
Compiler Support for Speculative Multithreading
Architecture with Probabilistic Points-to Analysis∗

Peng-Sheng Chen† Ming-Yu Hung† Yuan-Shin Hwang‡ Roy Dz-Ching Ju§ Jenq Kuen Lee†

†Department of Computer Science ‡Department of Computer Science §Microprocessor Research Lab
National Tsing Hua University National Taiwan Ocean University Intel Corporation

Hsinchu 300 Keelung 202 Santa Clara, CA 95052
Taiwan Taiwan U.S.A.

ABSTRACT
Speculative multithreading (SpMT) architecture can exploit
thread-level parallelism that cannot be identified statically.
Speedup can be obtained by speculatively executing threads
in parallel that are extracted from a sequential program.
However, performance degradation might happen if the threads
are highly dependent, since a recovery mechanism will be ac-
tivated when a speculative thread executes incorrectly and
such a recovery action usually incurs a very high penalty.
Therefore, it is essential for SpMT to quantify the degree
of dependences and to turn off speculation if the degree of
dependences passes certain thresholds. This paper presents
a technique that quantitatively computes dependences be-
tween loop iterations and such information can be used to
determine if loop iterations can be executed in parallel by
speculative threads. This technique can be broken into two
steps. First probabilistic points-to analysis is performed to
estimate the probabilities of points-to relationships in case
there are pointer references in programs, and then the degree
of dependences between loop iterations is computed quan-
titatively. Preliminary experimental results show compiler-
directed thread-level speculation based on the information
gathered by this technique can achieve significant perfor-
mance improvement on SpMT.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers, Optimization; B.1.4 [Hardware]: Microprogram De-
sign Aids—Languages and compilers

∗The work was supported in part by NSC under grant
no. NSC91-2213-E007-021, NSC91-2215-E007-035, NSC90-
2213-E-019-016, NSC91-2213-E-019-001, NSF under grant.
no NSF-CCR-0096383, MOE research excellent project un-
der grant no. 89-E-FA04-1-4, and MOEA research project
under grant no. 91-EC-17-A-03-S1-0002.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’03, June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-588-2/03/0006 ...$5.00.

General Terms
Algorithms Design Languages Measurement Performance The-
ory

Keywords
Speculative multithreading, dependence analysis, probabilis-
tic points-to analysis, parallelization

1. INTRODUCTION
Speculative multithreading (SpMT) architecture has been

proposed by researchers to dynamically exploit parallelism
in an application [11, 20, 25, 31, 35]. In the SpMT archi-
tecture, threads can be extracted from a sequential program
and speculatively executed in parallel. When the execution
of parallel threads violates a data dependence specified by
the sequential code, a recovery mechanism will be activated
to ensure the correct sequential semantics. Furthermore,
SpMT can utilize parallelism among noncontiguous regions
of a program. As a result, more parallelism can be exploited
than the parallelism that the compiler can usually identify
statically.

Although the SpMT architecture can automatically ex-
ploit thread-level parallelism and handle recovery if mis-
speculation happens, compilers play an important role in
achieving maximal performance. The reason is because ev-
ery recovery action incurs hefty penalty and the performance
improvement gained by speculative parallelization might be
nullified by the recover overheads. Compilers can avoid such
performance degradation by analyzing the possibilities of
conflicts between speculative threads and turning off specu-
lation if the possibilities are over certain thresholds. There-
fore, it is necessary for SpMT to incorporate a compiler that
can compute quantitatively the possibilities of data and con-
trol dependences among speculation candidates in a pro-
gram before execution. The goal of this work is to develop
the essential analysis techniques for the SpMT compiler to
compute the possibilities of dependences between specula-
tion candidates.

Dependences between speculation candidates, such as dif-
ferent loop iterations or non-overlapped code regions, can
be computed by comparing the read and write references
between them. However, if the program contains pointer
references, the possibilities of conflicts can not be computed
since conventional pointer analysis techniques do not pro-
vide quantitative descriptions to tell how likely the point-
ers are aliased [2, 6, 8, 9, 10, 21, 27, 28, 29, 32, 38, 39,

40]. These techniques only classify points-to relationships
into definitely-points-to relationships, which hold for all ex-
ecutions, and possibly-points-to relationships, which might
hold for some executions. Possibly-points-to relationships
cannot tell how likely the conditions will hold for the exe-
cutions, and consequently the compiler has to make a con-
servative guess and assume the conditions hold for all ex-
ecutions. This paper addresses this issue by presenting a
probabilistic points-to analysis approach to give a quantita-
tive description for each points-to relationship to represent
the probability that it holds.

Once the probability of every points-to relationship is
computed, the quantitative computation of dependences be-
tween speculation candidates can be proceeded. The results
will be used to guide the thread speculation in order to re-
duce the impact of recovery penalties. Preliminary experi-
mental results show compiler-directed thread-level specula-
tion based on the information gathered by this technique
can achieve significant performance improvement on SpMT.

The rest of this paper is organized as follows. Section 2
provides a description on SpMT and its cost model. Section
3 describes the probabilistic data flow analysis framework
for the probabilistic points-to analysis. Section 4 details
how to compute data dependence probability and the issues
on applying of this information on SpMT. Experimental re-
sults will be presented in Section 5 and the related work is
compared in Section 6. Section 7 summarizes this paper.

2. SPECULATIVE MULTITHREADING
In a speculative multithreading (SpMT) model [11, 20,

25, 31, 35] threads are extracted from sequential codes and
speculatively executed in parallel without violating the se-
quential program semantics. If there is a violation of de-
pendence, the hardware must ensure that illegal status will
be fixed and the mis-speculated thread will re-execute with
proper data. A compiler-guided speculation can reduce the
possibilities of mis-speculations, and thus result in better
performance.

2.1 Architecture and Simulator
This work uses an execution driven simulator SIMCA to

model the SpMT architecture. SIMCA is developed by ARC-
TiC Lab at University of Minnesota. It is based on the
SimpleScalar simulator [7]. SIMCA simulates the hardware
component interaction in the superthreaded architecture [35,
36]. The superthreaded architecture combines compiler-
directed thread-level speculation of control-dependence with
runtime verification of data dependence. The execution of
a thread in the superthreaded model is partitioned into sev-
eral stages. Figure 1 shows the stages of a thread pipelining
model.

Continuation Stage
This stage is to compute recurrence variables, such as
loop index variables. These variables are forwarded to
the next thread before the next thread is activated.
The end of the continuation stage is a fork instruction
that spawns the next thread.

Target-Store-Address-Generation (TSAG) Stage
This stage stores the data addresses that will be later
used by other threads. The hardware will resolve data
dependences during program execution.

Continuation Stage
T ar get Stor e
A d d r es s

G ener ation Stage

Com p utation Stage

W r ite B ac k Stage

Thread i

Thread i+ 1

Continuation Stage
T ar get Stor e
A d d r es s

G ener ation Stage

Com p utation Stage

W r ite B ac k Stage

��� � � � ��� 	 �
��� 	 � ��� � �
� 	 � � � � � � � � 	 ��� � � � � � � � �
� � � � � � � � 	 � ��� � � � � � �

�������! �"$#�%!&'� � � �

� � � � � � � � 	 � �(� � � � � � ���)� � � �

*,+ �"$#�%!&'� � � �

��� � � � ��� 	 �
��� 	 � ��� � �
� 	 � � � � � � � � 	 ��� � � � � � � � �
� � � � � � � � 	 � �(� � � � � � �

�����!�� �"$#�%!&'� � � �

� � � � � � � � 	 � ��� � � � � � ���)� � � �

*,+ �"$#�%!&'� � � �

Figure 1: Thread Pipelining Execution Model

Computation Stage
The is the parallel computation stage for threads. The
abort future instruction can be used to explicitly abort
successor threads in case of mis-speculation.

Write-Back Stage
The thread completes its execution by writing all of he
data from its memory buffer into memory. To maintain
the correct memory state, the threads perform their
write-back stages in their original order.

In this environment, thread and data speculations can be
accomplished by the abort future instruction. When depen-
dence is detected at runtime, it will discard the thread and
invoke recovery mechanisms.

2.2 Cost Model
Once loop iterations are distributed into threads, a com-

piler must decide if it is profitable to execute these threads
speculatively. The following cost model can be used by the
compiler to make this decision:

Lo > Ls +
X

set

`

Vfreq(set) ×
`

Oset
r + Lset

c

´´

(1)

where set represents each violation relationship, Lo is the
execution time of original codes, Ls is the execution time
of speculative threads without recovery codes, Vfreq(set) is
the violation frequency for set, Oset

r is the overhead of set
to invoke recovery codes, and Lset

c is the time needed to
actually execute recovery codes of set. For simplicity, this
paper conservatively assumes each violation relationship is
independent.

