generation (um) Temperature (C)

Fig. 1. Trends in Active and Leakage Power Fig. 2. Leakage Power Trend in Tempera-
Dissipation (From Thomopson et. al.) ture (From De et. al.)

an average device, Tiear is the technology parameter describing the per device
subthreshold leakage [g].

In this paper, we investigate the compiler analysis techniques to reduce the
number of devices, IV, in the static power equation above to try to ease the
problem of leakage powers. The architecture model in our design is a system
with an instruction set to support the control of power gating in the compo-
nent levels. From the viewpoints of engineering equation for static power, we
attempt to reduce the number of devices by turning them off when they are
unused. Our work provides compiler solutions in giving analysis and scheduling
for the power gating control at component levels. Our compiler gives an analysis
framework to utilize the instruction to reduce the leakage power. A data-flow
analysis framework is given to estimate the component activities at fixed points
of programs with the consideration of pipelines of architectures. We also give
the equation for the compiler to decide if the employment of the power gating
instructions on given program blocks will benefit the total energy reductions.
As the duration of power gating on components on given program routines is
related to program branches, we propose a set of scheduling policy including Ba-
sic_Blk_sched, MIN_Path_Sched, AVG_Path_Sched mechanisms and evaluate the
effectiveness of those schemes. Basic_Blk_Sched mechanism schedules the power
gating instructions according to the component activities in a given basic block.
MIN_Path_Sched mechanism schedules the power gating instructions by assum-
ing the minimum length among plausible program paths. AVG_Path_Sched sched-
ules the power gating instructions by assuming the average length among plausi-
ble program paths. MIN_Path_Sched and AVG_Path_Sched mechanisms proposed
in our work are based-on a depth-first traversal scheme to look up the interval
in inserting power gating intsructions for components to reduce static power.
Our experiment is done by incorporating our compiler analysis and scheduling
policy into SUIF compiler tools [31I32] and by simulating the energy consump-
tions on Wattch [6] toolkits. Experimental results show our mechanisms are
very effective in reducing leakage powers on microprocessors. This work is also
a part of our efforts in DTC (design technology center) of our university to de-
velop compiler toolkits[24/T7I39T8BIT0OI9] for high-performance and low-power
micro-processors and SoC designs.

48 Y.-P. You C. Lee, and J.K. Lee

v
' 3 % +
B N ©
4
8
@
v
\T Instruction Bus
(32bits)
r—-—"—-—-—- -
Instruction
41 Program Counter J| Decoder
Micro Clodes
Integer) Floating Floating
—>» ALU/Normal '\/::}Sgﬁerr Po';—rl'nct)igger < Point Point <
Operation P Multiplier Divider
IE = Ej ET
Supplying
Voltage
________ I
Input/Output
| inpuvoutput »I'_IntegerlRegisters | p(san‘nsp»
(64ois) | (64bits x 32) | oy
L ipuwOupu [bover Gating Control I r Floating Point Registers |
(64bits) | Register (64bits) | | (64bitS X 32) |
———————— e . ___14

Fig. 3. Machine Architecture Model with Power Gating Control

2 Machine Architecture

The architecture model in our design is a system with an instruction set to sup-
port the control of power gating in the component levels. Figure [3] shows an
example of our target machine architecture on which our optimization is based.
We focus on the reduction of the power consumption of the certain function
units by invoking the “Power Gating” technology. Power gating is analogous to
clock gating; power gating turns off devices by switching off their supply voltage
rather than the clock. It can be done by forcing transistors to be off or us-
ing multithreshold voltage CMOS technology (MTCMOS) to increase threshold
voltage [8I22130].

We build the experimental architecture within the Wattch simulation envi-
ronment [6]. In the simulation environment, we can measure every CPU compo-
nents’s power consumption of the whole experimental program. Basically, this
architecture is compatible with the DEC Alpha 21264 processor [13]. The length
of an instruction in our experimental architecture is 32 bits. Memory addressing
is byte address. As Alpha is a 64-bit processor and uses 64-bit data bus, our
experimental architecture has 32 integer registers (RO through R31), and each
is 64 bits wide. The major difference of these two architectures is the additional
“power gating” design in our experimental architecture.

