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Abstract— In this paper, we describe our experiences in deploying ORC
infrastructures for a novel 32-bit VLIW DSP processor (known as PAC
core), which equips with new architectural features, such as distributed
and ‘ping-pong’ register files. We also present methods in retargeting
ORC compilers for PAC VLIW DSP processors. In addition, mechanisms
are proposed to incorporate register allocation policies in the compiler
framework for distributed register files in PAC architectures. In the early
design stage, several iterations of tuning are needed between architecture
and software designs. Our work gives an early estimation of architecture
performance so that refinements of architectures are possible with the
software feedbacks.

I. I NTRODUCTION

Modern optimizing compilers for VLIW processors are complex
programs that require from tens to hundreds of people-years to be
developed. To deliver the compiler in time, open-source compiler
infrastructures instead of developing everything from scratch are an
interesting direction for rapid developments of optimizing compilers
and toolkits. There are several open-source compilers available for
research purposes, for example, SUIF [12], Impact/Trimaran [11],
and gcc [4]. Recently the usage of the Open Research Compiler
(ORC) [6] is also gotten momentum. ORC is an open-source compiler
infrastructure released by Intel. The predecessor of the ORC is
Pro64 [3], the open-source compiler project for IA-64 by SGI in May
2000. The popularity is mainly because that the Pro64 evolved from
the SGI MIPSPro compiler suite; it has been developed by SGI as the
production compiler for a long period, so it incorporates most of the
optimization techniques of industry strength. In addition, ORC/Pro64
has now achieved a porting for IA-64 codes with awesome per-
formance. Key optimization features for EPIC architectures include
explicit parallelism at the machine code level, instruction bundle,
predication, control and data speculation, and hardware supported
software pipelining. Because modern VLIW DSP processors also
incorporate many of the advanced architecture features, it looks
interesting and promising to explore possible ORC deployments for
VLIW DSP processors.

In this paper, we describe our experiences in devising ORC
infrastructures for a novel 32-bit VLIW DSP processor, which
equips with new architectural features, such as distributed and ‘ping-
pong’ register files. The processor, a.k.a. Parallel Architecture Core
(PAC) DSP, is being developed from scratch by SOC Technology
Center/ITRI at Taiwan. It is designed to meet the future requirements
for multimedia and communication services on mobile devices, e.g.,
portable media players and cellular phones. However, the applications
on these mobile devices, such as H.264 decoding and encoding for
video conference, demand high computation power and low power
consumption, the design of PAC DSP needs to fulfill the conflicting
goals simultaneously. In the early design stage, several iterations of
tuning are needed between architecture and software designs. Our
work gives an early estimation of architecture performance so that

refinements of architectures are possible with the software feedbacks.
We also report experiences in retargeting ORC compilers for VLIW
DSP processors. In addition, mechanisms are proposed to incorporate
register allocation policies in the compiler framework for distributed
register files in PAC architectures.

The remainder of this paper is organized as follows. Section II
gives a brief description of ORC infrastructures and our DSP architec-
ture. Next, Section III presents our experiences for retargeting ORC to
PAC DSP processors. Next, Section IV proposes a mechanism to deal
with distributed register files. Section V then presents experimental
results and discussions. Finally, Section VI concludes this paper.

II. ORC AND PAC VLIW DSP

We brief the ORC infrastructure and PAC DSP architecture in the
following:

A. Open Research Compiler Infrastructure

The Open Research Compiler is a suite of optimizing compilers
for Intel Itanium platforms running Linux. It is an extension of the
Pro64 compiler developed jointly by Intel and Chinese Academy
of Sciences, Institute of Computing Technology (ICT). The latest
compiler suite includes compilers for C, C++, and Fortran 90 for
the IA-64 Linux ABI and API standards. Intel and ICT have added
many enhancements into ORC departing from the original Pro64: they
include region-based compilation [5], [8], if-conversion and predicate
analysis, control and data speculation with recovery code generation,
and global instruction scheduling with resource management.

