
Power-aware Scheduling for Parallel Security
Processors with Analytical Models

Yung-Chia Lin Yi-Ping You Chung-Wen Huang
Jenq-Kuen Lee Wei-Kuan Shih Ting-Ting Hwang

Department of Computer Science
National Tsing Hua University

Hsinchu 300 Taiwan

Abstract. Techniques to reduce power dissipation for embedded systems have
recently come into sharp focus in the technology development. Among these
techniques, dynamic voltage scaling (DVS), power gating (PG), and multiple-
domain partitioning are regarded as effective schemes to reduce dynamic and
static power. In this paper, we investigate the problem of power-aware scheduling
tasks running on a scalable encryption processor, which is equipped with het-
erogeneous distributed SOC designs and needs the effective integration of the
elements of DVS, PG, and the scheduling for correlations of multiple domain re-
sources. We propose a novel heuristic that integrates the utilization of DVS and
PG and increases the total energy-saving. Furthermore, we propose an analytic
model approach to make an estimate about its performance and energy require-
ments between different components in systems. These proposed techniques are
essential and needed to perform DVS and PG on multiple domain resources which
are of correlations. Experiments are done in the prototypical environments for our
security processors and the results show that significant energy reductions can be
achieved by incorporating our algorithms.12

1 Introduction

Techniques to reduce power dissipation for embedded systems have recently come into
sharp focus in the technology development, as power consumption has become a crucial
issue in the embedded SOC design. Among these techniques, dynamic voltage scaling
(DVS), power gating (PG), and multiple-domain partitioning are regarded as effective
schemes to reduce both dynamic and static power. Dynamic voltage scaling [36] is to
reduce the dynamic power consumptionP by dynamically scaling the supply voltage

1 The work was supported in part by NSC-93-2220-E-007-019, NSC-93-2220-E-007-020,
NSC-93-2213-E-007-025, MOE research excellent project under grant no. NSC93-2752-E-
007-004-PAE, and MOEA research project under grant no. 92-EC-17-A-03-S1-0002 of Tai-
wan.

2 The contact author of this work is Jenq Kuen Lee. His email address is jklee@cs.nthu.edu.tw.

Vdd and corresponding frequencyf of the PE if no demands for full throttle operating.
The DVS uses the following equations for architecture-level power estimation:

Pdynamic= C×α× f ×V2
dd

f = k× (Vdd−Vt)2/Vdd

whereC is the switching capacitance,α is the switching activity,k is a circuit-dependent
constant, andVt denotes the threshold voltage. In the aspect of power gating [3, 26],
the technique features in reducing leakage power dissipation; it uses the sleep circuit
to disconnect the supply power from portions of the circuit when those portions are
inactive. For leakage power estimation at architecture, we use the equation below:

Pstatic = Vdd×N×kdesign× Ileakage

whereN is the number of transistors,kdesignis a design-dependent constant, andIleakage

denotes the normalized leakage current which depends on silicon technology, threshold
voltage, and sub-threshold swing parameter. In the aspect of multiple domain partition-
ing, research issues remain for explorations when we try to integrate DVS, PG, and the
scheduling for correlations of multiple domain resources. In this paper, we will have a
scalable security processor as a case study to illustrate how to address this problem.

Variable Voltage Schedulingmanages the tasks with execution deadlines and re-
duces power consumption without any task missing its deadline. We list the related
research work as follows. The work in [10] gives a heuristic non-preemptive schedul-
ing algorithm for independent tasks on a single processor. Works merely targeting on a
single processor can be found in [8, 13, 14, 16, 23–25, 27, 31, 37, 38]. The works with
distributed embedded systems can be found in [20–22, 29]. The main problem of us-
ing PG technology is to issue Gate-Off/On control at the proper time as to minimize
performance degradation and maximize leakage power reduction. The works related to
software-controlled power gating can be found in [6,28,39].

In this paper, we address the issue of variable voltage static scheduling in a hetero-
geneous distributed embedded system for independent periodic tasks with considering
power gating to minimize both dynamic and static power dissipation. Our testbed is
based on a scalable security processor (SP) which is developed in a collaborative re-
search with the VLSI design group in our university [11, 17, 18, 33–35]. In the project,
it aims to offer a configurable prototype of high-performance low-power security pro-
cessors and incorporates the dynamic voltage scaling, power gating technology, and
multiple domain partitioning in the designed processors. The interior of the security
processors employs the architecture of heterogeneous distributed embedded system,
in which processing elements (PEs) are various crypto-engine modules. Each crypto-
engine module is designed to have DVS and PG capabilities. We propose a novel heuris-
tic that integrates the utilization of DVS and PG, and increases the total energy-saving.
Furthermore, we propose an analytic model approach to make an estimate about its per-
formance and energy requirements between different components in systems. These
proposed techniques are essential and needed to perform DVS and PG on multiple
domain resources which are of correlation. Experiments are done in the prototypical
environments for our security processors and the results show that significant energy
reductions can be achieved by our proposed mechanisms.