Since multithreading execution is out-of-order, a data de-
pendence between speculated threads does not always lead
to dependence violation for each execution. Suppose E rep-
resents the violation ratio when the dependence exists. The
violation frequency Vfreq(set) can be computed as the prod-
uct of E and the probability of data dependence between
threads for set, Pdep(set). For each set, the difference in
Oset

r and Lset
c is very small so that it can be ignored. Con-

sequently, Equation (1) can be written as follows.

Lo > Ls +
X

set

`

Pdep(set) × E ×
`

Oset
r + Lset

c

´´

' Ls + E × (Or + Lc) ×
X

set

Pdep(set) (2)

E can be viewed as constant and evaluated by experimental
results, while

P

Pdep(set) will be the dominating factor can
be computed using the results of the probabilistic points-to
analysis.

3. PROBABILISTIC POINTS-TO ANALYSIS

3.1 Problem Specifications
The goal of probabilistic points-to analysis is to compute

the probability of each points-to relationship that might hold
at every program point. For each points-to relationship, say
that p points to v, denoted as a tuple 〈p, v〉, it computes the
probability that pointer p points to v at every program point
s during the program execution. In other words, a proba-
bility function P(s, 〈p, v〉) is computed for each points-to
relationship 〈p, v〉 at every program point s by the follow-
ing equation

P(s, 〈p, v〉)
def
=

E(s, 〈p, v〉)
E(s)

if E(s) 6= 0

0 otherwise
(3)

where E(s) is the number of times s is expected to be vis-
ited during program execution and E(s, 〈p, v〉) denotes the
number of times the points-to relationship 〈p, v〉 holds at
s [26].

The probability function can be overloaded to compute
the possibilities for the set of points-to relationships at ev-
ery program point, if the set is represented by a vector.
Specifically, if A is the set of points-to relationships at s,
the probability function for A at s will be

P(s, A)
def
= {P(s, 〈p, v〉) | 〈p, v〉 ∈ A}

Such an overloaded probability function returns a vector,
ith element of which contains the result of the probability
function for the ith points-to relationship in A.

Program Representations and Normalization
Programs will be represented by control flow graphs (CFGs)
whose edges are labeled with a static assigned execution
frequency [26, 37] or an actual frequency from profiling. An
empty node will be added at the entry of every loop as the
header node, while an empty node will be augmented as the
join node of each conditional.

Programs will be normalized such that each pointer as-
signment statement is one of the four basic pointer assign-
ment statements listed in the following table [28]:

Address-of Assignment p = &q

Copy Assignment p = q

Load Assignment p = ?q

Store Assignment ?p = q

In addition, every of the first three basic pointer assign-
ments, i.e. statements with the form p = · · · , will be pre-
ceded by a nullifying assignment of the form p = nil. Sim-
ilarly, every store assignment statement will be preceded
immediately by an indirect nullifying assignment with the
form ?p = nil.

3.2 Algorithm Outline
The conventional points-to analysis can be formulated as

a data flow framework [6, 12, 24]. The data flow frame-
work includes transfer functions, which formulate the effect

of statements on points-to relationships. Suppose the sets
of points-to relationships at the program points right before
and after S, i.e. Sin and Sout, are INS and OUTS, respec-
tively. Then the effect of S on points-to relationships can
be represented by the transfer function FS :

OUTS = FS (INS)

The probabilistic points-to analysis can be formulated as
a data flow framework as well. If the sets INS and OUTS are
represented by vectors, the vector of probability functions of
the points-to relationships in OUTS can be computed by an
overloaded transfer function FS :

P(Sout, OUTS) = FS(P(Sin, INS))

= {FS(P(Sin, 〈p, v〉)) | 〈p, v〉 ∈ INS}

FS returns a vector with the ith element representing the
probability function of the ith points-to relationship in OUTS .

3.2.1 Basic Pointer Assignment Statements
Figure 2 summarizes the process of computing the set

of points-to relationships OUTS at the end of every basic
pointer assignment statement S by the conventional points-
to analysis techniques [10, 28, 38]. Every points-to rela-
tionship is associated with an attribute rel, which can be
either true or false, to specify that the relationship is ei-
ther a definitely-points-to relationship or possibly-points-to
relationship.

S OUTS = FS(INS)

p = &q INS ∪ {(〈p, q〉, true)}

p = q INS ∪ {(〈p, v〉, rel) | (〈q, v〉, rel) ∈ INS}

p = ?q INS ∪ {(〈p, v〉,
W

x(relx1 ∧ relx2)) |

∀x ((〈q, x〉, relx1), (〈x, v〉, relx2) ∈ INS)}

?x = q INS ∪ {(〈p, v〉, rel1 ∧ rel2) |

(〈x, p〉, rel1), (〈q, v〉, rel2) ∈ INS}

p = nil INS − {(〈p, v〉, rel) ∈ INS}

?x = nil INS − {(〈p, v〉, rel) | (〈x, p〉, rel), (〈p, v〉, rel) ∈ INS}

∪ {(〈p, v〉, false) |

(〈x, p〉, false), (〈p, v〉, rel) ∈ INS}

Figure 2: Computing the Set of Points-to Relation-
ships

In contrast to simply associating an attribute to distin-
guish definitely-points-to relationships from possibly-points-
to relationships, the probabilistic points-to analysis com-
putes a probability function for every points-to relation-
ship 〈p, v〉 at each program point s to estimate the pos-
sibility that 〈p, v〉 would hold every time s is visited at
runtime. Figure 3 presents the formula to compute the
probability function P(Sout, 〈p, v〉) of every points-to re-
lationship 〈p, v〉 ∈ OUTS at exit of statement S. Note
that the table only shows the probability functions of the
points-to relationships that are affected by S. The results
of the probability functions at Sout for the points-to rela-
tionships that are not affected by S will be the same as
those at Sin. That is, if 〈x, y〉 is not influenced by S, then
P(Sout, 〈x, y〉) = P(Sin, 〈x, y〉).

3.2.2 Meet Operator u

S P(Sout, 〈p, v〉)

p = &q

(

1 q ≡ v

0 otherwise

p = q P(Sin, 〈q, v〉)

p = ?q
P

x P(Sin, 〈q, x〉) ×P(Sin, 〈x, v〉)

?x = q P(Sin, 〈x, p〉) × P(Sin, 〈q, v〉) + P(Sin, 〈p, v〉)

p = nil 0

?x = nil (1 − P(Sin, 〈x, p〉)) ×P(Sin, 〈p, v〉)

Figure 3: Computing the Probability Functions

Header

p ptf

B

B0

(a) Actual CFG

tpp
f

t

Header

B

B0

t

t

E(B(1))=p

...

... ...

...

E(B(2))=p2

E(B(n))=p
n

(b) Imaginary CFG

Figure 4: Loops

Although the domain of the probabilistic points-to analy-
sis is not a semilattice, the notion of meet operations is used
to represent the actions of merging probability functions at
join nodes. Suppose the probability functions of the points-
to relationship 〈p, v〉 at the program points B1out and B2out

after B1 and B2 are P(B1out, 〈p, v〉) and P(B2out, 〈p, v〉),
respectively. Then the probability function of the points-to
relationship 〈p, v〉 at the join node will be

P(Joinin, 〈p, v〉)

= P(B1out, 〈p, v〉) u P(B2out, 〈p, v〉)

def
=

P(B1out, 〈p, v〉) × E(B1) + P(B2out, 〈p, v〉) × E(B2)

E(B1) + E(B2)

where E(B1) and E(B2) are the numbers of times B1 and
B2 are expected to be visited during program execution.

Similarly, the meet operator u can be overloaded to handle
sets of probabilistic points-to relationships:

P(Joinin, INJoin)

= P(B1out, OUTB1) u P(B2out, OUTB2)

= {P(B1out, 〈p, v〉) u P(B2out, 〈p, v〉) | 〈p, v〉 ∈ INJoin}

where OUTB1, OUTB2, and INJoin are the sets of points-
to relationships at program points B1out, B2out and Joinin

respectively, and INjoin = OUTB1 ∪ OUTB2.