Those power-gated function units in our experimental architecture are In-
teger Multiplier, Floating Point Adder, Floating Point Multiplier, and

Compiler Analysis and Supports for Leakage Power Reduction 49

Floating Point Divider. The power gating of each function unit can be con-
trolled by the “Power Gating Control Register” (“PGCR” for short). The PGCR
is a 64-bit integer register. In this case, the only lowest 4 bits of this register
can affect the power gating status. The Oth bit of the lowest 4 bits of the PGCR
controls the power gating of the Integer Multiplier. Setting of the bit will cause
the Integer Multiplier to be turned on. Clearing of the bit will turn off the cor-
responding function unit in the immediately following clock. The 1st bit of the
4 Dbits is for Floating Point Adder, the 2nd bit is for Floating Point Multiplier,
and the 3rd bit of the 4 bits is for the Floating Point Divider. Worth to mention,
the Integer ALU unit within architecture also takes response to execute general
operation. And, it performs the data movement to the PGCR, too. As a result
of the Integer ALU is always required, this function unit is always turned on. In
addition, we invoke a new instruction in the simulation environment to specify
the access direction of PGCR. This instruction can operate those 4 power gated
function units at once by move a proper value from a general purpose register
to the PGCR.

Figure[3is also the architecture model on which we carry out our experiments
later in Section [l

3 Component-Activity Data-Flow Analysis

In this section, we investigate the compiler analysis techniques to ease the prob-
lem of leakage powers. We present a data-flow analysis framework [2] for a com-
piler to analyze the inactive states of components on a microprocessor. The pro-
cess collects the information of the utilization of components at various points in
a program. We first construct basic blocks and control flow graphs of given pro-
grams. We then try to develop a data flow equation for the summary of compo-
nent usages at given program points. To gather the data-flow information, we de-
fine comp_gen|B], comp_kill[B], comp_in[B], and comp_out[B] for each block B.

We say a component-activity c is generated at a block B if a component is
required for this execution, symbolized as comp_gen[B], and it is killed if the
component is released by the last request, symbolized as comp_kill[B]. We then
create two groups of equations shown below. The first group of equations follows
from the observation that comp_in[B] is the union of activities arriving from all
predecessors of B. The second group is the activities at the end of a block that
are either generated within the block, or those entering at the beginning but not
killed as control flows through the block. We have the data flow equation for
these two groups below,

comp_in|B] = U comp_out|P]

P a pred—
essor of B

comp_out|B] = comp_gen|[B] U (comp_in[B] — comp_kill[B]).

We use an iterative approach to compute the desired results of comp_in and
comp_out after comp_gen have been computed for each block. The algorithm is

50 Y.-P. You C. Lee, and J.K. Lee

Input A control flow graph in which each block B contains only one instruction;
a resource utilization table.
Output comp_in[B] and comp_out[B] for each block B.

Begin
for each block B do begin
for each component C that will be used by B do begin /* computation of comp_gen */
RemainingCycle[B][C] := N,
where N is the number of cycles needed for C by B;
comp_gen|B] := comp_gen[B] U C;

end
comp_in|[B] := comp_kill[B] := 0;
comp_out[B] := comp_gen[B];
end
while changes to any comp-out occur do begin /* iterative analysis */
for each block B do begin
for each component C' do begin /* computation of comp_kill */
RemainingCycle[B][C] := MAX(RemainingCycle[P][C]) — 1,
where P is a predecessor of B;
if RemainingCycle[B][C] = 0 then comp_kill[B] := comp_kill[B] U C;
end
/* computation of comp_in */
comp-in|B] := |J comp_-out[P], where P is a predecessor of B;

/* computation of comp_out */
comp-out[B] := comp_gen[B] U (comp_in[B] — comp_kill[B]);
end
end
End

Fig. 4. Data-Flow Analysis Algorithm for Component Activities

sketched in Figure [This is an iterative algorithm for data flow equations [2]
with the additions of resource management strcutures. A two-dimension array,
called RemainingCycle, is used to maintain the number of required cycles to
achieve requests for each component and block. In addtion, a resource utilization
table is adopted to give the resource requirement for each instruction of given
processors. The resource utilization table can be used to give the initial values of
RemainingCycle. The remaining cycles of a component will be decreased by one
for each propagation. Initially, both comp_in and com_kill are set to be empty.
The iteration goes until the comp_in (and hence the comp_out) converges. As
comp_out|B] never decreases in size for any B, the algorithm will eventually halt
while all comp_out are steady. Intuitively, the algorithm propagates activities of
components as far as they will go by simulating all possible executing paths of
the program. This algorithm gives the state of utilization of components for each
point of programs.