The remainder of this paper is organized as follows. We first describe the architec-
ture used in our target platform and power management design in Section 2. Next, we
explain in detail our joint power-aware scheduling approach with both dynamic power
reduction and leakage power reduction in Section 3. In Section 4, we present the exper-
imental setup and the results. At last, we make an overall conclusion in Section 5.

2 Configurable SP Architecture with Power Management

In this section, we briefly describe a configurable architecture ofSPs. The variations of
this architecture have been used by many network device manufacturers, as Broadcom,
Hifn [9], Motorola [7], and SafeNet. Key cryptographic functions in security processors
may include:

– data encryption (DES, 3DES, RC4, and AES),
– user authentication only (DSS and DSA),
– hash function (SHA-1, MD5, and HMAC),
– public key encryption (RSA and ECC),
– public key exchange (Diffie-Hellman Key Exchange),
– and the compression (LZS and Deflate).

Fig.1 presents our architecture. It consists of a main controller, a DMA module, internal
buses, and crypto modules [11,17,18,33–35]. The main controller has a slave interface
of external bus which accepts the control signals and returns the operation feedbacks
via the interrupt port. In the main controller, there are resource allocation modules for
managing resource such as external bus master interfaces, channels, transfer engines,
internal buses, and crypto modules. Also, the process scheduler module and power man-
agement module are added into the main controller for task scheduling and low power
control. The crypto operations are based on descriptors. The descriptor contains the
type of en-/de-cryption functions, the length of raw data, the key information, and the
destination memory address of the output data.

Int. B
us

D
M

A
 M

odule

...... ...

E
xt. B

us S
lave

E
xt. B

us M
aster

 Transfer
 Engine

 Transfer
 Engine

Channel

Channel

Channel

Int. Bus
Master

Crypto Module

Crypto Module

Crypto Module
Int. Bus
Master

Main Controller
Process Scheduler

Power Management

Resource
Allocation Module

Fig. 1. Parallel security processor architecture

The DMA module integrates master interfaces of external bus with the channels
and the transfer engines. According to the data information in the channel, the trans-
fer engine requests the external bus to transfer data from memory. The memory can be
replaced by package processors which directly connect to the network by MAC mod-
ules. The transfer engine then passes the data to the dedicated crypto module via the
internal bus. Furthermore, the internal buses are designed to support multiple layers for
high speed data transmission. Because the execution time of the crypto module may be
varied, the crypto module will signal the main controller when the operations are done.

The power management module in the main controller presents a software-controllable
voltage/speed adjustment of all components in the security processor. All components
controlled by the power management module have four main power states:Full(1.8V),
Low(1.5V), Ultralow(1.2V), andSleep(0V). Cooperating with the process scheduler
module, tasks can be assigned power states amongFull-Low-Ultralow, and power gat-
ing asSleepmode. For supplying multiple operating voltages, we have dynamic voltage
generators which generate three level supply voltages for the security processor.

3 Power-aware Scheduling Approach

In this section, we discuss the scheduling issues for low power in our security architec-
tures and focus on the problem of independent periodic task scheduling. We assume a
distributed embedded system containing major PEs (crypto modules) which are capable
of k-level supply voltages and power gating mode. Moreover, we assume the other non-
PE components (such as buses, channels) are capable of DVS. To simplify scheduling
problems with all components in a complicated system, we propose a three-phase itera-
tive scheme for power-aware scheduling among multiple domain partitions as follows.

Iterative Scheduling Algorithm for Correlated Multiple-Domain Resources

1. We employ the scheduling methods to be given in Section 3.1 and assume the maximum
performance of non-PEs (such as bus and channels) to determine running voltage/frequency
of each task in major PEs and appropriate power gating occasions.

2. Apply analytic approximation techniques to rapidly determine running voltages/frequencies
of the remaining components in the system. Analytic methods also give the proper estimation
of computation latency in PEs caused by these components in the system.

3. Re-employ the scheduling methods with information generated in phase 2 and deliver final
scheduled setting of each task. Iteratively proceed with phases 2–3 till the scheduling results
are close to be the same. Other details would be described in Section 3.2.

3.1 Joint Variable-Voltage Scheduling with Power Gating for PEs

It is known that the scheduling problem of a set of nonpreemptable independent tasks with ar-
bitrary execution time on fixed-voltage multiprocessors is NP-complete [32]. With reduction
techniques, we find that the same scheduling problem on variable-voltage multiprocessors is NP-
hard. To optimize the power or energy consumption in real-time systems, we propose a heuristic
algorithm to schedule tasks under the condition of variable supply voltage.

