
System-level Design Space Exploration for Security Processor
Prototyping in Analytical Approaches∗

Yung Chia Lin Chung Wen Huang Jenq Kuen Lee
Department of CS, The National Tsing Hua University, Hsinchu 300, Taiwan

{yclin, cwhuang, jklee}@pllab.cs.nthu.edu.tw

Abstract— The customization of architectures in designing
the security processor-based systems typically involves time-
consuming simulation and sophisticated analysis in the explo-
ration of design spaces. In this paper, we present an analytical
modeling strategy for synoptically exploring of the candidate ar-
chitectures of security processor-based systems. of We demon-
strate examples to employ our analytical models for design space
explorations of embedded security systems to deal with scalabil-
ity issues and architecture constraints. The experiments with the
cycle-accurate simulation exhibit the applicability of analytical
modeling: average prediction error is less than 10% while speed
improvement is in several orders of magnitude.

I. I NTRODUCTION

As security issues involved in network-aware events such
as e-business, network banking, and virtual private networks
become more and more important, security mechanisms that
require increasing computation capabilities are developed. To
deal with the amount of data communication and intensive
computation given by security mechanisms, security proces-
sors are often needed to provide dedicated security process-
ing to accelerate these processes. Security processor architec-
tures with heterogeneous crypto engines, parallel channel pro-
cessing, distributed internal bus connection, and memory con-
trollers are interesting for architecture performance evaluations
in order to provide design decisions for security processors and
systems.

In the case of security processor (SP) design, the issue of de-
sign space exploration may have various complexities because
of the security requisite difference among different applica-
tions and appliances. Comparing to those in the case of typical
algorithm-specific custom hardware done with cryptography
ASIC design, the design space ofSP-based system is larger
and involves a combinatorial aspect in addition to traversing
the parameter spaces of the different components. Meanwhile,
theseSPs may also be designed to serve in multiple applica-

∗The work was supported in part by NSC-93-2213-E-007-025, NSC-93-
2220-E-007-020, NSC-93-2220-E-007-019, MOE research excellent project
under grant no. NSC93-2752-E-007-004-PAE, MOEA research project under
grant no. 92-EC-17-A-03-S1-0002, no. 93-EC-17-A-03-S1-0002 and an Intel
research grant.

tion scenarios and may be required to support different traffic
classes dynamically so that they should be flexible to be able
to incorporate new functionality [5]. It is needed to investi-
gate methods that help identify limitations and bottlenecks in
system implementation, as we don’t want to go all the way
down to complete implementations to realize system bottle-
necks. However, the growing complexity of the system will
result in long simulation time so that exploring design spaces
even through high-level architectural simulations would be un-
feasible for exploring the huge design spaces. Therefore, there
is a need for other methods of performance evaluation such
as analytical performance modeling to efficiently opt reason-
able design spaces in early design phases. Related research
works [2–4,6] were brought out in recent years as well.

In order to account for all of these issues early at de-
sign stage to decrease the overall time-to-market and hard-
ware/software co-simulation efforts, we present an exploration
strategy by means of a sufficient general analytical model-
ing technique for determining a practical design ofSPs that
meet the security requirements and possible trade-off consid-
erations. At the very early design stage, we would like to use
high-level analytical modeling for performance estimation to
explore a larger part of the design spaces in a limited time pe-
riod. For some resemblance to the study in [3], we currently
use a probabilistic-statistical conception for analytical model-
ing technique based on the observation of workload charac-
teristics to shorten the gap of analytical modeling estimation
and cycle-accurate simulation. Our analytical model is actually
used for the design of a family ofSPs done in the ongoing in-
tegrated research project [9–12]. We also demonstrate with ex-
amples how to employ our analytical models for design space
explorations with embedded security systems to deal with scal-
ability issues and architecture constraints. The experiments
with the cycle-accurate simulation exhibit the applicability of
analytical modeling that average prediction errors are less than
10% while speed improvement is in several orders of magni-
tude.

The remainder of this paper is organized as follows. We in-
troduce the security processor in Sec. II. Next, we present the
analytical model in Sec. III. The experiments and the discus-
sions are presented in Sec. IV. Finally, the conclusion is then
given in Sec. V.