4 Leakage Power Reduction

In this section, we present a cost model for decisions if power gating control
should be applied and a set of scheduling policies to place power-gating instruc-
tion sets for given programs.

4.1 Cost Model

With the utilization of components obtained from last section, we can insert
power gating instructions into programs at proper points, the head/tail of an

Compiler Analysis and Supports for Leakage Power Reduction 51

inactive block, to turn off/on useless components. This can reduce the leakage
power. However, both shutdown and wakeup procedures take additional penalty,
especially for wakeup process due to peak voltage. The following gives our cost
model for deciding if the insertions of energy instructions will profit in energy
consumptions.

Eturn_off(c) + Eturn_on<c) S BreakEvenc * -Pleak_saving (C)a

where Eiyrn_off(C) is the penalty of energy for shutting down component C,
Eiyrn_on is the penalty of energy for waking up component C, BreakEvenc is
the break-even cycle for component C, and Pieak_saving (C) is the leakage power
saving of component C per cycle by employing power gating controls. The left-
hand side of the equation shows the energy consumed by shutdown and wakeup
procedures, and the right-hand side shows the leakage energy consumed for a
certain cycles. It will save power for power gating control only if the amount of
power of shutdown and wakeup is less than the one at RHS.

While employing power gating, there is another thing we should note. It’s
the latency to turn a component on. Due to the high capacitance on the circuits,
several clock cycles will be needed to bring the component back to the normal
operating state. Butts et al. also illustrated that it takes about 7.5 cycles at 1
GHz to charge 5 nF to 1.5 V with 1A [8]. With this consideration, we enforce
power gating on a component only when the size of its inactive block, i.e. the
idle region, is larger than its break-even cycle and its latency to recover. Our
cost model after incorporating latency issue is now as follows.

Thresholdc = MAX(BreakEvenc, Latencyc),

where Latencyc is the power gating latency of component C'. In addition, we
will try to insert the on operations of the power-gating control to be ahead of
the time for the use of the corresponding components to avoid the delay in the
programs due to wakeup latency.

4.2 Scheduling Policies for Power Gating

With the component activity information gathered and the cost model for decid-
ing if the power-gating instructions should be employed, we now give the schedul-
ing mechanisms to place the power gating instructions for given programs. As
the duration of power gating on components is related to conditional branches
in programs, we propose a set of scheduling policy including Basic_Blk_Sched,
MIN_Path_Sched, and AVG_Path_Sched to schedule power gating instructions.
The details are given below.

A naive mechanism to control the power-gating instruction set will set the
on and off instructions at each basic block according to the component activities
gathered by the data flow equation in the previous section. We call this scheme
as Basic_Blk_Sched.

52 Y.-P. You C. Lee, and J.K. Lee

Next, an inactive block of a component may cross over more than two adja-
cent basic blocks. We use a depth-first-traveling algorithm to traverse all possible
executing paths. In general, an inactive block will be turned off while the crite-
ria reached. In the case of conditional branches occurred in the inactive block,
there should be an another consideration to take action of power gating. This
is because the size of the two inactive blocks, which are targets that the branch
instruction points to, may be different. There may be a situation that one of the
branchings benefits for power gating while the other doesn’t. It will be against
power reductions if we take control of power gating considering only one branch
but the other branch is taken. Hence, we propose a MIN_Path_Sched policy to
ensure that power gating control would be activated only if the inactive lengths
of both branching paths exceed the power gating threshold, that is, the minimum
length of those paths reaches the criteria for power gating.

Figure [l presents the details for MIN_Path_Sched algorithm. Given a con-
trol flow graph annotated with component utilizations, we define a integer vari-
able, Count, to maintain the inactive length so far. It is passed around from
parent blocks to successors and increased for each passing. The algorithm is
recursive to guarantee the accuracy of Count and to ensure all paths being
traversed. The algorithm is divided into four parts to handle conditions when
encountering/non-encountering a conditional branch while the analyzing com-
ponent is active/inactive.

1) A conditional branch reaches and the component is inactive: under this con-
dition, current traveling will halt until both two branches having done their
travelings. And then, it makes a judgement on power gating when no branch
encountered before and return the minimum inactive length of two branch-
ings.