The proposed scheduler maintains a list, called thereservation list[30], in which these tasks
are sorted by deadlines. Since each periodic task arrives with a certain periodicity, we can get

the information about the arrivals and deadlines of tasks in a given interval. At the beginning, all
tasks are in the list and sorted by their deadlines, and the task with the earliest deadline is then
picked for scheduling. The scheduler first checks if the task could be executed completely prior to
the deadline at the lower voltage without influencing any unscheduled task in the reservation list.
In this way the scheduler will decide how to schedule tasks at the lowest voltage as possible. For
idle time of PEs, the scheduler will decide if it is deserved to gate off the idle PEs. The proposed
heuristic would turn off unnecessary PEs completely as many as possible, so as to maximize
static power reduction on top of dynamic power reduction.

Slack-Time Computation We first give the definition for the slack time in the scheduling.
Suppose we are going to schedule taskTi , and there are still (n− i) unscheduled tasks (i.e.,Ti+1,
Ti+2, . . . , Tn) in the reservation list. The slack timeδi(V) is the maximum period allowed forTi
while the remaining (n−1) tasks are scheduled at supply voltageV in reverse order. To obtain
the information forTi , we first build a pseudo scheduler for the (n− i) tasks with the following
behaviors. The (n− i) tasks are scheduled in a reversed way, which treats the deadlines as arrivals
and the arrivals as deadlines and starts from the point of the latest deadline (i.e.,dn is the deadline
of Tn) via the well-known earliest deadline first (EDF) algorithm [19]. We then record the time of
the end point of the pseudo schedule asλi(V).

The slack time of the pseudo schedule at a supply voltageV can be obtained from the follow-
ing equation:

δi(V) = λi(V)−Max(ai , fi−1),

whereai is the arrival time ofTi , fi−1 is the finishing time of the last taskTi−1, andMax(a,b) is a
function that returns the maximum value ofa andb. Figure 2 gives an example of the slack-time
computation, in which there are four tasks in the reservation list. Here two reservation lists are
maintained: one is created by a pseudo scheduler to schedule tasks at the lowest voltage, and the
other is compiled by the highest-voltage scheduler. The slack timeδi(VH) andδi(VL) is the time
from the finishing time of the last task to the end point of the reservation list from the highest-
and lowest-voltage schedulers, respectively. If we consider the overhead of DVS, the highest-
voltage scheduler should add the maximum time-overhead of DVS tofi−1 to computeδi(VH).
It is noted that during the scheduling, we shall flag an exception if any deadline cannot be met
when scheduling at the highest voltage.

Scheduling Algorithm The proposed scheduling algorithm is based on the EDF algorithm [19].
Figure 3 lists the algorithm. Assume there aren periodic tasks to be scheduled. First, we sort tasks
in ascending order by deadlines, namelyT1, T2, . . . , Tn, and put them in a list of unscheduled
tasks, i.e., the reservation list. We then extract each task from the list on the basis of the sched-
ule. Suppose the system providesmprocessing elements, and each processing element is capable
of K-level supply voltages, where level1 represents the lowest voltage and levelK represents
the highest voltage. Steps 1–3 in Figure 3 describe these procedures. For utilizing power gating
capabilities, we shall try to make tasks run successively without intermissions and let idle time
be together because PG mechanisms cost much more expense than DVS does in performance
and power.Next, in step 4, we compute the slack time for taskTi with both the highest-
and lowest-voltage pseudo schedulers, denoted asδi(VH) andδi(VL). The slack time
δi(V) represents the maximum time interval allowed for taskTi to execute while all
the remaining tasks in the reservation list are scheduled in reverse order with supply
voltageV. In step 5, we compute the computation time of taskTi at both the highest-

���

���

���� ���� ���� ���	

������

������

������

������

��		��	���	���	�

Fig. 2.Examples of slack-time computation while schedulingTi : (a) tasks performed at the high-
est voltage; (b) tasks performed at the lowest voltage.

and lowest-voltages, denoted asci(VH) andci(VL). In step 6, we compareci(VH) and
ci(VL) with δi(VL) andδi(VH) to decide which voltage should be applied to the task.
This algorithm results in three possible scenarios as follows:

(a) ci(VL) plus time-overhead of voltage-scaling is smaller than or equal toδi(VL). If
energy-overhead of voltage-scaling is less than energy-saving, we can schedule task
Ti at the lowest voltage without affecting any task in the future because there are no
overlaps between taskTi and the unscheduled tasks while those tasks are assumed
to be executed at the lowest voltage.

(b) ci(VL) plus time-overhead of voltage-scaling is larger thanδi(VL) and smaller than
or equal toδi(VH). If this happens, we call a decision algorithm described in Sec-
tion 3.1 to decide at which voltage task shouldTi be scheduled. It weights the alter-
natives to optimize the overall costs, using a criterion such as the power or energy
consumption.