II. SECURITY PROCESSORARCHITECTURE

The main feature of our security processor architecture is the
scalability of cryptographic functions. To achieve the feature,
the internal buses are constructed inside this security proces-

 Descriptor based DMA

AHB Master
AHB Master

Main Controller

Channel #0

Channel #n

Channel #1

E
x
te

rn
al

 A
H

B
 B

u
s

AHB Slave

Interface

AHB Master

Transfer

Engine

Internal bus

Master

Resource

Allocation

Crypto Engine #l

Crypto Engine #0

Crypto Engine #1

Power Management

Process Scheduler

 Internal bus

wrapper #l

Internal bus

wrapper #0

Internal bus

wrapper #1

Fig. 1. Security processor architecture

sor. Therefore, versatile crypto engines can be integrated into
theSPby adopting the compatible bus interface wrappers. The
processing flow and cryptographic operations are handled by
descriptors to reduce the control signals from the main proces-
sor and accompany a descriptor-based DMA that promotes the
data movements. The descriptor is a data structure which con-
tains the type of en-/de-cryption functions, the encryption key,
the length of data, and pointers that indicate the data addresses.
The descriptor also has a pointer to the next descriptor, thus the
DMA module could utilize the link list of descriptors to gather
data without much overhead.

Fig.1 presents the architecture consisting of a main con-
troller, a DMA module, internal buses, and crypto engines.
The main controller has a slave interface of external bus which
accepts the control signals and returns the operation feedback
via the interrupt port. In the main controller, there is a re-
source allocation module distributing the resources as the de-
scriptor demands. The process scheduler module and power
management module are also added in the main controller for
task scheduling and low-power control. The DMA module in-
tegrates master interfaces of external bus with the channels and
the transfer engines. Each channel stores the header of its pro-
cessing descriptor. Transfer engines pass the data to dedicated
crypto engines via the internal bus. The internal buses are de-
signed to support multiple layers for high speed data transmis-
sion. Because the execution time of the crypto engine may be
varied, the crypto engine will signal the main controller when
the operations are done.

III. A NALYTICAL MODELING OF SECURITY PROCESSOR

The model we developed to use is a simple and appropri-
ate solution for rapid illustration of architectural behavior in
the distributed parallel processing design of SOC, which is ex-
tended based on super-computer behavior modelings [1, 7, 8].
Assume a generalized design of our target co-processor archi-
tecture will incorporate a multi-channel DMA controller, sev-
eral different types, and amounts of processing-engine back-
ends, which connect each other via several internal buses. As-
sume incoming requests have been partitioned to run in parallel
on each channel of the system, where data processing has been
distributed over the processing-engine modules in some static
manner determined by the hardware or the software on the host
processor. To illustrate the execution of the process , we seg-
ment a complete data flow into the following five steps. Once
a channel is set up by the DMA descriptor, it will first trans-
fer data from the source memory on the host into the specified
channel. It then requests the specified internal bus to forward
the incoming data into the designated processing-engine mod-

ule. When the incoming data are ready for the module, the
module will process the data by the request of the descriptor.
After the data are processed and ready for outgoing, it will
request the specified internal bus to forward the data into the
original channel and then transfer the outgoing data to the des-
tination memory on the host.

The execution of every operation can be viewed as a pro-
cedure that a channel requests the internal bus twice to serve
the data transmission and requests the processing-engine mod-
ule to serve the data manipulation. Assume each channel ex-
ecution can be treated as an exponentially distributed random
process which produces sets of service request that consists of
three correlated operations in the fixed order: two for the inter-
nal bus, one for the processing-engine module. We can view
each of thekth processing-engine module and thej th internal
bus as a server with a constant service rate ofMsk or M′

sj
bits

per second. LetPi,k be the probability that channeli makes its
next service request to the processing-engine modulek. Define
Φi to be the average fraction of the time that theith channel is
not waiting for a service request to be completed from any of
processing-engine modules and internal buses. In other words,
Φi is the average fraction of the time that theith channel spends
transmitting data across system bus to/from the host memory.
1−Φi is then the fraction of the time that theith channel is
busy waiting for a service request to complete by any one of
processing-engine modules and internal buses. Also, letΩk,i

and Ω′
j,i be the fraction of the time spent by theith channel

waiting for a service request to processing-engine modulesk
and internal busj, respectively.