ORC is made up of modularized components, with C and C++
front-ends from GCC. The compilation by ORC starts with processing
by the front-ends, generating an intermediate representation (IR)
of the source program, and feeding it in the back-end; the IR ,
called WHIRL, which is a part of the Pro64 compiler released by
SGI, includes five representation levels from “very high” to “very
low”. The back-end invokes several components to perform a series
of lowering processes and optimizations on the WHIRL IR. Each
component is organized as a dynamically-shared library, loaded and
executed on demand by the back-end depending on whether the
optimization phase is enabled. The components for optimizations in
these levels include the inter-procedural analysis/optimizer, loop nest
optimizer, global optimizer, and code generator.

The inter-procedural analysis/optimizer in ORC analyzes the pro-
gram information across several source files and performs the fol-
lowing optimizations: dead function elimination, inter-procedural
constant propagation, and memory disambiguation for precise alias
analysis.

The ORC loop nest optimizer is based on an unified cost model
and a model of the target cache. This phase performs locality
optimization, parallelization, and array privatization. It also includes
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Fig. 1. The PAC DSP architecture from compiler’s perspective: all register
files except ‘D’ files are private registers.

most well known loop optimizations, such as loop peeling, loop tiling,
vector data prefetching, loop fission, loop fusion, loop unrolling, and
loop interchange.

The scalar global optimizer operates on static single assignment
(SSA) [1], [2] form. Because WHIRL is not an SSA language, it
is translated into the SSA form inside the optimizer. The optimizer
subsumes most major classical optimizations: common subexpression
elimination, loop invariant code motion, strength reduction, code
hoisting, redundancy elimination (partial and full), register promotion,
and partial dead store elimination.

After the lowering and optimization phases listed above, the code
generator takes over, translating the WHIRL IR into CGIR (Code
Generation Intermediate Representation), a low level IR reflecting the
instruction set architecture of the target processor. Global and local
register allocation, and final assembly codes emitting are performed
on this IR. Most optimization phases in the code generator are
dependent on target processor characteristics: they include control
flow optimization, extended block (peephole) optimizer, integrated
global/local scheduling (IGLS) [10], hyperblock formation [9], CG
loop analysis and transformation, and software pipelining.

B. PAC DSP Architecture

The PAC DSP processor is a five-way issue VLIW, comprised of
two ALUs (I-unit), two load/store units (M-unit), and a single scalar
unit (B-unit). The M- and I- units are organized into two clusters,
each containing a pair of both functional unit (FU) types. The B-
unit is placed independently, and is in charge of branch operations;
it is also capable of simple load/store and address arithmetic. The
architecture is illustrated in Fig. 1.

The A, AC, and R register files are private registers, directly
attached to and only accessible by the M-, I-, and B-unit respectively;
D register files are used to communicate across clusters; only the B-
unit, being able to access all D registers, is capable of executing such
copy operations across clusters. Aside from being partitioned across
two clusters, the D register files use a so-called ‘ping-pong’ register
file design, which is believed to achieve low-power consumption.
This will be detailed in Section IV.

III. ORC2DSP: DESIGN AND IMPLEMENTATION

In this section, we describe our experiences in retargeting ORC to
the PAC DSP architecture. The project is an on-going research effort;
up to present, we are done with the porting of the compiler code
generator and supporting toolchain, e.g., assembler and linker. Our
compiler can now compile C/C++ source files and generate PAC DSP
assembly codes. After processed through the assembler/linker, the

generated binaries can be executed on the Instruction Set Simulator to
evaluate the correctness and performance of both hardware and soft-
ware components. Currently, the retargeted compiler works without
optimization phases. And we are making efforts in both adapting the
available ORC optimization phases, and discovering new optimization
methods for the PAC architecture: especially important for tackling
the peculiar distributed and ‘ping-pong’ register file design discussed
in Section IV.