(c) ci(VL) plus time-overhead of voltage-scaling is larger thanδi(VH). This means it is
impossible for taskTi to complete its execution by its deadline at any voltage lower
than the highest voltage, and hence we must schedule it at the highest voltage to let
its deadline be met. If taskTi is un-schedulable for current PE, we put it in a new
list calledLun that contains all un-schedulable tasks.

In step 7, we check the remained idle time between the scheduled tasks in the current
PE and determine power gating commands to be inserted if it benefits energy-saving. In
step 8 and step 9, if the listLun generated in step 6 is not empty, we use the list as the
reservation list for the next available PE and schedule it by the same procedures in steps
3–6. If no PE is available for scheduling, the scheduler should report the failure. At the

Real-Time Scheduling Algorithm with Variable-Voltage
Reservation Lists in Multiple Processing Elements

Input : n unscheduled periodic tasks andm PEs
Output : Schedule of gating commands and then tasks

with variable supply voltages atPE1,2,...,m

1. Sort tasks by deadlines in ascending order; i.e.,T1, T2, ...,Tn.
2. Put them in a list, called thereservation listof

the target processing elementPEj . In the beginning,j=1.
3. Remove the first task, namelyTi , which has the earliest deadline, from

thereservation list. Repeat steps 3–6 while the list is not empty.
4. Compute the slack time for taskTi with both the highest- and

lowest-voltage pseudo schedulers, i.e.,δi(VH) andδi(VL).
5. Compute the computation time ofTi at the highest-

and lowest-voltages, i.e.,ci(VH) andci(VL).
6. Letot(i) be the voltage scaling time, scheduleTi in the following rules:

- If ci(VL)+ot(i)≤ δi(VL), scheduleTi for PEj atVL if possible†.
- If δi(VL) < ci(VL)+ot(i)≤ δi(VH), call thedecision algorithm.
- If ci(VL)+ot(i) > δi(VH) and

- if ci(VH)+ot(i)≤ δi(VH), scheduleTi for PEj atVH .
- if ci(VH)+ot(i) > δi(VH), putTi in an unscheduled listLun.

7. Check idle-time ofPEj and insert gating commands if possible‡.
8. If PEj is the last available PE and the listLun is not empty,

then report the possible failure of real-time scheduling.
9. If the listLun is not empty, letj = j +1 and use the list

Lun as thereservation listof the targetPEj . Next, go to step 3.
10.If j < m, then gate offPEj+1 . . .PEm all the time.

†ScheduleTi atVL if deadline is met and energy-overhead is acceptable.
‡Gate on/off if tasks are unaffected and energy-overhead is acceptable.

Fig. 3. Reservation-list scheduling algorithm for variable-voltage problems in multiple PEs.

last step, we will turn off all unused PEs via power-gating to minimize both static and
dynamic power savings.

Decision Algorithm Following the notations in the previous subsections, assume that
we are scheduling taskTi , and thatci(VL)+ot(i) is larger thanδi(VL) and smaller than or
equal toδi(VH). To achieve the objective of power/energy reduction, we propose several
algorithms to decide at which voltage tasks should be scheduled when weighting trade-
offs between tasks. We use a probability density function,

f (x) =
1√
2πσ

e
−(x−µ)2

2σ2 where−∞ < x < ∞,

which defines the probability density function for the valueX of a random observation
from the population [15], to divide the population of a group intoK equal parts in terms
of area under the distribution, and then schedule tasks at levels corresponding to the

parts that the tasks belong to. In other words, letW1, W2, ..., andWK−1 be demarcation
that separates the population intoK parts ; a task will be scheduled at levelt if its value
falls betweenWt−1 andWt . The detailed algorithms are described as follows:

(a) Reservation list with first-come first-served scheduling
Tasks are always scheduled at the lowest voltage as possible without missing dead-
lines. This algorithm does not apply a cost model to the decision.

(b) Reservation list with average power consumption
We use the switching activityαi to select the voltage level forTi . We schedule a
task at level(K− τ+1) ifZ Wτ

α

−∞

1√
2πσ

e
−(Wτ

α−µ)2

2σ2 =
τ
K

andWτ
α denotes theτ-th watershed of the population of

switching activities of tasks.

3.2 Voltage/Speed Selection of Non-PEs

For non-PE components (such as buses and transfer engines) in the system, we apply an
analytic modeling techniques (to be described shortly) to compute the suitable voltage
so that total performance of the system will fit the scheduling results of major PEs.