3.2.3 Conditionals
The most commonly used conditionals is the if-then-else

construct. Suppose OUTThen and OUTElse are the sets
of points-to relationships at the exit points Thenout and
Elseout of Then and Else branches respectively, while pt and

pf are the branching probabilities of Then and Else branches
respectively and pt + pf = 1. Then the probability function
of the points-to relationship 〈p, v〉 at the merge point Joinin

of the Then and Else branches can be computed by the meet
operation:

P(Joinin, 〈p, v〉) = P(Thenout, 〈p, v〉) u P(Elseout, 〈p, v〉)

3.2.4 Loops
Since a loop can iterate an arbitrary number of times, it

can be imagined as if there were an unbounded number of
outgoing edges leaving from the exit point of the loop body
and then joining the header node. Specifically, the back
edge of the loop shown in Figure 4(a) in fact represents the
infinitive number of out-edges of the loop body B, as shown
in Figure 4(b). Furthermore, if the branching probability
of entering the loop is pt, then the expected frequency that
B will be visited at ith iteration is pi

t, i.e. E(B[i]) = pi
t

where B[i] denotes B at ith iteration. Therefore, the vector
of probability functions for the set of points-to relationships
INHeader at at the entry of the header node will be

P(Headerin, INHeader)

= P(B0out, OUTB0) u P(B[1]out, OUTB[1]) u

P(B[2]out, OUTB[2]) u · · · u P(B[n]out, OUTB[n]) u · · ·

= P(B0out, OUTB0) u (
∞l

i=1

P(B[i]out, OUTB[i]))

∼ P(B0out, OUTB0) u P(Bout, OUTB)

In order to find a solution of the above equation, a sym-
bolic probability will be assigned to each probability func-
tion as its value at the entry of the header node. Since the
probability functions P(Bout, OUTB) will be computed by
the transfer function FB with the vector P(Bin, INB) as
its argument, the vector returned by P(Bout, OUTB) will
be functions of these symbolic probabilities. As a result,
the equation P(Headerin, INHeader) = P(B0out, OUTB0)u
P(Bout, OUTB) is in fact a linear system, and the values of
symbolic probabilities can be computed by solving the linear
system.

Consider a very simple loop with only one points-to re-
lationship 〈p, v〉. A symbolic probability P is introduced
at the header entry, i.e. P(Headerin, 〈p, v〉) = P , and
hence P(Bin, 〈p, v〉) = P . Suppose P(B0out, 〈p, v〉) =
1, E(B) = 10, and P(Bout, 〈p, v〉) = FB(P(Bin, 〈p, v〉)) =
0.9P . Then the symbolic probability P can be solved:

P(Headerin, INHeader) = P(B0out, OUTB0) u

P(Bout, OUTB)

P = (1 × 1 + 10 × 0.9P) / (1 + 10)

P = 0.5

3.3 Interprocedural Analysis

3.3.1 Algorithm
The algorithm for interprocedural probabilistic points-to

analysis is developed based on the algorithm developed by
Emami et al. [10]. At each call site, points-to relationships
are mapped from actual parameters to formal parameters
by the algorithm, and the results are unmapped back to the

variables in the caller once the called function is analyzed.
During the mapping process, symbolic names (or ghost lo-
cation sets) will be declared to represent variables outside
the scope of the called functions, i.e. invisible variables [10,
28].

Instead of constructing an invocation graph, this algo-
rithm implements a call stack to keep track of procedure in-
vocations. The node for an invoked procedure will be pushed
into the stack and popped out of the stack when the invo-
cation ends. Therefore, the contents of the call stack repre-
sent the nodes on the paths from the root of the invocation
graph to the currently active procedure. Furthermore, the
contents of the call stack determine the calling context of
the procedure currently being analyzed. If a cycle is created
by recursive invocations, an approximation similar to that
done by Emami et al. [10] and Wilson and Lam [38] will be
applied.

A symbolic probability will be assigned to every points-
to relationship at the entry of a procedure as the value of
its probability function. The intraprocedural algorithm out-
lined in the previous section can then be applied to compute
the probability function of every points-to relationship at
the end of the procedure. The transition of the probability
functions from the procedure entry to to the procedure exit
represents the effects of the procedure. In other words, the
transformations can be viewed as the transfer function of the
procedure under the context. Like the analysis done by other
researchers [28, 38], the transfer function will be cached to
avoid duplicate computations. If the procedure is invoked
with the same set of points-to relationships, maybe with
different probability functions, the transfer function can be
used to compute the results by substituting the symbolic
probabilities with the values of the probability functions.

3.3.2 Handling Recursive Procedures
In addition to the symbolic probability that will be de-

clared for every points-to relationship at the procedure entry
as done for nonrecursive procedures, one matching symbolic
probability will be declared for the points-to relationship
at the end of the procedure for recursive procedures. The
reason to introduce a new set of symbolic probabilities is
because it is not possible to compute the probability func-
tions directly at the end of a recursive procedure. This set
of probabilistic points-to relationships will be served as the
transfer function of the recursive procedure at the current
stage.

When a recursive invocation is encountered, the current
transfer function, i.e. the set of points-to relationships with
symbolic probabilities at the end of the procedure, will be
used to compute the OUT set of the invocation statement.
If new points-to relationships are merged to the entry of the
recursive procedure at later iterations, a pair of symbolic
probabilities will be declared for every new points-to rela-
tionship, one for the procedure entry and one for the proce-
dure exit. Furthermore, the new points-to relationships at
the end of procedure will be included as part of the transfer
function. The process will be repeated until none of sets
change.

Once the sets converge, the symbolic probabilities at the
procedure entry can be obtained by solving the linear system
for the meet operation on the incoming-edges to the entry
node.

3.4 Example
Consider the example shown in Figure 5. Assume the

branching probabilities of the two if branches are both 0.9.
The program calls a recursive function func after creating
the points-to relationships 〈p, v〉 and 〈q, v〉 by S1 and S2,
respectively. Figure 5 depicts the iterations performed by
the interprocedural analysis to reach a fixed point. Both the
sets of points-to relationships at the entry and exit of every
statement Si, e.g. INSi and OUTSi, are shown. However,
in order to save space, only the OUTSi sets of some state-
ments are displayed since these statements pass the INSi

set directly to the OUTSi set.
After the mapping process at call site S3 and introducing

symbolic probabilities at the function entry, the set INS11

contains the tuples [〈x, x1〉, P1], [〈y, y1〉, P2], [〈x1, x2〉, P3],
and [〈y1, y2〉, P4] at iteration 1. These tuples will be prop-
agated and transformed by statements, and the set of the
probabilistic points-to relationships that reach S17in, con-
sists of tuples [〈x, x1〉, P1], [〈y, y1〉, P2], [〈x1, x2〉, (1−0.9P1)P3],
[〈y1, y2〉, (1 − 0.1P2)P4], [〈x1, y2〉, 0.9P1P2P4], and [〈y1, x2〉,
0.1P1P2P3]. Since the effect of the recursive function func
will not known until the iterations reach a fixed point, sym-
bolic probabilities are introduced at the end of call site
S17out.

At iteration 2, the symbolic probabilities can be resolved
since the points-to relationships of x and y are not modified
by any statements in func, and the result is P1 = P2 = 1.
Furthermore, two new points-to relationships 〈x1, y2〉 and
〈y1, x2〉 are merged into the set S11in, and hence two more
symbolic probabilities P5 and P6 and the set INS11 will be
comprised of tuples {[〈x, x1〉, 1], [〈y, y1〉, 1], [〈x1, x2〉, P3],
[〈y1, y2〉, P4], [〈x1, y2〉, P5], and [〈y1, x2〉, P6]. The tuples
will be transformed by statements and reach the end of func
with different probability functions, i.e. they are [〈x, x1〉, 1],
[〈y, y1〉, 1], [〈x1, x2〉, 0.1(0.9P6 + 0.1P3) + 0.9P ′

3], [〈y1, y2〉,
0.1(0.9P4 + 0.1P5) + 0.9P ′

4], [〈x1, y2〉, 0.1(0.9P4 + 0.1P5) +
0.9P ′

5], and [〈y1, x2〉, 0.1(0.9P6 + 0.1P3) + 0.9P ′
6].