We would like to determineΦi but this depends on the
workload of all possible operations caused by programs on
the host processor as well as the task scheduling on the target
co-processor. In particular,Φi is a function of the static den-
sity of the security processor service activities in the program
on the host processor and the distributionPi,k of those service
requests over processing-engine modules. If we consider the
activity of one channel, it can be characterized to repeat the
following activity pattern; it transfers data from the host mem-
ory for a number of cycles, makes a processing-engine module
service request, and then transfers data to the host memory for
a number of cycles. On the system of processor architecture
similar to what mentioned above, it takes time to prepare the
encryption or decryption service request and to ship the data
over system bus and internal bus into the processing-engine
module. When the processing-engine service request arrives at
the specified processing-engine module, the request is queued
and eventually served by the processing-engine module. The
result then returns over buses and is stored into the host mem-
ory by the channel which turns back to the available state. Let
systemcyclesi be the total time spent by theith channel on
data transmission over system bus (including host memory ac-
cessing, descriptor processing, waiting for memory contention,
waiting for system bus contention, etc). We now give the defi-
nition for requestcyclesi andidle cyclesi . Therequestcyclesi
has two elements. It includes the total time spent by theith

channel on preparing processing-engine request and internal
bus request, and waiting for processing-engine contention and
internal bus contention. Moreover, it includes the overhead
time of data traversing among the channel, internal buses, and
processing-engine modules, excluding the actual time of data
transmission over internal buses. Theidle cyclesi is the total
time of no operation state (no descriptors in descriptor buffers).

Now let

channelcyclesi = systemcyclesi + requestcyclesi + idle cyclesi

Define

Mrk,i =
data amountk,i
channelcyclesi

which is the fraction of the time that theith channel spends
handling descriptors of processing-engine service requests and
preparing data, not including the time of having requests ser-
viced by thekth processing-engine module and the internal
bus. If we neglect the interaction between channels and as-
sume that all internal buses are utilizable by all channels and all
processing-engine modules, then we have the following mod-
eling.

Model of SP. Let

ηk =
n

∑
i=1

Pi,k
Mrk,i

Msk

λk =
(1+ εk)Msk

∑m
j=1M′

sj

,

whereεk is the average ratio of the output data size to the input
data size in the processing of thekth processing-engine mod-
ule. The average time that each channel spends doing initiat-
ing, host memory communication, and descriptor processing
Φi is related to the time spent waiting,Ωk,i and Ω′

j,i , as the
following equations.

Φi +
l

∑
k=1

Ωk,i +
m

∑
j=1

Ω′
j,i = 1 (1)

n

∏
i=1

(1−Ωk,i)+ηkΦi = 1 (2)

n

∏
i=1

(1−Ω′
j,i)+

l

∑
k=1

ηkλkΦi = 1 (3)

Proof. The first equation simply infers that the total fraction
of the time which a channel spends busying and waiting on all
processing-engine modules and internal buses is exact 1. The
second and the third equations are far from self-evident equa-
tions like the first one. LetCk,i be the average channel-i-t o-
module-k request cycle time for the system, and1Ck,i

be the av-

erage rate of submitted requests to processing-engine module
k for theith channel. Now lettotal cyclebe the total operation
time per request, and we get

1
Ck,i

=
data amountk,i

total cycles
(4)

on average. For a channel, each cycle is either achannelcyclei

which is defined earlier or a ”request” cycle where the chan-
nel is waiting for internal bus service requests or processing-
engine service requests being completed. By observing the
workloads, we can computeMrk,i which is the ratio of the re-
quest data amount tochannelcycles. Based on the definition
of Mrk,i and equation (4), we can derive

1
Mrk,iCk,i

=
channelcyclesi

total cycles
= Φi (5)

Moreover, define

δk,i =
{

1 i f channel i is not waiting f or module k
0 otherwise

δ′j,i =
{

1 i f channel i is not waiting f or bus j
0 otherwise

Let µk be the probability that processing-engine modulek is
busy andµ′j be the probability that internal busj is busy. We
have

µk = 1−E(δk,1δk,2 · · ·δk,n) (6)

µ′j = 1−E(δ′j,1δ′j,2 · · ·δ′j,n) (7)

whereE(ν) is the expected value of the random variableν.
Therefore,µkMsk andµ′jM

′
sj

are the rate of completed requests
to processing-engine modulek and internal busj, respectively.
When the system is in equilibrium,µkMsk is equivalent to the
rate of submitted requests to processing-engine modulek and
µ′jM