Suppose the system has multiple PEs that are labeled with an index in the range1 to
l . Several channels, which are labeled with an index in the range1 to n, are built into the
control unit for simultaneously accessing the PEs. The data transfer between channels
and PEs are across a few of internal buses, which are labeled with an index in the range
1 to m. We can view eachkth PE andj th internal bus as a server with a constant service
rate ofMsk andM′

sj
bits per second, respectively. LetPi,k be the probability that channel

i makes its next service request to the PEk. DefineΦi to be the average fraction of the
time that theith channel is not waiting for a service request to be completed from any
of PEs and internal buses. Also, letΩk,i andΩ′

j,i be the fraction of the time spent by the

ithchannel waiting for a service request to PEk and internal busj, respectively. Define
Mrk,i to be the ratio of the total processing data size to the time that descriptors of the
ith channel spend doing the overhead of PE service requests, not including the time of
waiting in queues and having requests serviced by thekth PE. Let

ηk =
n

∑
i=1

Pi,k
Mrk,i

Msk

, λk =
(1+ εk)Msk

∑m
j=1M′

sj

,

whereεk is the average scaling ratio of data size throughout thekth PE processing. The
average time that each channel spends doing initiating, host memory communication,
and descriptor processingΦi is related to the time spent waiting,Ωk,i and Ω′

j,i , as the

following equations.

Φi +
l

∑
k=1

Ωk,i +
m

∑
j=1

Ω′
j,i = 1

n

∏
i=1

(1−Ωk,i)+ηkΦi = 1

n

∏
i=1

(1−Ω′
j,i)+

l

∑
k=1

ηkλkΦi = 1

We abbreviate the detailed model construction and proof which could be found in the
appendix of this paper.

Suppose tasks forl PEs are scheduled by the scheduler as described in Section 3.1.
We can deriveΦi , Ωk,i , andΩ′

j,i , which are the metrics of expected performance, from

the scheduling results: the scheduling results offer the average service rateMsk of kth

processing engines andηkΦi , which semantically equal to utilization ofkth PE due to
task assignments. Assume the security processor hasn channels andm internal buses
connecting PEs, so we can provide one proper selection among frequencies and corre-
sponding voltages of internal buses and transfer engines through solving the equations
previously: we use expecting values ofM′

sj
to evaluate resultingΦi , Ωk,i , andΩ′

j,i and
choose a minimalM′

sj
that causes the system to have the most load efficiency, for which

Φi , Ωk,i , andΩ′
j,i are all positive andΦi should be the minimum as possible.

Apart from voltage/frequency selection, the proposed analytic modeling is used to
revise the latency parameters in the schedulers during scheme phases 2–3. In the real-
istic environments of considered systems, the computation time of tasks in PEs should
actually include the latency time caused by data transmission and bus contention. The
data transmission latency could be calculated validly by data size, bus speed, and de-
tailed transfer operations during scheduling. The bus contention latency, however, could
not be correctly estimated if lacking any runtime information. Thus we shall use the
worst case estimation of the latency time to proceed the calculation of task computa-
tion time and avoid deadline missing under any runtime condition. In the first phase
of scheduling scheme, we use maximum performance settings of internal buses and
transfer engines, which relax the slack time computation, to schedule tasks. We conser-
vatively assume the worst case of each task is waiting for all tasks in PEs except the one
in which it is scheduled to complete their data transmission with the maximum time
spent by the possible largest data transmission. The proposed analytic approximation
phase of voltage-selection estimates possible low power settings of internal buses and
transfer engines which match the scheduling results, and is also able to estimate more
accurate worst-case latency time in each PE than theoretical one by means ofΩ′

j,i and
ηkΦi , which would reflect the possible worst-case latency in the scheduling results. We
then perform the third phase of scheduling scheme that uses values derived by the sec-
ond phase, and obtain final scheduling results. Due to the monotonic property of PE
usage in our scheduling algorithms, iterative processing of phases 2–3 would converge
on a stable scheduling result.

4 Simulator & Experiment

In the experiments, we have built a cycle-accurate simulator along with energy models
for configurable security processors. The cycle-accurate simulator is written in Sys-
temC in which each PE’s simulation can be operated at assigned frequencies based on
the voltage scaling. The energy consumption models, according to activity types and
structure features of the hardware designs [4], are separated into functional units, con-
trol logics, memory, and clock distribution trees. Hence, the energy consumptions are
weighted with various considerations. The simulation environment needs operated with
a power library which contains synthesis values of PEs under UMC 0.18 CMOS library.

suite 1 2 3 4 5 6 7 8 9

arrival distribution uniform normal exponential

job number 300

jobs/time (µs) 1500 375 1500 375 1500 375

AES:RSA 30:1

max data size (bytes) 1280

max AES deadline
(µs)

3072 3430 3072 3430 3072 3430

max RSA deadline
(µs)

13312 15872 13312 15872 13312 15872

dynamic energy re-
duction (%)

19.41 20.0915.95 20.50 18.5628.64 21.13 31.1533.30

leakage energy reduc-
tion (%)

83.71 82.9283.39 83.17 83.8583.55 82.40 83.2483.29

total energy reduction
(%)