2) A conditional branch reaches and the component is active: under this condi-
tion, it takes control of power gating if necessary, starts two new travelings
for both branchings, and finally returns the current inactive length.

3) Any statement except conditional branches reaches and the component is
inactive: under this condition, it only continues the current traveling, that
is, it only increases Count for passing and returns.

4) Any statement except conditional branches reaches and the component is
active: like condition 2, it takes control of power gating if necessary and
starts a new traveling for its successor. And finally, it returns Count.

Note that cares have to be taken for recursive boundaries to reach the backward
edges for a loop. As a depth-first search algorithm can find out the loop, the cycle
situation can be known in our algorithm. In a cycle situation, if the the whole in-
structions used in the cycle of a program fragment does not use the component in
the search, we will assume the loop cycle is executed for once with the minimum
path scheduling policy. If some instructions in the backward edge of a program
fragment does use the component in the search, the the backward edge extend
to that instruction will be counted for the program path. In addition, since our
proposed algorithm is based on the depth-first-traveling, the complexity of our
approach is O(N) where N is the size of nodes in a control flow graph.

Compiler Analysis and Supports for Leakage Power Reduction

53

Input A control flow graph annotated with component utilizations.
Output A scheduling for power gating instructions.

MIN_Path_Sched(C, B, Branched, Edge, Count)
Begin

if block B is the end of CFG or Count > MAX_COUNT then return Count;
if block B has two children then do

/* condition 1; conditional branch, inactive */
if C ¢ comp_out[B] then do
Count := Count + 1;
if left edge is a forward edge then
1-Count := MIN_Path_Sched(C, left child of B, TRUE, FWD, Count);
else
I_-Count := MIN_Path_Sched(C, left child of B, TRUE, BWD, Count);
if right edge is a forward edge then
r_-Count := MIN_Path_Sched(C, right child of B, TRUE, FWD, Count);
else
r_Count := MIN_Path_Sched(C, right child of B, TRUE, BWD, Count);
if MIN(l_Count,r_-Count) > Thresholdc and !Branched then
schedule power gating instructions at the head and tail of inactive blocks;
return MIN(I_Count, r-Count);

/* condition 2; conditional branch, active */
else
if Count > Thresholdc and !Branched then
schedule power gating instructions at the head and tail of inactive blocks;
if Edge = FWD then
if right edge is a forward edge then
MIN_Path_Sched(C, left child of B, FALSE, FWD, Count);
else
MIN _Path_Sched(C, left child of B, FALSE, BWD, Count);
if left edge is a forward edge then
MIN_Path_Sched(C, right child of B, FALSE, FWD, Count);
else
MIN_Path_Sched(C, right child of B, FALSE, BWD, Count);
end
return Count;
end;
else

/* condition 3; statements except conditional branches, inactive */
if C ¢ comp_out[B] then do
Count := Count + 1;
if edge is a forward edge then
return MIN_Path_Sched(C, child of B, Branched, FWD, Count);
else
return MIN_Path_Sched(C, child of B, Branched, BWD, Count);

/* condition 4; statements except conditional branches, active */
else
if Count > Thresholdc and !Branched then
schedule power gating instructions at the head and tail of inactive blocks;
if Edge = FWD then
if the edge pointing to child of B is a forward edge then
MIN_Path_Sched(C, child of B, FALSE, FWD, Count);
else
MIN _Path_Sched(C, child of B, FALSE, BWD, Count);
end
return Count;
end
end

Fig.5. MIN_Path_Sched Algorithm Based on Depth-First-Traveling for Power Gating

54 Y.-P. You C. Lee, and J.K. Lee

Next, as the behavior of program branches depends on the structure and the
input data of programs, some branches may be taken rarely or even not taken. To
accomodate this issue, we propose an eclectic policy, called AV G_Path_Sched,
to schedule power gating instructions. The only difference between AV G_Path._
Sched and MIN _Path_Sched is the judgements made in condition 1 above.
AV G_Path_Sched returns the average length of two branchings instead of the
minimums. With this scheme, it will take advantage of power reduction if a
unusual-taken branch returns a small value of Count which causes power gat-
ing mechanism inactivated. AV G_Path_Sched mechanism can be approximately
done by assuming the probabilities of all branches are 50%, by assinging branch
probabilities at compiler time by programmers or compilers or by incorporating
path profiling schemes to examine the probabilities of all branches.