All the sets of probabilistic points-to relationships will
converge at iteration 3, since no new tuples will be gener-
ated. Now the symbolic probabilities can be computed by
solving the following linear system that is obtained from the
equation P(S11in, INS11) = P(S3in, INS3)uP(S17in, INS17):

P3 = (1 + 9 × (0.1P3 + 0.9P6))/(1 + 9)

P4 = (1 + 9 × (0.9P4 + 0.1P5))/(1 + 9)

P5 = (9 × (0.9P4 + 0.1P5))/(1 + 9)

P6 = (9 × (0.1P3 + 0.9P6))/(1 + 9)

As a result, the set of probabilistic points-to relationships
INS11 at the entry of recursive function func contains [〈x, x1〉,
1], [〈y, y1〉, 1], [〈x1, x2〉, 0.19], [〈y1, y2〉, 0.91], [〈x1, y2〉, 0.81],
and [〈y1, x2〉, 0.09]. Furthermore, the probabilities of points-
to relationships at the end of func can be determined by
solving the following equations

P ′
3 = 0.1(0.9P6 + 0.1P3) + 0.9P ′

3

P ′
4 = 0.1(0.9P4 + 0.1P5) + 0.9P ′

4

P ′
5 = 0.1(0.9P4 + 0.1P5) + 0.9P ′

5

P ′
6 = 0.1(0.9P6 + 0.1P3) + 0.9P ′

6

The result will be P ′
3 = P ′

6 = 0.9 and P ′
4 = P ′

5 = 0.1.

Program INSi/OUTSi (Iteration 1) INSi/OUTSi (Iteration 2)

S : p = &v; - -

[〈p, v〉, 1] [〈p, v〉, 1]

S2 : q = &u; [〈p, v〉, 1] [〈p, v〉, 1]

[〈p, v〉, 1] [〈q, u〉, 1] [〈p, v〉, 1] [〈q, u〉, 1]

S3 : func(&p, &q); [〈p, v〉, 1] [〈q, u〉, 1] [〈p, v〉, 1] [〈q, u〉, 1]

- [〈p, v〉, 1] [〈q, u〉, 1]

S11 : func(x, y){ [〈x, x1〉, P1] [〈y, y1〉, P2] [〈x, x1〉, 1] [〈y, y1〉, 1]

int ? ?x; [〈x1, x2〉, P3] [〈y1, y2〉, P4] [〈x1, x2〉, P3] [〈y1, y2〉, P4]

int ? ?y; [〈x1, y2〉, P5] [〈y1, x2〉, P6]

S12 : if(...) [〈x, x1〉, P1] [〈y, y1〉, P2] [〈x, x1〉, 1] [〈y, y1〉, 1]

[〈x1, x2〉, P3] [〈y1, y2〉, P4] [〈x1, x2〉, P3] [〈y1, y2〉, P4]

[〈x1, y2〉, P5] [〈y1, x2〉, P6]

S13 : t = ?y; [〈x, x1〉, P1] [〈y, y1〉, P2] [〈x, x1〉, 1] [〈y, y1〉, 1]

[〈x1, x2〉, P3] [〈y1, y2〉, P4] [〈x1, x2〉, P3] [〈y1, y2〉, P4]

[〈x1, y2〉, P5] [〈y1, x2〉, P6]

[〈x, x1〉, P1] [〈y, y1〉, P2] [〈x, x1〉, 1] [〈y, y1〉, 1]

[〈x1, x2〉, P3] [〈y1, y2〉, P4] [〈x1, x2〉, P3] [〈y1, y2〉, P4]

[〈t, y2〉, P2P4] [〈x1, y2〉, P5] [〈y1, x2〉, P6]

[〈t, y2〉, P4] [〈t, x2〉, P6]

S13′ : ? x = t; [〈x, x1〉, P1] [〈y, y1〉, P2] [〈x, x1〉, 1] [〈y, y1〉, 1]

[〈x1, x2〉, P3] [〈y1, y2〉, P4] [〈x1, x2〉, P3] [〈y1, y2〉, P4]

[〈t, y2〉, P2P4] [〈x1, y2〉, P5] [〈y1, x2〉, P6]

[〈t, y2〉, P4] [〈t, x2〉, P6]

[〈x, x1〉, P1] [〈y, y1〉, P2] [〈x, x1〉, 1] [〈y, y1〉, 1]

[〈x1, x2〉, (1 − P1)P3] [〈y1, y2〉, P4] [〈y1, y2〉, P4] [〈y1, x2〉, P6]

[〈x1, y2〉, P1P2P4] [〈x1, y2〉, P4] [〈x1, x2〉, P6]

S14 : else [〈x, x1〉, P1] [〈y, y1〉, P2] [〈x, x1〉, 1] [〈y, y1〉, 1]

[〈x1, x2〉, P3] [〈y1, y2〉, P4] [〈x1, x2〉, P3] [〈y1, y2〉, P4]

[〈x1, y2〉, P5] [〈y1, x2〉, P6]

S15 : t = ?x; [〈x, x1〉, P1] [〈y, y1〉, P2] [〈x, x1〉, 1] [〈y, y1〉, 1]

[〈x1, x2〉, P3] [〈y1, y2〉, P4] [〈x1, x2〉, P3] [〈y1, y2〉, P4]

[〈x1, y2〉, P5] [〈y1, x2〉, P6]

[〈x, x1〉, P1] [〈y, y1〉, P2] [〈x, x1〉, 1] [〈y, y1〉, 1]

[〈x1, x2〉, P3] [〈y1, y2〉, P4] [〈x1, x2〉, P3] [〈y1, y2〉, P4]

[〈t, x2〉, P1P3] [〈x1, y2〉, P5] [〈y1, x2〉, P6]

[〈t, x2〉, P3] [〈t, y2〉, P5]

S15′ : ? y = t; [〈x, x1〉, P1] [〈y, y1〉, P2] [〈x, x1〉, 1] [〈y, y1〉, 1]

[〈x1, x2〉, P3] [〈y1, y2〉, P4] [〈x1, x2〉, P3] [〈y1, y2〉, P4]

[〈t, x2〉, P1P3] [〈x1, y2〉, P5] [〈y1, x2〉, P6]

[〈t, x2〉, P3] [〈t, y2〉, P5]

[〈x, x1〉, P1] [〈y, y1〉, P2] [〈x, x1〉, 1] [〈y, y1〉, 1]

[〈x1, x2〉, P3] [〈y1, y2〉, (1 − P2)P4] [〈x1, x2〉, P3] [〈x1, y2〉, P5]

[〈y1, x2〉, P1P2P3] [〈y1, x2〉, P3] [〈y1, y2〉, P5]

S16 : if(...) [〈x, x1〉, P1] [〈y, y1〉, P2] [〈x, x1〉, 1] [〈y, y1〉, 1]

[〈x1, x2〉, 0.9(1 − P1)P3 + 0.1P3] [〈x1, x2〉, 0.9P6 + 0.1P3]

[〈y1, y2〉, 0.1(1 − P2)P4 + 0.9P4] [〈y1, y2〉, 0.9P4 + 0.1P5]

[〈x1, y2〉, 0.9P1P2P4] [〈x1, y2〉, 0.9P4 + 0.1P5]

[〈y1, x2〉, 0.1P1P2P3] [〈y1, x2〉, 0.9P6 + 0.1P3]

S17 : func(x, y) [〈x, x1〉, P1] [〈y, y1〉, P2] [〈x, x1〉, 1] [〈y, y1〉, 1]

[〈x1, x2〉, (1 − 0.9P1)P3] [〈x1, x2〉, 0.9P6 + 0.1P3]

[〈y1, y2〉, (1 − 0.1P2)P4] [〈y1, y2〉, 0.9P4 + 0.1P5]

[〈x1, y2〉, 0.9P1P2P4] [〈x1, y2〉, 0.9P4 + 0.1P5]

[〈y1, x2〉, 0.1P1P2P3] [〈y1, x2〉, 0.9P6 + 0.1P3]

[〈x, x1〉, P1] [〈y, y1〉, P2] [〈x, x1〉, 1] [〈y, y1〉, 1]

[〈x1, x2〉, P ′
3] [〈y1, y2〉, P ′

4] [〈x1, x2〉, P ′
3] [〈y1, y2〉, P ′

4]

[〈x1, y2〉, P ′
5] [〈y1, x2〉, P ′

6]

S18 :} [〈x, x1〉, P1] [〈y, y1〉, P2] [〈x, x1〉, 1] [〈y, y1〉, 1]

[〈x1, x2〉, 0.1(1 − 0.9P1)P3 + 0.9P ′
3] [〈x1, x2〉, 0.1(0.9P6 + 0.1P3) + 0.9P ′

3]