′
sj

is equivalent to the rate of submitted requests to internal

bus j. Since 1
Ck,i

is the average rate of submitted requests to

processing-engine modulek from one channel,∑n
i=1

Pi,k
Ck,i

is the

total rate of submitted requests to processing-engine modulek
from all channels. Consequently, we have the equivalence,

n

∑
i=1

Pi,k

Ck,i
= µkMsk (8)

Likewise, ∑l
k=1 ∑n

i=1
Pi,k
Ck,i

is the average rate of submitted re-

quests to all internal buses from all channels. However, sub-
mitted requests to internal buses also include requests from
all processing-engine modules whereas the processed data are
transferred back to channels when processing-engine modules
services are completed. Due to the law of data indestructibility,

we can have∑l
k=1 ∑n

i=1
Pi,k(1+εk)

Ck,i
to be the average rate of sub-

mitted requests to all internal buses from all channels and all
processing-engine modules. Accordingly, we have the equiva-
lence as follows:

l

∑
k=1

n

∑
i=1

Pi,k(1+ εk)
Ck,i

=
m

∑
j=1

µ′jM
′
sj

(9)

By combing equations (5), (6), (7), (8), and (9), we get
{

ηk = ∑n
i=1Pi,k

Mrk,i
Msk

E(δk,1δk,2 · · ·δk,n)+ηkΦi = 1



λk =
(1+εk)Msk
∑m

j=1 M′
sj

E(δ′j,1δ′j,2 · · ·δ′j,n)+∑l
k=1 ηkλkΦi = 1

Nevertheless, since bothδk,i andδ′j,i are binaries, we have by
symmetry

E(δk,i) = 1−Ωk,i

E(δ′j,i) = 1−Ω′
j,i

for every channeli. We now make a critical approximation by
assuming that all the channels have non-correlated activities
and we get

E(δk,1δk,2 · · ·δk,n) = E(δk,1)E(δk,2) · · ·E(δk,n) =
n

∏
i=1

(1−Ωk,i)

E(δ′j,1δ′j,2 · · ·δ′j,n) = E(δ′j,1)E(δ′j,2) · · ·E(δ′j,n) =
n

∏
i=1

(1−Ω′
j,i)

The result follows.

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5
Number of AES modules

Ex
ec

ut
io

n
Ti

m
e

(
)

Simulator(100Mhz RSA) Analytical Model(100MHz RSA)
Simulator(200Mhz RSA) Analytical Model(200MHz RSA)

Fig. 2. Comparison between simulator and analytical model

IV. EXPERIMENTS AND DISCUSSIONS

In the first experiment, it shows the comparisons between
the analytical model and the cycle accurate simulator which
constructed in SystemC. We condense SSH activities on a real
server to emulate higher workloads in 1000 microseconds and
to generate input patterns for theSPsimulator and average in-
put workloads for analytical models. The working frequency
of SP and 32-bit system bus is simulated at 133MHz. Fig. 2
shows the execution results for a configuration in 1 internal
bus, 10 channels, 2 RSA modules, and several AES modules.
The number of AES modules is increased from 1 to 5. The
internal bus has the same bandwidth with the system bus; one
100MHz RSA module has around 3.17Mbps processing rate;
one 200MHz RSA module has 6.34Mbps processing rate; one
100MHz AES module has 706Mbps processing rate. By pro-
filing the operations of a SSH server, The used workload has
3.2Gbps AES encryption data request rate and the RSA de-
mands are around 1% of the AES demands. This diagram il-
lustrates that the execution time is reduced by the increase of
AES modules for the particular workload above. The bottle-
neck for the system is then at RSA, since the increase of AES
modules no longer speeds up the performance when the num-
ber of AES is over 3. In this experiment, the average predic-
tion error is under 8%. A major portion of the error results
from that the simulator assumes no data buffer in the chan-
nel, while the analytical model in this experiment assumes the
overlapping effects of loading data into channels. It is signif-
icant for small numbers of AES modules, as it gives higher
inaccuracy with one AES module. The estimation is more ac-
curate when the number of AES module grows. Our analytical
model is much faster in giving performance estimations than
the cycle-accurate simulator. The analytical model is done by
numerical computations through equations (1), (2), and (3), so
that the execution time for performance estimation is fixed, but
the simulator will depend on the total duration of the workload.
In this particular experiment, the toolkit based on our proposed
analytical models is over 10000 times faster than the simulator.