5 Experimental Results

5.1 Platform

We use an Alpha-compatible architecture with power gating control and in-
struction sets described in Figure [B] of Section 2 as the target architecture for
our experiments. The proposed data-flow analysis and scheduling policies are
incorporated into the compiler tool with SUIF [32] and MachSUIF Library [31]
and evaluated by Wattch simulator [6]. Figure [@ shows the structure of the
framework including compilation and simulation parts. In the compilation part,
we use the SUIF library to perform compiler optimization for performances
and the MachSUIF Library to perform machine-dependent optimizations for Al-
pha processors. After those optimizations having been done, we then analyze
component activities with our proposed data-flow equation and schedule power
gating instructions to reduce leakage dissipation. Finally, the compiler gener-
ates the Alpha assembly code with power gating instructions. To be recognized
by Alpha assembler and linker, power gating instructions are replaced by an
instruction sequence within the Alpha instruction set with annotation informa-
tion to simulators. We then use the Wattch power estimator, which is based
on the SimpleScalar [7] architectural simulator, to simulate power dissipation
and to evaluate our approach. The SimpleScalar is a simulator that provides
execution-driven and cycle-accurate simulations for various instruction set ar-
chitectures (include our target architecture, Alpha ISA). Both SimpleScalar and
Wattch are now widely used for simulations to evaluate performance and power
dissipation [6]. We also do refinements on the Wattch estimator to catch the
instruction sequences for power gating control.

5.2 Results

The test suits in our experiment are the common benchmarks listed in FAQ of
comp.benchmarks [I]. Figure [[and Figure [§ illustrate the power results for the
simulations of power gating control over Floating Point Adder and Floating Point

Power (Watts)
~ R 5

e o 9
r o ®

oS
o~

Compiler Analysis and Supports for Leakage Power Reduction

-~

.c Source Code

4

SUIF

Classical Optimization

High SUIF to Low SUIF \

£

55

MachSUIF

Alpha Code Generation

£

CFG construction

£

Pseudo Code Elimination

Register Allocation

£

|

|

|
£

|

|

Stack Frame HouseKeeping

L

Low Power Optimization

Component-Activity Data-Flow Analysis |

&

Power Gating Scheduling I

<

Representation Translation

s
.s Alpha Assembly Code

J

1y

Alpha Assembler & Liner

S T T T
Alpha Executable Code | Simulation |

&

Wattch Simulator

&

Power Results

Fig. 6. Our Experimental Framework

O BASIC_BLK_Sched|
m MIN_Path_Sched
O AVG_Path_Sched

OAVG_Path_Sched

Clock Gating

h

BreakEven Cycle

32 64 Clock Gating

]

LLL

BreakEven Cycle

Fig. 7. Results of Floating Point Adder for Fig. 8. Results of Floating Multiplier for

nsieve

nsieve

Multiplier for nsieve application, respectively. In these figures, the X-axis repre-
sents the break-even cycle for our scheduling criteria and the Y-axis represents
the power consumption. The leftest bar shows the power dissipated by function

56 Y.-P. You C. Lee, and J.K. Lee

units while no power gating control being employed. This is the results of tradi-
tional clock gating mechanism provided by the Wattch power estimator. This is
the version we use as the base version for comparison. The clock gating mech-
anism gates the clocks of those unused resources in multi-ported hardware to
reduce the dynamic power. However, there is still static power leaked. Wattch as-
sumes that clock-gated units dissipate 10% of their maximum power, rather than
drawing zero power. For example, the clock gating mechanism reduces about
30% of total power consumption against the one without clock gating for several
SPECint95 and SPEC{p95 benchmarks [6]. The rest bars of the figures give the
power gating results for the proposed scheduling policies with different break-
even cycle. The results show that the power gating mechanism reduces a large
amount of leakage power even if the penalty of power gating control is high (i.e.,
large break-even cycle). Note that we have incorporated the penalty of inserting
power gating instructions into our power simulator, Wattch. In our experimental
data, it also indicates the M I N _Path_Sched and the AV G_Path_Sched schedul-
ing algorithms always perform better results than the Basic_Blk_Sched. This
is because the Basic_Blk_Sched algorithm schedules power gating instructions
within basic blocks while the other two schedule those beyond branches. It will
extend the possible inactive lengths for components while the M IN _Path_Sched
or the AVG_Path_Sched is employed. The AV G_Path_Sched mechanism used
in our implementation is an approximation by assuming the probabilities of
all branches are 50%. We think a more accurate model by incorporating path
profiling schemes can further improve the results. The reduction of the power
consumed by the Floating Point Adder is from 30.11% to 70.50%, 30.36% to
77.01% and 31.36% to 77.68% for the Basic_Blk_Sched, MIN _Path_Sched and
AV G_Path_Sched, respectively. And that of the Floating Point Multiplier is
from 28.28% to 39.58%, 89.67% to 91.41% and 89.67% to 91.25%, respectively.