[〈y1, y2〉, 0.1(1 − 0.1P2)P4 + 0.9P ′
4] [〈y1, y2〉, 0.1(0.9P4 + 0.1P5) + 0.9P ′

4]

[〈x1, y2〉, 0.09P1P2P4] [〈x1, y2〉, 0.1(0.9P4 + 0.1P5) + 0.9P ′
5]

[〈y1, x2〉, 0.01P1P2P3] [〈y1, x2〉, 0.1(0.9P6 + 0.1P3) + 0.9P ′
6]

Figure 5: Interprocedural Analysis Example

3.5 Naming Heap Objects
Heap objects are modeled as array elements. For every

malloc(n) statement, an array with a unspecified number

of elements, each with the size n, will be created. Each heap
object allocated from the same malloc statement will be
assigned a unique symbolic index, which can be formulated
based on the enclosing loop iterations and calling contexts.
Consider the following EM3D code fragment that builds lists
of E and H nodes:

main() {
elist = make_list(N); // S1
hlist = make_list(N); // S2
make_neighbor_list(elist, hlist); // S3
make_neighbor_list(hlist, elist); // S4
for (...) {
compute(elist); // S5
compute(hlist); // S6

}
}
Node *make_list(int size) {

list = null;
for (int i = 0; i < size; i++) {
p = malloc(Node); // S7 => MallocS7[] is

// introduced, i.e.
// p=&MallocS7[symbolic_index]

p.next = list;
list = p;

}
return list;

}

A symbolic index main@s1:i will be associated with the
heap object that is allocated by S7 at the ith iteration of the
loop in make_list called by S1 in main. In other words, S7
is equivalent to p = &MallocS7[main@s1:i], where main@s1
denotes the calling context and i represents the loop itera-
tion. Similarly, S7 can be viewed as p=&MallocS7[main@s2:i]
when make_list is called by S2.

The points-to relationships that are generated after S1
is executed include [〈elist, &MallocS7[main@S1:N-1]〉, 1],
[〈MallocS7[main@S1:i].next, &MallocS7[main@S1:i-1]〉, 1],
1 ≤ i ≤ N− 1. Similarly, S2 introduces the following points-
to relationships: [〈hlist, &MallocS7[main@S2:N-1]〉, 1],
[〈MallocS7[main@S2:i].next, &MallocS7[main@S2:i-1]〉, 1],
1 ≤ i ≤ N − 1. This example shows the symbols main@S1

and main@S2 denote the calling contexts and consequently a
compiler can recognize that elist and hlist point to dif-
ferent portions of the virtual array MallocS7.

Further consider the code fragment in EM3D that con-
structs the neighbor lists of both lists:

make_neighbor_lists(list1, list2) {
for (p = list1; p; p = p.next) {
p.nlist = malloc(NEIGH); // S8
for (int i = 0; i < NEIGH; i++)

p.nlist[i] = &list2[random()];
}

}

New points-to relationships generated by this function af-
ter the call site S3 will be [〈MallocS7[main@S1:N-i-1].nlist,
&MallocS8[main@S3:i]〉, 1], and [〈MallocS8[main@S3:i][j],
&MallocS7[main@S2:?]〉, 1], 0 ≤ i ≤ N− 1, 0 ≤ j ≤ NEIGH−
1. Similarly, S4 introduces points-to relationships
[〈MallocS7[main@S2:N-i-1].nlist, &MallocS8[main@S4:i]〉,
1], and [〈MallocS8[main@S4:i][j], &MallocS7[main@S1:?]〉,
1], 0 ≤ i ≤ N − 1, 0 ≤ j ≤ NEIGH − 1. Question marks
are used since the indexes are generated by a random func-
tion. However, it should not hurt since it gives the compiler
enough information for dependence analysis.

4. DATA DEPENDENCE PROBABILITY
This section shows how to compute the probabilities of

data dependences using the probabilistic points-to analysis
(PPA) information.

Definition
Consider the memory object p referenced at program point
S1, denoted as p

S1
, and memory object q referenced at pro-

gram point S2, denoted as q
S2

. The probability PS1 δ S2
that

S2 depends on S1 due to a flow dependence from p
S1

to q
S2

is defined as follows:

PS1 δ S2

def
=

E(S2, p
S1

δ q
S2

)

E(S2)
(4)

where E(S2) is the number of times S2 is executed during
execution and E(S2, p

S1
δ q

S2
) is the number of times the

flow dependence relationship between p
S1

and q
S2

holds.
A flow dependence relationship S1 δ S2 exists when the

value of p
S1

defined at S1 flows to S2 and is referenced by
q

S2
. Since memory objects can be defined through a vari-

able or a pointer, p may not be defined every time S1 is
visited during the execution and furthermore the value of p
may be modified by statements between S1 and S2. A flow
dependence relationship is generated only when p is defined
at S1 reaches S2, q is referenced at S2, p and q are aliases at
S2. Therefore, let PS2

DEF (p
S1

) be the value of p defined at

S1 reaches S2, PREF (q
S2

) be the probability that q is ref-

erenced at S2 and Palias(S2, (pS1
, q

S2
)) be the probability

that p and q are aliases at S2, the above equation can be
computed as follows:

PS1 δ S2

=

P

q
S2

PS2

DEF
(p

S1
) ×REF (q

S2
)

E(S2)
×Palias(S2, (p

S1
, q

S2
))

= PS2

DEF
(p

S1
) ×

P

q
S2

REF (q
S2

)

E(S2)
×Palias(S2, (p

S1
, q

S2
))

= PS2

DEF
(p

S1
) × PREF (q

S2
) ×Palias(S2, (p

S1
, q

S2
))

PS2

DEF (p
S1

) and PREF (q
S2

) will be computed by probabilis-

tic data flow framework presented by Ramalingam [26]. The
complex part Palias(S2, (pS1

, q
S2

)) will be evaluated by the
probabilistic points-to analysis. Similar formulas will be de-
rived for anti-dependence or output dependence relation-
ships. For conciseness, only flow dependence relationships
will be presented in the rest of section.

Example 1
Consider the following program fragment.

S1: if (...)
S2: p = &M
S3: M = ...

...
S5: ... = *p;

If p points to M at S5, then there is a flow dependence
from M at S3 to ∗p at S5. Assume Palias(S5, (MS3

, ∗pS5
))

computed by PPA is 0.8. Since both PS5

DEF (M, S3) and
PREF (∗p, S5) are both equal to 1, The probability of the
flow dependence relationship S3 δ S5 exists can be computed

as follows:

PS3 δ S5
= PS5

DEF
(M, S3) × PREF (∗p, S5) ×

Palias(S5, (MS3
, ∗pS5

))

= 1 × 1 × 0.8

= 0.8

Example 2
Consider another example that introduces pointer-induced
loop-carried data dependences.

S1: while (...) {
S2: p = &K;
S3: if (...)
S4: K = ...

...
S5: ... = *q

...
S6: if (...)
S7: q = p;

}

If p and q are aliased, there will be a flow dependence rela-
tionship between S4 and S5. Assume the probabilities that
the statement S4 and S7 enclosed by IF -construct will be
executed are 0.8 and 0.2 respectively, and assume the prob-
ability the condition of the WHILE -construct will be true
at S1 is 0.9. Then the probability of the flow dependence
relationship S4 δ S5 can be computed as follows:

PS4 δ S5
= PS5

DEF
(K, S4) ×PREF (∗q, S5) ×

Palias(S5, (KS4
, ∗qS5

))

= 0.8 × 1 × Palias(S5, (KS4
, ∗qS5

))

= 0.8 ×PPoints−to(S5, 〈q, K〉)

= 0.8 ×
0.2 × 9

10
= 0.144

Example 3
Consider the compute function in EM3D.

compute(list) {
for (p = list; p; p = p.next) {
for (i = 0; i < NEIGH; i++) {

q = p.nlist[i];
p.value -= q.coff * q.value;

}
}

}

Since the compiler can tell p at different iterations points
to different heap objects and q points to a different region of
the virtual array MallocS7 (see Section 3.5), the probability
of aliases are 0 and hence there are no dependences.

5. EXPERIMENTS
This section first compares the estimated probabilities of

all points-to relationships by PPA with the probabilities
gathered at runtime to show the accuracy of PPA. Then
compiler-directed speculation will be performed on an SpMT
simulator to demonstrate the impact of performance with
the incorporation of dependence analysis and PPA.