19.41 20.0915.96 20.50 18.5628.64 21.13 31.1533.30

Table 1.Benchmark settings and results

We implement a randomized security task generator to generate benchmark descrip-
tor files for the simulator. The generator can generate the simulated OS-level jobs of
de-/en-cryption and each job has randomized operation types, randomized data sizes,
randomized keys and content, randomized arrival time, and randomized deadline on the
basis of an adjustable configuration of job arrival distribution types, job numbers, job
density, ratio of distinct operation types, job size variance, and job deadline variance.
Each generated job is then converted by the generator to the corresponding descriptors
which can be executed by the simulator. In our preliminary experiments, we assume
the SP has the architecture configuration of 6 AES modules, 2 RSA modules, 5 inter-
nal buses, 8 channels and transfer engines. The generated benchmarks consist of 9 test
suites with different task generator configurations listed in Table 1. They are mainly di-
vided into three types of arrival distributions. Each distribution type has three suites with

Fig. 4. Energy consumption estimated by the simulator

different task slackness, which are dependent on job density and job deadline range: the
first suite features high density and short deadline; the second one features high density
and long deadline; the third one features low density and long deadline.

We have generated 100 distinct descriptor files for each suite and computed their
average energy consumptions of different components from the results of the simulator,
as shown in Figure 4. The bars labeled byN are the scheduling results without power
management and others labeled byP are the results with enabling our proposed power
management. The energy-overhead of applying DVS and PG is too few to be exhibited

clearly on the charts, and so does the leakage of RSA modules. The top chart gives
the energy reduction for AES modules, the middle chart gives the energy reduction for
RSA modules, and the bottom chart shows the energy reduction for non-PE components
which are assigned by our analytic approximation phase, for all benchmark suites. The
final results with latency approximation are also confirmed by the simulator that no
deadline missing is reported in all benchmarks. Although the most energy consumptions
are dominated by RSA operations in our experimental architecture and workloads, the
charts show that our scheme performs well for all components in the system. Moreover,
the leakage reduction is great as shown in Table 1 and this portion is expected to be
more important when CMOS process is going downward under 0.13µm [1, 5]. Table 1
also gives the overall energy reduction for all test suites. The summary in the table
presents that the total energy reduction up to 33% could be achieved by our power-
aware scheduling scheme.

5 Conclusions

In this paper, we present a new approach of increasing power efficiency in complex
distributed embedded systems with dynamic and static power reduction mechanisms.
As the preliminary results show, our power management scheme gets significant power
reduction for the experimental security processor. This work provides an exploration
study on variable voltage scheduling resources of multiple domains with correlations.

References

1. International technology roadmap for semiconductors 2003 edition. Technical report, Semi-
conductor Industry Association.

2. F. Bodin, D. Windheiser, W. Jalby, D. Atapattu, M. Lee, and D. Gannon. Performance eval-
uation and prediction for parallel algorithms on the bbn gp1000. InProc. of the 4th ACM
International Conference on Supercomputing, pages 401–403, June 1990.

3. J. A. Butts and G. S. Sohi. A static power model for architects. InProc. Int. Symp. on
Microarchitecture, pages 191–201, December 2000.

4. R. Y. Chen and M. J. Irwin. Architecture-level power estimation and design experiments.
ACM Transactions on Design Automation of Electronic Systems, 6(1):50–66, 2001.

5. B. Doyle, R. Arghavani, D. Barlage, S. Datta, M. Doczy, J. Kavalieros, A. Murthy, and
R. Chau. Transistor elements for 30nm physical gate lengths and beyond.Intel Technology
Journal, 6:42–54, May 2002.

6. D. Duarte, Y. Tsai, N. Vijaykrishnan, and M. J. Irwin. Evaluating run-time techniques for
leakage power reduction. InProc. ASPDAC, January 2002.

7. N. Gammage and G. Waters.Securing the Smart Network with Motorola Security Processors,
March 2003.

8. F. Gruian and K. Kuchcinski. Lenes: Task scheduling for low-energy systems using variable
supply voltage processor. InProc. ASPDAC, pages 449–455, January 2001.

9. Hifn. 7954 security processor Data Sheet, December 2003.
10. I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava. Power optimization of

variable-voltage core-based systems.IEEE Trans. Computer-Aided Design, 18(12):1702–
1714, December 1999.

11. J.-H. Hong and C.-W. Wu. Cellular array modular multiplier for the rsa public-key cryptosys-
tem based on modified booth’s algorithm.IEEE Transactions on VLSI Systems, 11:474–484,
2003.

12. K. Hwang and F. Briggs.Computer Architecture and Parallel Processing. Mc Graw-Hill,
1984.

13. T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable voltage
processors. InProc. ISLPED, pages 197–202, August 1998.

14. C. M. Krishna and L.-H. Lee. Voltage-clock-scaling adaptive scheduling techniques for low
power in hard real-time systems. InProc. Real Time Technology and Applications Symp.,
May 2000.