Figure @ and Figure [IQ give the power consumption of the Floating Point
Adder and the Floating Point Multiplier for various benchmarks while employ-
ing the power gating mechanism with break-even cycle 32. Once again, it is
observed that the AV G_Path_Sched benefited the most power reduction while

Power (Watts)

hanoi heapsort nsieve queens tftdp egntott- egntott- eqntott- eqntott-
test1 test2 test3 testd.

Floatint Point Adder

m Clock_Gating O Power_Gating, BASIC_BLK_Sched
B Power_Gating, MIN_Path_Sched O Power_Gating, AVG_Path_Sched

Fig.9. Power Gating on Floating Point Adder for miscellaneous benchmarks
(BreakEven = 32)

Compiler Analysis and Supports for Leakage Power Reduction 57

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Watts)

Power (

hanoi heapsort nsieve queens tfftdp egntott- eqgntott- egntott- egntott-
testt test2 test3 testd

Floating Point Multiplier

W Clock_Gating O Power_Gating, BASIC_BLK_Sched
W Power_Gating, MIN_Path_Sched [Power_Gating, AVG_Path_Sched

Fig.10. Power Gating on Floating Point Multiplier for miscellaneous benchmarks
(BreakEven = 32)

the MIN_Path_Sched came second and the Basic_Blk_Sched finished third.
However, they always have better results than the one without power gating (and
hence only clock gating employed). Figure [shows that the Basic_Blk_Sched
policy has an average 23.05% reduction for all benchmarks while the
MIN _Path_Sched and the AV G_Path_Sched have 76.93% and 82.84%, re-
spectively. In the case of hanoi benchmark, which is an integer program, it
even reduces 99.03% of power for the Basic_Blksched and 99.69% for the
MIN _Path_Sched and AVG_Path_Sched. Similar results can also be summa-
rized in Figure

6 Related Work

Several research groups have proposed and developed hardware techniques to
reduce dynamic and static power dissipation in recent. Recent work by Powell
et al. architectural and circuit-level techniques to reduce the power consumption
in instruction caches [26]. The cache miss rate is used to determine the working
set size of the application relative to that of the cache. Leakage power is then
removed from the unused SRAM cells using gated-Vy4 transistors. Kaxiras et
al. also attacks leakage power in cache memories. Policies and implementations
for reducing cache leakage by invalidating and turning off cache lines when they
enter a dead period are4 discussed [23]. This leads to power savings in the cache.
Recently, we found the research work done by Zhang et al. giving a compiler ap-
proach which exploits schedule slacks in VLIW architectures to optimize leakage
and dynamic energy consumption [40]. Gupta et. al gave experimental results in
using software for power gating [28]. Those two work are concurrent work to our
research work in compiler solutions for leakage power reduction. Note that a key
part of our solution in analyzing the component activities filed a patent in Tai-
wan by us dated back to the year of 2000. Comparing with those two concurrent
work, we have speciality in providing data flow analysis for component activities
of programs. Our analysis crosses the boundary of basic blocks. In addition, we
provide a family of scheduling policies in inserting energy instructions.

58

7

Y.-P. You C. Lee, and J.K. Lee

Conclusions

In this paper, we investigated the compiler analysis techniques related to re-
ducing leakage power. The architecture model in our design is a system with
an instruction set to support the control of power gating in the component
levels. We presented a data flow analysis framework to estimate the component
activities at fixed points of programs with the consideration of pipelines of archi-
tectures. A set of scheduling policy including Basic_Blk_Sched, MIN_Path_Sched,
and AVG_Path_Sched mechanisms were proposed and evaluated. Experimental
results show our mechanisms are effective in reducing leakage powers on micro-
processors.

References

1.

10.

11.

12.

13.