5.1 PPA
A prototype compiler has been implemented upon the

SUIF system [34] and CFG library of MachSUIF [30] to
perform the interprocedural probabilistic points-to analysis.

The routine in the SPAN compiler to associate variables
with location sets is integrated in the compiler as well [28].
In addition, CAS (Computer Algebra System) GiNaC and
GNU Scientific library GSL are used to process symbolic
and mathematical computation. Programs are first trans-
formed from the high-SUIF format to the low-SUIF format
by SUIF and then represented by CFGs using the CFG li-
brary of MachSUIF. All the variables on the CFG nodes will
be associated with location sets by the SPAN routine. The
compiler will then traverse the CFGs to compute the prob-
ability function of every probabilistic points-to relationship
at each program point, as shown in Figure 6.

� ��� ����� �	�
 � �

C program

�� � � ��� �
� �
 � � ��� � � �
 ��� � � ���

� � � � � ��� �
� � �
 � � � � � � � �
� � � ! � � " � � � �

��#��
� � � � �
 � $ � �
 � " � � � �

%�� � �

� � � ! �
 � " � � � �

��� #&� �'� � ��" � � � �
(�) � " � � � �	�
 � �

*+� � �
 � �
 �
� � � �
 � � � � � � !
! � � " � " � � �
 ��$ � �
� � � ��" � � � ��" � � � ,

���+�-� � ! � � � � �
 � �
" �&.����

/ 0 1 0 2 3 4+5 6 7	1 7	2 8 2 0 9&1 / / 2 : ; < =>0 6
< 1 3 ?>6 @	0 : 6 2 ;+:�< =	: < 6 A	B�CED

F�F+G�H I
5 @+; 0 2 JK<�4+1 0 ?�4+5 6 A 2 8 2 ;	:

2 ;	A 6 5 JK1 0 2 6 ;

F�FEG&H F

� * (#
L � � � �
 � � ��� �
	$ � � �
 � � � � M N 5 6 7	1 7 2 8 2 / 0 2 3 N 6 2 ;	0 / O 0 6�P�; 1 8 9 Q < 5�R NEN P�S

Figure 6: Prototype Implementation

Program Description

990127-1 Test program from gcc-3.0.1 testsuite.

shuffle The program tests a random number generator

using a card shuffling procedure. (netlib.org)

20000801-2 Test program from gcc-3.0.1 testsuite

fir2dim DSPstone filter benchmark.

misr A program create and use link list. (McGill)

fft An FFT test program. (netlib.org)

dhrystone The dhrystone benchmark v2.1.

clinpack This is the Linpack program (floating-point)

rewritten by C. (netlib.org)

alvinn This program trains a neural network called

ALVINN using back propagation. (SPEC92)

queens A program that finds solutions to the

eight-queens chess problem. (netlib.org)

power The Power Pricing benchmark. (Olden)

Table 1: Benchmark programs for PPA verification

outgoing edge assigned probability

Fall-through 1

IF (taken) pt = 0.5

IF (not taken) pf = 0.5

Loop-back edge pt = 0.9

Loop-exit edge pf = 0.1

Table 2: Statically Assigned Probabilities

Several applications have been chosen as the benchmarks,
as listed in Table 1. These benchmark programs have been

executed to gather the detailed points-to information at run-
time. The runtime results will be compared with the follow-
ing three variations of points-to analysis:

• Probabilistic points-to analysis based on static proba-
bilities (PPA-S)
A probability will be assigned to each outgoing edge of
CFG, as listed in Table 2, and the probabilistic points-
to analysis algorithm will be executed based on these
edge probabilities.

• Probabilistic points-to analysis based on path profiling
information (PPA-P)
A profiling tool has been built upon SUIF to gather the
execution frequency of every edge in CFG, and prob-
abilistic points-to analysis will be performed based on
the path profiling information to compute the prob-
abilities of points-to relationships in selected bench-
marks.

• Traditional points-to analysis (TPA)
The probability of each points-to relationship is as-
sumed to be 1.

The discrepancy of the estimated probability for every
points-to relationship by these points-to analysis methods
from the probability observed at runtime, i.e. |Pestimated −
Pruntime|, will be measured at the end of each basic block of
all procedures. The accuracy of these variations of proba-
bilistic points-to analysis will be quantified by averaging all
the discrepancies gathered at all basic blocks to obtain the
average error ξ

ξ =

n
X

i=1

|Pestimated(i) − Pruntime(i)|

n

The precision of probabilistic points-to analysis will be
quantified by computing variances gathered at all basic blocs
to obtain the standard deviation σ

σ =

v

u

u

u

t

n
X

i=1

(Pestimated(i) − Pruntime(i))
2

n

where Pestimated(i) is the estimated probability of ith points-
to relationship and Pruntime(i) is runtime profiled probabil-
ity of ith points-to relationship.

Figure 7 and Figure 8 show the average errors and stan-
dard deviation of estimated probabilities of points-to rela-
tionships by these methods compared to the profiled prob-
abilities at runtime, respectively. The average error of es-
timated probabilities by PPA-S compared to the runtime
frequencies is about 21.70%. With the aid of edge profil-
ing information, PPA-P reduces the average error down to
2.68%. The figures show the probabilistic points-to analy-
sis approach can estimate the likelihood that each points-to
relationship would hold with relatively small errors.

This result is significant since most compiler optimizations
rely on the ability to determine if points-to relationships
hold with high or low probabilities. Let Points-toRuntime(l%
∼ h%) be the set of points-to relationships with runtime-
profiled probabilities within the range l%∼h%. In addition,
let Points-toPPA(l%∼h%) be the set of points-to relation-
ships that are estimated by PPA to hold with the probabil-
ities within the range from l% to h% and are also in the set

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

99
01

27
-1

sh
uf

fle

20
00

08
01

-2

fir
2d

im
m

isr fft

dh
ry

sto
ne

cli
np

ac
k

alv
inn

qu
ee

ns

po
wer

Ave
ra

ge

Benchmark Programs

A
ve

ra
ge

 E
rr

or
s

PPA_S

PPA_P

TPA

Figure 7: Average Errors

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

99
01

27
-1

sh
uf

fle

20
00

08
01

-2

fir
2d

im
m

isr fft

dh
ry

sto
ne

cli
np

ac
k

alv
inn

qu
ee

ns

po
wer

Ave
ra

ge

Benchmark Programs

S
ta

nd
ar

d
D

ev
ia

tio
n

PPA_S

PPA_P

TPA

Figure 8: Standard Deviation

Points-toRuntime(l%∼h%). Then the accuracy within the
probability range l%∼h% of PPA is defined as the ratio of
the size of Points-toPPA(l%∼h%) over the size of
Points-toRuntime(l%∼h%), i.e.

accuracyPPA(l%∼h%) =
Points-toPPA(l%∼h%)

Points-toRuntime(l%∼h%)

Table 3 presents the accuracy of PPA-S and PPA-P within
different probability ranges based on the above definition.
The first section of Table 3 shows the accuracy of PPA-P in
the probability range 0%∼10% is 91.89%, while the accuracy
of PPA-P in the range 90%∼100% is 96.48%, respectively.

This result demonstrates that the probabilistic points-to
analysis with path profiling information can identify the
points-to relationships with high or low probabilities with
very high accuracy.

5.2 Applications on SpMT

5.2.1 Simulation
The SIMCA simulator has been used to evaluate the per-

formance on SpMT of several benchmark applications. SIMCA
is developed by ARCTiC Lab at University of Minnesota.
It is based on the SimpleScalar simulator, sim-outorder.
SIMCA simulates the hardware component interaction in

Probability Range PPA-S PPA-P PPA-S PPA-P

0%∼10% 6.51% 91.89%

10%∼20% 20.00% 60.00%
12.49% 93.30%

20%∼30% 25.00% 60.00%

30%∼40% 0.00% 100.00%
33.33% 61.90%

40%∼50% 56.86% 100.00%

50%∼60% 97.96% 73.76%
93.91% 98.38%

60%∼70% 0.00% 0.00%

70%∼80% 22.73% 100.00%
22.73% 100.00%

80%∼90% 0.00% 29.41%

90%∼100% 85.05% 96.48%
84.71% 96.98%

Table 3: Accuracy of Estimated Probabilities

the superthreaded architecture [35, 36]. This is used as our
simulator platform for experiments.

In this work, speculation is handled by abort future in-
struction of superthreaded model and the software recovery
mechanisms. For not losing generality, the TSAG stage will
not be used to simplify the impact for performances. By this
policy, the behavior of the probabilistic analysis information
on thread speculation can be evaluated. The configuration
of the simulator is shown in table 4.