Next, we show that our analytical models can be used for
performance evaluations and design space explorations. We
have built a toolkit based on our analytical model for ourSPar-
chitecture template to rapidly estimate performance behaviors.
It integrates the simulator and the analytical evaluator into the
unified design space exploration interface as shown in Fig. 3.
The statistic workloads contain the real DMA-descriptors with
data, which could be gathered by measures of real applications
or generated by our developed task pattern generator. The an-
alytical modeling parameter generator can derive the required
parameters (Pi,k, Mrk,i , ...) of the model introduced in Sec. III
and then provide these values to the analytical model evalua-

tor. The evaluation data analyzer finally uses statistic work-
loads, architecture configurations, and the data from either the
analytical evaluator or the simulator to analyze and output the
visual analysis results like Fig. 4. These charts would help us
to balance the system design for overall considerations such as
performance, cost, and power consumption. The toolkit lets
us perform hierarchical performance evaluation to save time
in the exploration through both the coarse-grained analytical
evaluation and the find-grained simulation: we first use the an-
alytical evaluation to reduce the large design space, and then
use the simulator to acquire the accurate evaluation in the fo-
cused design space. Fig. 4 shows the performance information
produced by ourSPanalytical toolkit software in the following
experiment. The measured workload has average 3.084Gbps
input requests within 10 minutes. Among the input requests,
around 0.95% of them are RSA requests. The X-axis gives the
possible system configurations. It begins with a parameter set
of six channels, one AES engines, and five RSA engines with
initial engine speed at 100MHz. It then increases one channel
and adds 50MHz to the engine speed for next possible config-
uration. The time fraction chart gives the dominating elements
in the processing time; the processing time chart gives the total
processing time; the performance chart gives effective process-
ing rate; the utilization chart gives average utilization for each
component. Hardware designers benefit a lot from these per-
formance figures. For example, one can see processing rate
converges at 300MHz in the processing time chart. With uti-
lization chart, we can judge the convergence is due to internal
bus. Then, we can see the peak performance for the system
throughput is 1.5Gbps from the performance chart.

Finally, we use our analytical modeling technique to pre-
dict the behavior of different configurations of a security pro-
cessor that has AES, 3DES, RSA, and MD5-HMAC engines.
For exploring the capabilities and adaptability of different de-
signs, we analyze the effects of different workload on these
configurations. This exploration is particular important for
such scalable designs as ourSParchitecture because we would
like to know the correct way of fine-tune hardware configu-
rations to meet application specific requirements. In this ex-
periment, the parameters of AES and RSA engines are the
same as mentioned earlier. The parameters of MD5 and 3DES
engines are set to deliver nearly 8Mbps and 5.328Mbps per
MHz, respectively. Fig. 5 illustrates the performance predic-
tion of several configurations. The ”base” configuration is set
as three AES engines, two 3DES engines, two RSA engines,
one MD5-HMAC engine, one internal bus, and one DMA with
six channels and all of them operate at 66MHz. We have addi-
tional three configurations to predict: the speed of crypto en-
gines from the ”base” configuration has doubled; the number
of crypto engine and internal bus from the ”base” configura-