15. L. L. Lapin. Modern Engineering Statistics. Wadsworth Publishing Company, WBelmont,
CA,, 1997.

16. C.-R. Lee, J.-K. Lee, T.-T. Hwang, and S.-C. Tsai. Compiler optimizations on vliw in-
struction scheduling for low power.ACM Transactions on Design Automation of Electronic
Systems, 8(2):252–268, 2003.

17. M.-C. Lee, J.-R. Huang, C.-P. Su, T.-Y. Chang, C.-T. Huang, and C.-W. Wu. A true random
generator desing. In13th VLSI Design/CAD Symp., Auguest 2002.

18. T.-F. Lin, C.-P. Su, C.-T. Huang, and C.-W. Wu. A high-throughput low-cost aes cipher chip.
In 3rd IEEE Asia-Pacific Conf. ASIC, Auguest 2002.

19. C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard read-
time environment.Journal of the ACM, 20(1):46–61, 1973.

20. J. Luo and N. Jha. Static and dynamic variable voltage scheduling algorithms for real-time
heterogeneous distributed embedded systems. InProc. ASPDAC, January 2002.

21. J. Luo and N. K. Jha. Power-conscious joint scheduling of periodic task graphs and aperiodic
tasks in distributed real-time embedded systems. InProc. ICCAD, pages 357–364, November
2000.

22. J. Luo and N. K. Jha. Battery-aware static scheduling for distributed real-time embedded
systems. InProc. DAC, pages 444–449, June 2001.

23. A. Manzak and C. Chakrabarti. Variable voltage task scheduling for minimizing energy or
minimizing power. InProc. ICASSP, pages 3239–3242, 2000.

24. T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of dynamic voltage
scaling algorithms. InProc. ISLPED, pages 76–81, August 1998.

25. J. Pouwelse, K. Langendoen, and H. Sips. Energy priority scheduling for variable voltage
processors. InProc. ISLPED, Augest 2001.

26. M. D. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar. Gated-vdd:a circuit
technique to reduce leakage in deep-submicron cache memories. InProc. ISLPED, 2000.

27. G. Quan and X. Hu. Energy efficient fixed-priority scheduling for real-time systems on
variable voltage processors. InProc. DAC, pages 828–833, 2001.

28. S. Rele, S. Pande, S. Onder, and R. Gupta. Optimizing static power dissipation by functional
units in superscalar processors. InProc. Int. Conf. on Compiler Construction, pages 261–
275, 2002.

29. M. T. Schmitz and B. M. Al-Hashimi. Considering power variations of dvs processing ele-
ments for energy minimisation in distributed systems. InProc. ISSS, pages 250–255, October
2001.

30. W.-K. Shih and J. W. S. Liu. On-line scheduling of imprecise computations to minimize
error. SIAM Journal on Computing, 25(5):1105–1121, 1996.

31. Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard real-time systems.
In Proc. DAC, pages 134–139, June 1999.

32. J. A. Stankovic, M. Spuri, M. D. Natale, and G. Buttazzo.Implications of Classical Schedul-
ing Results For Real-Time Systems, volume 28. 1995.

33. C.-P. Su, T.-F. Lin, C.-T. Huang, and C.-W. Wu. A highly efficient aes cipher chip. In
ASP-DAC, January 2003.

34. C.-Y. Su, S.-A. Hwang, P.-S. Chen, and C.-W. Wu. An improved montgomery algorithm for
high-speed rsa public-key cryptos ystem.IEEE Transactions on VLSI Systems, 7:280–284,
1999.

35. M.-Y. Wang, C.-P. Su, C.-T. Huang, and C.-W. Wu. An hmac processor with integrated sha-1
and md5 algorithms. InASP-DAC, January 2004.

36. M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced cpu energy. InPro-
ceedings of USENIX Symposium on Operating Systems Design and Implementation (OSDI),
pages 13–23, 1994.

37. F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. InSymp.
Foundations of Computer Science, pages 374–382, 1995.

38. Y.-P. You, C.-R. Lee, and J.-K. Lee. Real-time task scheduling for dynamically variable
voltage processors. InProc. IEEE Workshop on Power Management for Real-Time and
Embedded Systems, May 2001.

39. Y.-P. You, C.-R. Lee, and J.-K. Lee. Compiler analysis and support for leakage power reduc-
tion on microprocessors. InProc. LCPC, July 2002.