To initiate the compiler retargeting, we needed to study ORC
internals and the IA-64 architecture. Since the original target of ORC
is IA-64, knowledge of the IA-64 architecture is necessary for the
understanding of ORC internals. After careful study of the PAC DSP
architecture, we decided that the first step is to change the default
word size of compiler conventions from 64-bit to 32-bit, because the
PAC DSP is a 32-bit processor. This includes changing the register
size description in the front-end to 32-bit, modifying 64-bit WHIRL
lowering process, as well as a portion of 64-bit CG.

A. Target Information Table

In the next step, we started to retarget the Target Information
Table (Targinfo), which is a kind of machine descriptions written
in C constructs, and then they are compiled with the utility functions
to generate the Targinfo library. The machine descriptions in the
Targ info library are used everywhere in almost all of the back-end
CG components after the code expansion phase. There are three cat-
egories in Targinfo: Instruction Set Architecture (ISA), Application
Binary Interface (ABI), and Processor description (PROC). Most of
the system dependent descriptions are abstracted into Targinfo. The
objectives of Targinfo is to provide the compiler a parameterized
description of the target machine and system architecture, which
separates architectural details from the compiler’s algorithms, and
to minimize compiler changes when targeting a new architecture.

We redesigned the machine descriptions to conform to the archi-
tecture of PAC DSP; all descriptions in Targinfo were rewritten.
In this stage, we faced a difficulty in that the PAC DSP processor
has two clusters with no shared register files. Some special purpose
registers usually treated as always available to all operations (e.g.,
stack pointer and frame pointer) had to be duplicated in both clusters.
This could not be done only by altering the machine descriptions,
hence we required some small, sprinkled modifications of the CG
code to implement our conventions.

B. Code Expansion Functions in CG

As we mentioned in Section II, after the multiple levels of WHIRL
lowering, IR transforms into the “very low WHIRL” form; this
very low WHIRL is then translated to CGIR operations, which are
mapped into the target processor instruction set. This is done by a
set of programmer provided callback functions that do the target-
dependent selection of CG instructions. This is the main retargeting
task required to do for this phase. The style of the interface is
like ‘Exp OP’, which expands an inputted OP into a list of CGIR
operations that are appended to the operation list passed in. Thus
when the code generator locates a particular WHIRL operation, it
invokes the corresponding code expansion function and then builds
the CGIR operation lists as the WHIRL IR traversed. For program
control structures, the code generator will generate them as separate
basic blocks. By combining the code expansion functions and basic
blocks, the generated CGIR operation lists can be further optimized
by machine dependent optimizers.

The work we have done so far are the adaption of the code expan-
sion functions to generate CGIR operations for the PAC architecture.



These PAC DSP instructions and their operand formats are specified
in Targ info. While implementing the code expansion functions, we
found the lack of some instructions to complete these functions,
and then made our suggestions to the DSP design team. This is
the advantage gained by having the compiler team participating in
processor design early on.

Besides the above issues, we need to bridge many architectural
gaps between IA-64 and PAC DSP. For example, IA-64 passes
parameters to functions through a register stack; the PAC DSP, not
supporting such fancy features, requires modifying of the parameter
passing mechanism in CG to use a runtime memory stack instead.
Furthermore, other features in IA-64 not found in PAC DSP, such as
control and data speculation, are needed to identify and to deal with.

IV. EXERTION OF DISTRIBUTED REGISTERFILES

The PAC DSP features a highly partitioned register file design
(referring to Fig. 1) that each cluster inside the architecture contains:
A and AC register files, which is directly connected to the M-unit
and I-unit respectively, and two D register files. Each D register file
has only a single set of access ports, shared by both M- and I- units;
each VLIW instruction word contains two bits field that controls the
access ports to be switched between the files and the two FUs in each
cluster. Hence, in each cycle, each FU can only access its dedicated
D register file which is assigned by each instruction; accesses from
two different FUs to one same D register file are mutually exclusive
at the same time.