Al Aburto, collections of common benchmarks of FAQ of comp.benchmarks
USENET newsgroup, ftp site: ftp.nosc.mail/pub/aburto.

A. Aho, R. Sethi, J. Ullman, Compilers Principles, Techniques, and Tools, Addison-
Wesley, 1985.

M. Alidina, J. Monteiro, S. Devadas, A. Ghosh and M. Papaefthymiou,
“Precomputation-Based Sequential Logic Optimization for Low Power,” Proc. of
ICCAD-94, pp. 74-81, 1994.

Luca Benini and G. De Micheli, “State Assignment for Low Power Dissipation,”
IEEE Journal of Solid State Circuits, Vol. 30, No. 3, pp. 258-268, March 1995.
Nikolaos Bellas, Ibrahim N. Hajj, and Constantine D. Polychronopoulos, “Architec-
tural and Compiler Techniques for Energy Reduction in High-Performance Micro-
processors,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
pp. 317-326, June 2000.

D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a Framework for Architectural-
Level Power Analysis and Optimizations,” Proc. 27th. International Symposium
on Computer Architecture, pp. 83-94, June 2000.

D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0,” Computer
Architecture News, pp. 13-25, June 1997.

J. Adam Butts and Gurindar S. Sohi, “A Static Power Model for Architects,”
Proceedings of the 33rd Annual IEEE/ACM International Symposium on Microar-
chitecture, pp. 191-201, December 2000.

R. G. Chang, T. R. Chuang, Jeng-Kuen Lee. “Efficient Support of Parallel Sparse
Computation for Array Intrinsic Functions of Fortran 90,” ACM International
Conference on Supercomputing, Melbourne, Australia, July 13-17, 1998.
Rong-Guey Chang, Jia-Shing Li, Tyng-Ruey Chuang, Jenq Kuen Lee. “Proba-
bilistic inference schemes for sparsity structures of Fortran 90 array intrinsics,”
International Conference on Parallel Processing, Spain, Sep. 2001.

A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-Power CMOS Digital
Design,” IEEE Journal of Solid-State Circuits, Vol. 27, No.4, pp. 473-484, April
1992.

Jui-Ming Chang, Massoud Pedram, “Register Allocation and Binding for Low
Power,” Proceedings of Design Automaton Conference, San Francisco, USA, June
1995.

Compaq Computer Corporation, Alpha 21264 Microprocessor Hardware Reference
Manual, EC-RJRZA-TE, (July 1999).

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Compiler Analysis and Supports for Leakage Power Reduction 59

V. De and S. Borkar, “Technology and design challenges for low power and high
performance,” Proc. of Int. Symp. Low Power Electronics and Design, pp. 163-168,
1999.

G. Hachtel, M. Hermida, A. Pardo, M. Poncino and F. Somenzi, “Re-Encoding
Sequential Circuits to Reduce Power Dissipation,” Proc. of ICCAD’ 94, pp. 70-73,
1994.

G. Hadjiyiannis, S. Hanono and S. Devadas. “ISDL: An Instruction Set Description
Language for Retargetability,” Design Automation Conference, June 1997
Yuan-Shin Hwang, Peng-Sheng Chen, Jeng-Kuen Lee, Roy Ju. “Probabilistic
Points-to Analysis,” LCPC ’2001, Aug. 2001, USA.

Gwan-Hwan Hwang, Jenq Kuen Lee, Roy Dz-Ching Ju. “A Function-Composition
Approach to Synthesize Fortran 90 Array Operations,” Journal of Parallel and
Distributed Computing, 54, 1-47, 1998.

Inki Hong, Darko Dirovski, et.al., “Power Optimization of Variable Voltage Core-
Based Systems,” Proc. of 35th DAC, pp. 176-181, 1998.

M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-Power Digital Design,” Pro-
ceedings of the 1994 IEEE Symposium on Low Power Electronics, pp. 8-11.

Intel corporation, “Pentium III Processor for the SC242 at 450 MHz to 1.13 GHz
Datasheet,” pp. 26-30.

J. T. Kao and A. P. Chandrakasan, “Dual-threshold voltage techniques for low-
power digital circuits,” IEEEJournal of Solid-state circuits, 35(7):1009-1018, July
2000.

S. Kaxiras, Z.Hu and M.Martonosi, “Cache Decay: Exploiting Generational Behav-
ior to Reduce Cache Leakage Power,” Proc. of the Int’l Symposium on Computer
Architecture, pp.240-251, 2001.