SP Architecture Exploration Driver

Statistic
Workloads

Cycle-
Accurate
Simulator

Analytical
Modeling
Parameter
Generator

Architecture
Configurations

Analytical
Model

Evaluator Evaluation
Data

Analyzer

Coarse-Grained
Results

Fine-Grained
Results

Fig. 3. The integrated analytical toolkits

Fig. 4. Visual results of performance evaluation output by the toolkits

tion has doubled; the number of DMA channel, crypto engine,
and internal bus from the ”base” configuration has doubled.
The initial workload of 793.6 Mbps input rate is distributed as
512Mbps AES requests, 256Mbps 3DES requests, 5.12Mbps
RSA requests, and 20.48Mbps MD5-HMAC requests. The X-
axis represents various workload sets with the increasing input
rate from the original value of the initial workload to 7 times
of the original value. The result shows theSPwith the ”base”
configuration serves 340Mbps at initial input rate. The peak
throughput is around 465Mbps at 3 times of the initial rate,
and down to 442Mbps when the input rate grows. This is due
to that the request patterns are mixed with different crypto op-
erations. The delay time among the same type of requests is
reduced with the growth of input rate so that the utilization of
crypto engines are improved. While the input rate keeps grow-
ing, the contention of crypto engines occurs if crypto engines
are fully utilized. Fig. 5 shows that the throughput drops down
after attaching the peak value of each configuration. Observ-
ing the result noted by the ”round” symbol, the throughput of
this configuration is smaller than the throughput of the config-
uration whose result noted by the ”square” symbol at the lower
input rate. That is due to the resource contention of internal
buses and data sources, which increases when crypto engines
have doubled. In the configuration noted by the ”square” sym-
bol, however, the throughput stops improving when the input
rate exceeds the limitation of transmission capabilities of in-
ternal buses and channels. Thus, there is an intersection of the
”square” line and the ”round” line. This analysis can help us
reduce the design space and refine our design on the requisite
workload considerations.

300

350

400
450

500

550

600
650

700

750

100% 200% 300% 400% 500% 600% 700%

Input Request Rate (ratio)

Th
ro

ug
hp

ut
 (M

bp
s)

base

engine freq.
x2

engines x2
ibuses x2

engines x2
channels x2
ibuses x2

Fig. 5. Performance prediction

V. CONCLUSION

The analytical modeling techniques provide insights into the
performance of system design, reveal bottlenecks, and indi-
cate where tuning efforts would be the most effective without
time-consuming simulation. Also, the correlated analysis as-
sists in rapidly exploring the design space for the future sys-
tems. In this paper, we have described how to apply the ana-
lytical modeling technique developed in this work to our secu-
rity processor-based system design. The experiments with the
cycle-accurate simulation exhibit the applicability of analyti-
cal modeling that average prediction errors are about 10% and
speed improvement is enormous. We will continue making ef-
forts to improve our analytical models and apply them to more
applications such as task scheduling and low power studies in
the future.

REFERENCES

[1] Hwang K and Briggs F. Computer Architecture and Parallel Processing.
Mc Graw-Hill, 1984.

[2] Baghdadi A, Zergainoh N.-E, Cesario W.O and Jerraya A.A. Combining
a Performance Estimation Methodology with a Hardware/Software Co-
design Flow Supporting Multiprocessor Systems. IEEE Transactions on
Software Engineering 2002;28;822–831.

[3] Eeckhout L and De Bosschere K. Hybrid analytical-statistical modeling
for efficiently exploring architecture and workload design spaces. Pro-
ceedings of PACT 2001;25–34.

[4] Kerbyson D.J, Wasserman H.J and Hoisie A. Exploring advanced ar-
chitectures using performance prediction. Proceedings of International
Workshop on Innovative Architecture for Future Generation High-
Performance Processors and Systems 2002;27–37.

[5] Ravi S, Raghunathan A, Potlapally N and Sankaradass M. System design
methodologies for a wireless security processing platform. Proceedings
of the 39th Design Automation Conference 2002;777–782.

[6] Xinping Zhu and Malik S. A hierarchical modeling framework for on-
chip communication architectures. Proceedings of IEEE/ACM Interna-
tional Conference on Computer Aided Design 2002; 663–670.

[7] Daya Atapattu and Dennis Gannon. Building analytical models into an
interactive performance prediction tool. Proceedings of ACM Supercom-
puting 1989;512–530.

[8] Francois Bodin, Daniel Windheiser, William Jalby, Daya Atapattu,
Mannho Lee and Dennis Gannon. Performance evaluation and predic-
tion for parallel algorithms on the BBN GP1000. Proceedings of the 4th
ACM international conference on Supercomputing 1990; 401–403.

[9] J.-H. Hong and C.-W. Wu. Cellular array modular multiplier for the RSA
public-key cryptosystem based on modified Booth’s algorithm. IEEE
Transactions on VLSI Systems 2003;11;474–484.

[10] C.-P. Su, T.-F. Lin, C.-T. Huang and C.-W. Wu. A highly efficient AES
cipher chip. ASP-DAC 2003;561–562.

[11] M.-C. Lee, J.-R. Huang, C.-P. Su, T.-Y. Chang, C.-T. Huang and C.-
W. Wu. A true random generator design. 13th VLSI Design/CAD Symp.
2002;137–140.

[12] M.-Y. Wang, C.-P. Su, C.-T. Huang and C.-W. Wu. An HMAC processor
with integrated SHA-1 and MD5 algorithms. ASP-DAC 2004.