The rationale of this design is, of course, to lower register file port
counts in order to avoid the slow access speed and high power con-
sumption of an unified register file, but at the expense of an irregular
architecture. With this design, the cross-interference between register
allocation and instruction scheduling extremely increases, elevating
this classical phase ordering issue in compiler code generation.

Not only does the clustered design make register access across
clusters an additional issue, but the switched access nature of the
‘ping-pong’ register file makes the details of register assignment and
instruction scheduling highly dependent on each other. For example,
the short code sequence:

mov TN1, 1
mov TN2, 2

moves two constants into two virtual registers, TN1 and TN2. These
two instructions can be scheduled in parallel only if TN1 and TN2 are
assigned registers from distinct D register files; if both are assigned to
the same D file, they can only be scheduled and issued sequentially.

Our current proposed solution to this scenario, is to add a new
pre-register allocation instruction scheduling phase bysimulated
annealing(SA). The design originates from Leupers’ work [7], where
a combined instruction scheduling/cluster assignment algorithm for
the TI C6 VLIW DSP was proposed.

Leupers’ original algorithm operates by first generating a random
cluster partitioning of instructions; a modified list scheduler (LS)
then schedules the partitioned instructions, inserting/managing cross
cluster communications along the way.

The following iterations then make a random change to the parti-
tioning state, and re-run the LS to schedule again. The LS returns the
obtained schedule length of the instructions as the ‘energy’ value used
in an usual simulated annealing optimization process, representing
an evaluation of the current partitioning state. Depending on that
improvement is gained or not, the random change may be retained
or discarded. This process is iterated until the energy/evaluation falls
to be under some thresholds, where we are confident that the obtained
optimization state is of sufficient quality.

Adapting this simulated annealing solution for the PAC DSP
involves changes in the formulation of optimized state: our search
is for register file assignments for virtual registers, instead of the
original bi-partitioning of the instructions. The overall algorithm is
shown in Fig. 2.

Combined Instruction Scheduling/Register File Assignment
by Simulated Annealing

Input : n unscheduled instructions without register allocation
Output : Schedule of then instructions and a register file assignment (RFA) map:

V R: set of all virtual registers,RF : set of register files
RFA map = {(v1, f1), (v2, f2), ...} vi ∈ V R, fi ∈ RF

1. Build initial register file assignments: randomly assign each
virtual register to one of any register file, and record inRFA map.

2. Do modified list scheduling† of the instructions with regard to RFA of operands,
and setsched len to the computed total schedule length in cycles.

3. Set initial values for:
threshold: threshold value for the simulated annealing process.
energy: initial energy, larger thanthreshold.
p test: a probability test valuep test (0 < p test < 1).

4. Repeat the following sub-steps whileenergy > threshold:
4a. Make change inRFA map:

randomly choose a virtual register, and assign it to a different register file.
4b. With the new RFA assignment change, re-do modified list scheduling,

and setnew sched len to the new count of total schedule length.
4c. Adjustenergy, sched len, andRFA map by the following rules:

- If new sched len < sched len then
decreaseenergy by 1, setsched len to new sched len,
and keep the new RFA changes made in step 4a.

- If new sched len ≥ sched len, get random number0 ≤ R ≤ 1:
- If R > p test,

decreaseenergy by 1, setsched len to new sched len,
and keep the changes made in step 4a.

- If R ≤ p test,
increaseenergy by 1 and revert changes made in step 4a.

5. Retain the final schedule andRFA map as the output results.

†Regular list scheduling with management of cross cluster communication
and ‘ping-pong’ register file access constraints.

Fig. 2. Proposed distributed register file assignment algorithm.

In general, the overall operation of the algorithm is to proceed
through the state space, making changes according to the feedback
obtained from the LS. The assignment of register files will improve
progressively throughout the SA iterations, with respect to the schedu-
lable length of the instructions. A final register allocator is then run to
allocate hardware registers officially, which is guided by the register
file assignments (RFA map).