Chingren Lee, Jenq Kuen Lee, TingTing Hwang, and Shi-Chun Tsai, “Compiler
Optimization on Instruction Scheduling for Low Power,” Proceedings of the 13th
International Symposium on Systems Synthesis, pp. 55 - 60, September 2000.
Mike Tien-Chien Lee, Vivek Tiwari, Sharad Malik, Masahiro Fujita, “Power Analy-
sis and Minimization Techniques for Embedded DSP Software,” IEEFE Transactions
on VLSI Systems, Vol. 5, no. 1, pp. 123-133, March 1997.

M.D. Powell, S-H. Yang, B. Falsa, K. Roy, and T.N. Vijaykumar, “Gated-
Vdd: a Circuit Technique to Reduce Leakage in Deep-Submicron Cache Memo-
ries,” ACM/IEEEFE International Symposium on Low Power Electronics and Design
(ISLPED), 2000.

S. C. Prasad and K. Roy, “Circuit Activity Driven Multilevel Logic Optimization
for Low Power Reliable Operation,” Proceedings of the EDAC’93 EURO-ASIC ,
pp- 368-372, Feb., 1993.

S. Rele, S. Pande, S. Onder, and R. Gupta, “Optimizing Static Power Dissipa-
tion by Functional Units in Superscalar Processors,” International Conference on
Compiler Construction (CC), Grenoble, France, April 2002.

K. Roy and S. C. Prasad, “SYCLOP: Synthesis of CMOS Logic for Low Power
Applications,” Proceedings of the ICCD, pp. 464-467, 1992.

K. Roy, “Leakage Power reduction in Low-Voltage CMOS Designs,” IEEE Inter-
national Conference on Circuits and Systems, Vol. 2, pp. 167-173, 1998.

Michael D. Smith, “The SUIF Machine Library”, Division of of Engineering and
Applied Science, Harvard University, March 1998.

Stanford Compiler Group, “The SUIF Library”, Stanford Compiler Group, Stan-
ford, March 1995.

60

33.

34.

35.

36.

37.

38.

39.

40.

Y.-P. You C. Lee, and J.K. Lee

Ching-Long Su and Alvin M. Despain, “Cache Designs for Energy Efficiency,” Pro-
ceedings of the 28th Annual Hawaii International Conference on System Sciences,
pp- 306 -315, 1995.

V. Tiwari, R. Donnelly, S. Malik, and R. Gonzalez, “Dynamic Power Management
for Microprocessors: A Case Study,” Proceedings of the 10th International Confer-
ence on VLSI Design, pp. 185-192, 1997.

V. Tiwari, D.Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, “Reducing
Power in High-Performance Microprocessors,” Proceedings of the Design Automa-
ton Conference, pp. 732-737, 1998.

Scott Thompson, Paul Packan, and Mark Bohr, “MOS Scaling: Transistor Chal-
lenges for the 21st Century,” Portland Technology Development, Intel Corp. Intel
Technology Journal, Q3 1998.

C.Y. Tsui, M. Pedram, and A.M. Despain, “Technology Decomposition and Map-
ping Targeting Low Power Dissipation,” Proc. of 30th Design Automaton Conf.,
pp.68-73, June 1993.

J. Z. Wu, Jeng-Kuen Lee. “A bytecode optimizer to engineer bytecodes for perfor-
mances,” LCPC 00, Aug. 2000, USA (Also in LNCS 2017).

Yi-Ping You, Ching-Ren Lee, Jenq-Kuen Lee, Wei-Kuan Shih. “Rea-Time Task
Scheduling for Dynamically Variable Voltage Processors,” IEEE workshop on
Power Management for Real-Time and Embedded Systems, May 2001.

W. Zhang, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, D. Duarte, and Y. Tsai.
“Exploiting VLIW Schedule Slacks for Dynamic and Leakage Energy Reduction,”
Proceedings of the Thirty-Fourth Annual International Symposium on Microarchi-
tecture (MICRO-34). pp. 102-113. Austin, TX. December 2001.

	Introduction
	Machine Architecture
	Component-Activity Data-Flow Analysis
	Leakage Power Reduction
	Cost Model
	Scheduling Policies for Power Gating

	Experimental Results
	Platform
	Results

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