Appendix - Analytical Models
We describe the analytic model developed for the security architectures given earlier in Section 2 as follows. We consider
a typical execution process of an operation in the system described in Section 2. The execution of each operation can be
viewed as a procedure that a channel requests an internal bus twice to serve the data transmission and requests a PE to serve
the data manipulation. Assume each channel execution can be treated as an exponentially distributed random process which
produces sets of service request with three correlated operations in the fixed order: two for the internal bus, one for the PE.
Following the notations in Section 3.2, letsystemcyclesi be the total time spent by theith channel on transmitting over
system bus (including host memory accessing, descriptor processing, or idle). We now give the definition forrequestcyclesi .
Therequestcyclesi has two elements. It includes the total time spent by theith channel on preparing PE request and internal
bus request and processing time. Moreover, it includes the total time that the data are traversing among the channel, internal
buses, and PEs. Now letchannelcyclesi be

channelcyclesi = systemcyclesi + requestcyclesi

DefineMrk,i

Mrk,i =
data amountk,i
channelcyclesi

which is the ratio of data request amount to the time that descriptors of theith channel spend doing the overhead of PE service
requests, not including the time of waiting in queues and having requests serviced by thekth PE.

If we neglect the interaction between channels and assume that all internal buses are utilizable by all channels and PEs,
then we have the following analytic model developed on top of the previous parallelizing theorem [2,12]:

Theorem 1 Let

ηk =
n

∑
i=1

Pi,k

Mrk,i

Msk

, λk =
(1+ εk)Msk

∑m
j=1 M′

sj

, whereεk is the average scaling ratio of data size throughout thekth PE processing. The average time that each channel
spends doing initiating, host memory communication, and descriptor processingΦi is related to the time spent waiting,
Ωk,i and Ω′

j,i , as the following equations.

Φi +
l

∑
k=1

Ωk,i +
m

∑
j=1

Ω′
j,i = 1

n

∏
i=1

(1−Ωk,i)+ηkΦi = 1

n

∏
i=1

(1−Ω′
j,i)+

l

∑
k=1

ηkλkΦi = 1

Proof. The first equation simply infers the time conservation. LetCk,i be the average channel-i-to-PE-k request cycle time
for the system,total cyclebe the total operation time per request, and we get

1
Ck,i

=
data amountk,i

total cycles
(1)

on average. By observing the workloads, we can computeMrk,i which is the ratio of the request data amount to channel
cycles. Based on the definition ofMrk,i and equation (1), we can derive

1
Mrk,i Ck,i

=
channelcyclesi

total cycles
= Φi (2)

Moreover, define

δk,i =
{

1 i f channel i is not waiting f or module k
0 otherwise

δ′j,i =
{

1 i f channel i is not waiting f or bus j
0 otherwise

Let µk be the probability that PEk is busy andµ′j be the probability that internal busj is busy. We have

µk = 1−E(δk,1δk,2 · · ·δk,n) (3)

µ′j = 1−E(δ′j,1δ′j,2 · · ·δ′j,n) (4)

whereE(ν) is the expected value of the random variableν. Therefore,µkMsk andµ′j M
′
sj

are the rate of completed requests to

PEk and internal busj, respectively. When the system is in equilibrium,µkMsk is equivalent to the rate of submitted requests

to PEk andµ′j M
′
sj

is equivalent to the rate of submitted requests to internal busj. Since∑n
i=1

Pi,k
Ck,i

is the total rate of submitted

requests to PEk from all channels,we have the equivalence,

n

∑
i=1

Pi,k

Ck,i
= µkMsk (5)

Likewise,∑l
k=1 ∑n

i=1
Pi,k
Ck,i

is the average rate of submitted requests to all internal buses from all channels. Due to the law of

data indestructibility, we could have∑l
k=1 ∑n

i=1
Pi,k(1+εk)

Ck,i
to be the average rate of submitted requests to all internal buses

from all channels and all PEs. Accordingly, we have the equivalence as follows:

l

∑
k=1

n

∑
i=1

Pi,k(1+ εk)
Ck,i

=
m

∑
j=1

µ′j M
′
sj

(6)

By combing equations (2), (3), (4), (5), and (6), we get

{
ηk = ∑n

i=1 Pi,k
Mrk,i
Msk

E(δk,1δk,2 · · ·δk,n)+ηkΦi = 1
,

λk =
(1+εk)Msk
∑m

j=1 M′sj

E(δ′j,1δ′j,2 · · ·δ′j,n)+∑l
k=1 ηkλkΦi = 1

Nevertheless, since bothδk,i andδ′j,i are binaries, we have by symmetry

E(δk,i) = 1−Ωk,i , E(δ′j,i) = 1−Ω′
j,i

for each channeli. We now make a critical approximation by assuming that all the channels have non-correlated activities
and we get

E(δk,1δk,2 · · ·δk,n) = E(δk,1)E(δk,2) · · ·E(δk,n) =
n

∏
i=1

(1−Ωk,i)

E(δ′j,1δ′j,2 · · ·δ′j,n) = E(δ′j,1)E(δ′j,2) · · ·E(δ′j,n) =
n

∏
i=1

(1−Ω′
j,i)

The result follows.