V. EXPERIMENTS AND ARCHITECTURE/COMPILER

CO-EXPLORATION

Experiments are conducted on the DSPstone DSP benchmarks [13].
Table I shows the description of each DSPstone benchmark program.
Three DSP processor/compiler combinations are evaluated, namely
PAC DSP ORC compiler (version 20040703) with Instruction Set
Simulator from ITRI, Blackfin’s IDEVisualDSP++ 2.0 for Blackfin
SP1, and TiC62x’s IDECode Composer Studio v1.0. All benchmark
programs are compiled with the -O0 option, i.e., disabling all opti-
mizations.

We present the simulated execution time and code size numbers
of the benchmark programs. We are currently trying to incorporate
several optimization phases into the compiler; experimental results
with these enhancements will be reported in future works. Note that
the algorithm described in Section IV is not yet incorporated in the
current compiler.

Fig. 3 compares the execution time in cycles of DSP benchmarks
on the three DSP platforms. All data are normalized to the numbers of
TiC62x. As shown in Fig. 3, the execution time results of PAC DSP



TABLE I
THE DESCRIPTIONS OFDSPSTONE BENCHMARK PROGRAMS.

Benchmark Description Line Num.

Convolution convolution filter 36
Complexmultiply DSP-kernel 31
IIR an iir biquad (one section) 37
Matrix1*3 matrix computation 38
Realupdate DSP-kernel 36
N complexupdates DSP-kernel 41
Complexupdate DSP-kernel 41
N real updates DSP-kernel 28
FIRDIM filter 87
Matrix1 matrix computation 65
Matrix2 matrix computation 65
FIR filter 54
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Fig. 3. The normalized execution time measured among PAC DSP, Blackfin,
and TiC62x.

varies widely across different benchmarks. The best result of PAC
DSP reaches 47% of TiC62x (Realupdate) in the cycle count, in con-
trast with that the worst case approaches 456% (Ncomplexupdates).
Comparing the average results, the cycle count of PAC DSP is 275%
of TiC62x’s.

We conjecture that the results are caused from two reasons: the
first is the numerous hardware constraints in the current version of
the PAC DSP architecture. One RAW hazard among different clusters
needs 3 cycles, for instance, even the RAW hazard between the M-
unit and I-unit in the same cluster takes 3 cycles due to the lack of
bypass paths between the two FUs. There are other control and data
hazards as well. The basic method dealing with such hazards is the
insertion of nops to conform to latency requirements. Fig. 4 shows, in
terms of code size, the percentage of nops can reach a maximum of
32% (N complexupdates). As we can see, the hardware constraints
existing on the current architecture can affect both performance and
code size. We have proposed suggestions to the DSP design team
for eliminating most hazards. The revision process is on-going and
we expect the problems of hazards to be eased in the next PAC DSP
architecture version. As for the compiler, we are also expecting more
sophisticated instruction scheduling, which is being implemented for
PAC DSP by our team. The second reason is the problem of cluster
utilization, which our compiler currently does not do well at all.
We expect substantial improvements in code quality as the method
outlined in Section IV is eventually implemented.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce the design and the implementation
of our PAC DSP compiler based on the ORC infrastructure. The
experiments are done with the PAC DSP prototype so that the co-
exploration could drive the architecture of PAC to be improved. From
this compiler infrastructure for the PAC DSP, we could take the

PACDSP
(Others OPs)

PACDSP
(NOP 1) Blackfin TI C62X

Benchmark Programs (DSP-STONE)
Fig. 4. The object code sizes measured among PAC DSP, Blackfin, and
TiC62x.

experiences of porting to move on to other VLIW DSP processors,
providing the qualified code generation beyond the hand-coded
assembly. We are currently bringing the WHIRL-level optimizers and
several CGIR optimization phases online, which will complete our
compiler for the PAC DSP and also determine the effects of various
compiler technologies upon the architecture design.
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