Simulator Configuration

num of thread units 2 and 4

memory buffer size/units 256 and 128 bytes

comm. units 8 entries

mem-buffer write port 2

comm.-units to mem-buffer port 2

fork delay 4 cycles

cache memory
2-level cache hierarchy,
total delay 6 cycles

Table 4: Configuration of SIMCA Simulator

5.2.2 Experimental Results
First, the relation between data dependence probability

and program execution is evaluated by assuming a flow de-
pendence exists between loop iterations with different de-
pendence probabilities. A skeleton of evaluated code frag-
ment is shown as Figure 9. Figure 10 shows the results under
sequential, 2-thread, and 4-thread models.

The execution times of 2-thread and 4-thread systems are
close to the sequential execution, when the probabilities of
dependences are about 50% and 60%, respectively. This
value can be used to compute E of equation (2) in sec-
tion 2.2. The figure also shows if the probability is high,
speculative mechanism will in fact cause performance degra-
dation. Therefore a compiler must be able to determine if
speculative execution is profitable. A cost model is con-
structed for the simulation configuration based on the above
observation, and the compiler will determine when to turn
on or off the speculation mechanism.

In order to evaluate the effectiveness of compiler-directed
speculation, several kernel loops are selected from programs
and listed in table 5 In the malloc program, a free-list with

�����������
	�� ����

�����������
	�� ����

*p = ...

... = *q

�����������
	�� ����

����������
	�� �����

����������
	�� �����

*p = ...

... = *q

����������
	�� �����

� � ���� � � ����� � � ���� � � �����

 �"!
#$���"%
� & � &���'�(�)�+*
�,"��$*-���$./�

Figure 9: The skeleton of code fragment

0

500000

1000000

1500000

2000000

2500000

3000000

0% 1% 5% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

95
%

10
0%

Data Dependence Probability

E
xe

cu
tio

n
T

im
e

(c
yc

le
s)

2 threads

4 threads

sequential

Figure 10: Data dependence probabilities vs. Exe-
cution times

1000 nodes is created and 1000 times of allocating mem-
ory operation are performed, with randomly generated sizes
ranging from 20 to 60. In the map program, a string-to-
integer C++ STL map operation is executed. First, 500
elements generated randomly in the range from 1 to 500 are
inserted into a double linked-list. Then, 3000 times of map
operation will be done and the key of each map operation is
generated randomly with the same range.

The compiler will adopt one of the following three strate-
gies:

Sequential Execution The compiler will turn off the spec-
ulation mechanism when it identifies a may-dependence.
The loop iterations will be executed sequentially.

Speculation The speculation mechanism will be turned
on. The loop iterations will be executed by speculated
threads.

Probabilistic Speculation The compiler will analyze the
probabilities of dependences using the PPA informa-
tion. It then decides whether to turn on the specula-
tion mechanism or not based on the cost model.

Figure 11 shows the comparison of execution speedup be-
tween different strategies with two thread units. The pro-
grams em3d and data retrieval have low probabilities, so

Program Description

990127-1 Test program from gcc-3.0.1 testsuite.

shuffle The program tests a random number generator
using a card shuffling procedure. (netlib.org)

em3d A program that operates on an irregular linked
data structure.

data retrieval A program simulates the behavior that re-
trieves a node from a set of nodes and modifies
the node’s content. (handcoding) [1]

malloc A storage allocation program from [18].

map A C version of C++ STL map operation. [33]

Table 5: Benchmark Programs

0

0.5

1

1.5

2

2.5

data retrival em3d malloc map shuffle 990127-1

Benchmark Programs

S
pe

ed
U

p

sequential

speculation

Probabilistic Speculation

Figure 11: Speedups on 2-thread System

it is better to use speculated threads. For programs mal-
loc and map, they do the table lookup operations from a
pointer-linked list. In most of cases, the operations are al-
most independent between list nodes and hence probabil-
ity of conflicts is low. Consequently, the compiler turns on
the speculation mechanism for these programs and achieves
speedup on 2 threads.

On the other hand, the programs shuffle and 990127-1 ex-
hibit high probabilities between loop iterations. Therefore
the benefits from multithreading execution will be nullified
by mis-speculative penalty and consequently sequential ex-
ecution will be a better choice. This figure shows that the
probabilistic speculation strategy uses the data dependence
probability to choose the best strategy for speculation, and
hence it always achieves performance improvement.

6. RELATED WORK
There have been considerable efforts on pointer analysis

by researchers [2, 6, 8, 9, 10, 21, 27, 28, 29, 32, 38, 39, 40].
The proposed techniques compute at program points either
aliases or points-to relationships. They categorize aliases
or points-to relationships into two classes: must aliases or
definitely-points-to relationships, which hold for executions,
and may-aliases or possibly-points-to relationships, which
hold for at least one execution. However, they can not tell
which may-aliases or possibly-points-to relationships hold
for the most of executions and which for only few execu-

tions. Such information is crucial for compilers to determine
if certain optimizations and transformations will be benefi-
cial. The probabilistic points-to analysis proposed in our
research work computes key information for optimizations
on speculative multi-threading environments.

In the work related to speculative multithreading (SpMT)
model, research work can be seen in [11, 20, 25, 31, 35]. We
employ the superthreaded architecture [35, 36] as our exper-
imental platforms. In the work related to data speculations
for modern computer architectures, such as IA-64 [16, 19],
Ju et al. [17] gives a probabilistic memory disambiguation
approach for array analysis and optimizations. However,
the problem remains open for pointer-induced memory ref-
erences. This work tries to provide a solution to fill-in the
open areas. In the work related to compiler optimizations
for pointer-based programs on distributed shared-memory
parallel machines, affinity analysis [3] and data distribution
analysis [22] are currently able to estimate which processor
an object is resided in. For programs with pointer usages, a
pointer will be pointing to a set of objects with may-aliases.
General data flow frequency analysis is proposed by Rama-
lingam [26]. It provides a theoretical foundation for data
flow frequency analysis, which computes at program points
the expected number of times that certain conditions might
hold.

Our research work in [15] pioneers the research efforts
in giving quantitative descriptions for pointer-based aliases
analysis. We draw an analogy here for the distance between
probabilistic point-to analysis and general probabilistic data
flow analysis. Conventional aliases analysis is still quite an
active research item even though the deterministic data flow
equations are well established much earlier. The probabilis-
tic points-to analysis is complicated due to the dynamic as-
sociation property of pointers. Our research work in [15]
only gives intra-procedural cases. In this work, we give an
methodology useful for inter-procedural cases. We report
experimental results for an extensive set of applications to
see the accuracy of our probabilistic point-to analysis. In
addition, we give the first research work, to our best knowl-
edge, to estimate the effects of the application of probabilis-
tic point-to analysis for speculative multi-threading environ-
ments. This work is also a part of our efforts in our research
group to develop compiler toolkits [4, 5, 13, 14, 23, 41] for
high-performance and low-power micro-processors.

7. CONCLUSION
With the increased design of speculation mechanisms in

advanced microprocessors, the ability for compilers to per-
form optimizations on speculations of advanced architec-
tures becomes important. In this research work, we pre-
sented probabilistic point-to analysis framework and experi-
ments which can take advantages of speculative multi-threading
facilities provided by architectures. In our experiments, a
family of important applications can be speeded up with
our analysis. Considering a large depository of pointer-
based objects, the program hopes to find objects meeting
certain properties and constraints. During the iterations,
if the object is not found, it will go for next iterations. If
the pointer-based object is found to meet the criteria, house
keeping work and update were done and dependence exists.
Probabilistic loop-carried dependence induced by pointers
were found in this family of applications. We give examples
of data retrieval, malloc, and map operators in our exper-

imental section for such cases. With the fundamental de-
signs of table lookup in data structures and the applications
of data mining, we feel this will be important for applica-
tions. Probabilistic point-to analysis will also be important
for data speculations and code specializations on advanced
architectures. We are in the process of investigating appli-
cations of probabilistic point-to analysis in those areas.

8. REFERENCES
[1] A. Berson, S. Smith, and K. Thearling. Building Data

Mining Applications for CRM. McGraw-Hill, 1999.

[2] M. Burke, P. Carini, J.-D. Choi, and M. Hind.
Flow-insensitive interprocedural alias analysis in the
presence of pointers. In Proceedings of the 8th
International Workshop on Languages and Compilers
for Parallel Computing, Columbus, Ohio, August
1995.

[3] M. C. Carlisle and A. Rogers. Software caching and
computation migration in olden. In Proceedings of
ACM SIGPLAN Conference on Principles and
Practice of Parallel Programming, pages 29–39, July
1995.

[4] R.-G. Chang, T.-R. Chuang, and J. K. Lee. Efficient
support of parallel sparse computation for array
intrinsic functions of Fortran 90. In Conference
Proceedings of the 1998 International Conference on
Supercomputing, pages 45–52, Melbourne, Australia,
July 13–17, 1998. ACM SIGARCH.

[5] R.-G. Chang, J.-S. Li, J. K. Lee, and T.-R. Chuang.
Probabilistic inference schemes for sparsity structures
of fortran 90 array intrinsics. In 2001 International
Conference on Parallel Processing (ICPP ’01, pages
61–68, Washington - Brussels - Tokyo, Sept. 2001.
IEEE.

[6] J.-D. Choi, M. Burke, and P. Carini. Efficient
flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In Proceedings
of the 20th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 232–245.
ACM Press, 1993.

[7] B. D. and T. Austin. The SimpleScalar Tool Set,
Version 3.0. Unversity of Wisconsin Madison
Computer Science Department.

[8] M. Das. Unification-based pointer analysis with
directional assignments. In Proceedings of the ACM
SIGPLAN 2000 Conference on Programming
Language Design and Implementation (PLDI-00),
volume 35.5 of ACM Sigplan Notices, pages 35–46,
N.Y., June 18–21 2000. ACM Press.

[9] A. Deutsch. Interprocedural May-Alias analysis for
pointers: Beyond k-limiting. SIGPLAN Notices,
29(6):230–241, June 1994. Proceedings of the ACM
SIGPLAN ’94 Conference on Programming Language
Design and Implementation.

[10] M. Emami, R. Ghiya, and L. J. Hendren.
Context-sensitive interprocedural Points-to analysis in
the presence of function pointers. SIGPLAN Notices,
29(6):242–256, June 1994. Proceedings of the ACM
SIGPLAN ’94 Conference on Programming Language
Design and Implementation.

[11] L. Hammond, B. Hubbert, M. Siu, M. Prabhu,
M. Chen, and K. Olukotun. The stanford hydra cmp.

IEEE MICRO Magazine, March-April 2000.

[12] M. S. Hecht. Flow Analysis of Computer Programs.
Elsevier North-Holland, New York, 1 edition, 1977.

[13] G.-H. Hwang, J. K. Lee, and R. D.-C. Ju. A
function-composition approach to synthesize
Fortran 90 array operations. Journal of Parallel and
Distributed Computing, 54(1):1–47, 10 Oct. 1998.

[14] G.-H. Hwang, J. K. Lee, and R. D.-C. Ju. Array
operation synthesis to optimize HPF programs on
distributed memory machines. Journal of Parallel and
Distributed Computing, 61(4):467–500, Apr. 2001.

[15] Y.-S. Hwang, P.-S. Chen, J. K. Lee, and R. D.-C. Ju.
Probabilistic points-to analysis. In Proceedings of the
2001 International Workshop on Languages and
Compilers for Parallel Computing, August 2001.

[16] Intel Corporation. IA-64 Application Developer’s
Architecture Guide, 1999.

[17] D.-C. R. Ju, J.-F. Collard, and K. Oukbir.
Probabilistic memory disambiguation and its
application to data speculation. In G. Lee and P.-C.
Yew, editors, Third Workshop on Interaction between
Compilers and Computer Architectures
(INTERACT-3), San Jose, CA, Oct. 1998.

[18] B. W. Kernighan and D. M. Ritchie. The C
programming language, Second Edition. Prentice Hall,
1988.

[19] R. Krishnaiyer, D. Kulkarni, D. M. Lavery, W. Li,
C.-C. Lim, J. Ng, and D. C. Sehr. An advanced
optimizer for the ia-64 architecture. IEEE Micro,
20(6):60–68, November/December 2000.

[20] V. Krishnan and J. Torrellas. A chip-multiprocessor
architecture with speculative multithreading. IEEE
Transactions on Computers, 48(9):866–880, 1999.

[21] W. Landi and B. G. Ryder. A safe approximate
algorithm for interprocedural pointer aliasing.
SIGPLAN Notices, 27(7):235–248, July 1992.
Proceedings of the ACM SIGPLAN ’92 Conference on
Programming Language Design and Implementation.

[22] J. K. Lee, D. Ho, and Y.-C. Chuang. Data distribution
analysis and optimization for pointer-based
distributed programs. In Proceedings of the 1997
International Conference on Parallel Processing
(ICPP ’97), pages 56–63, Washington - Brussels -
Tokyo, Aug. 1997. IEEE Computer Society Press.

[23] Y.-J. Lin, Y.-S. Hwang, and J. K. Lee. Compiler
optimizations with dsp-specific semantic descriptions.
In Proceedings of the 2002 International Workshop on
Languages and Compilers for Parallel Computing,
July 2002.

[24] S. S. Muchnick. Advanced compiler design and
implementation. Morgan Kaufmann Publishers, 2929
Campus Drive, Suite 260, San Mateo, CA 94403,
USA, 1997.

[25] J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. S.
Lam, and K. Olukotun. Software and hardware for
exploiting speculative parallelism with a
multiprocessor. Technical Report CSL-TR-97-715,
Stanford University, February 1997.

[26] G. Ramalingam. Data flow frequency analysis. In
Proceedings of the ACM SIGPLAN ’96 conference on
Programming language design and implementation,
pages 267–277. ACM Press, 1996.

[27] E. Ruf. Context-insensitive alias analysis reconsidered.
SIGPLAN Notices, 30(6):13–22, June 1995.
Proceedings of the ACM SIGPLAN ’95 Conference on
Programming Language Design and Implementation.

[28] R. Rugina and M. Rinard. Pointer analysis for
multithreaded programs. In Proceedings of the ACM
SIGPLAN ’99 conference on Programming language
design and implementation, pages 77–90. ACM Press,
1999.

[29] M. Shapiro and S. Horwitz. Fast and accurate
flow-insensitive points-to analysis. In Conference
Record of POPL ’97: 24nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 1–14, Paris, France, Jan. 1997.

[30] M. D. Smith. The SUIF Machine Library. Division of
of Engineering and Applied Science, Harvard
University, March 1998.

[31] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar.
Multiscalar processors. In 25 Years ISCA:
Retrospectives and Reprints, pages 521–532, 1998.

[32] B. Steensgaard. Points-to analysis in almost linear
time. In Conference Record of POPL ’96: 23nd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 32–41, St. Petersburg
Beach, Florida, Jan. 1996.

[33] B. Stroustrup. The C++ programming language.
Addison-Wesley, 1991.

[34] The Stanford SUIF Compiler Group. The SUIF
Library. Stanford University, 1995.

[35] J.-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.-C.
Yew. The superthreaded processor architecture. IEEE
Transactions on Computers, 48(9):881–902, 1999.

[36] J.-Y. Tsai, Z. Jiang, and P.-C. Yew. Compiler
techniques for the superthreaded architectures.
International Journal of Parallel Programming,
27(1):1–19, 1999.

[37] T. A. Wagner, V. Maverick, S. L. Graham, and M. A.
Harrison. Accurate static estimators for program
optimization. In Proceedings of the ACM SIGPLAN
’94 conference on Programming language design and
implementation, pages 85–96. ACM Press, 1994.

[38] R. P. Wilson and M. S. Lam. Efficient
context-sensitive pointer analysis for c programs. In
Proceedings of the conference on Programming
language design and implementation, pages 1–12.
ACM Press, 1995.

[39] P. Wu, P. Feautrier, D. Padua, and Z. Sura.
Instance-wise points-to analysis for loop-based
dependence testing. In Proceedings of the 16th
international conference on Supercomputing, pages
262–273. ACM Press, 2002.

[40] S. H. Yong, S. Horwitz, and T. Reps. Pointer analysis
for programs with structures and casting. SIGPLAN
Notices, 34(5):91–103, May 1999. Proceedings of the
ACM SIGPLAN ’99 Conference on Programming
Language Design and Implementation.

[41] Y.-P. You, C.-R. Lee, and J. K. Lee. Compiler analysis
and supports for leakage power reduction on
microprocessors. In Proceedings of the 2002
International Workshop on Languages and Compilers
for Parallel Computing, July 2002.

