Copy Propagation Optimizations for VLIW DSP
Processors with Distributed Register Files *

Chung-Ju Wu Sheng-Yuan Chen Jeng-Kuen Lee

Department of Computer Science
National Tsing-Hua University
Hsinchu 300, Taiwan
Email: {jasonwu, sychen, jklee}@pllab.cs.nthu.edu.tw

Abstract. High-performance and low-power VLIW DSP processors are
increasingly deployed on embedded devices to process video and mul-
timedia applications. For reducing power and cost in designs of VLIW
DSP processors, distributed register files and multi-bank register archi-
tectures are being adopted to eliminate the amount of read/write ports
in register files. This presents new challenges for devising compiler op-
timization schemes for such architectures. In our research work, we ad-
dress the compiler optimization issues for PAC architecture, which is a
5-way issue DSP processor with distributed register files. We show how
to support an important class of compiler optimization problems, known
as copy propagations, for such architecture. We illustrate that a naive
deployment of copy propagations in embedded VLIW DSP processors
with distributed register files might result in performance anomaly. In
our proposed scheme, we derive a communication cost model by clus-
ter distance, register port pressures, and the movement type of register
sets. This cost model is used to guide the data flow analysis for sup-
porting copy propagations over PAC architecture. Experimental results
show that our schemes are effective to prevent performance anomaly
with copy propagations over embedded VLIW DSP processors with dis-
tributed files.

1 Introduction

Digital signal processors (DSPs) have been found widely used in an increasing
number of computationally intensive applications in the fields such as mobile
systems. As the communication applications are moving towards the conflict-
ing requirements of high-performance and low-power consumption, DSPs have
evolved into a style of large computation resources combined with restricted
and/or specialized data paths and register storages. In modern VLIW DSPs,
computation resources are divided into clusters with its own local register files
to reduce the hardware complexity.

* This paper is submitted to LCPC 2006. The correspondence author is Jenq Kuen
Lee. His e-mail is jklee@cs.nthu.edu.tw, phone number is 886-3-5715131 EXT. 33519,
FAX number is 886-3-5723694. His postal address is Prof. Jeng- Kuen Lee, Depart-
ment of Computer Science, National Tsing-Hua Univ., Hsinchu, Taiwan.

In cluster-based architectures, the compiler plays an important role to gen-
erate proper codes over multiple clusters to work around the restrictions of the
hardware. Data flow analysis is an important compiler optimization technique.
Available expressions, live variables, copy propagations, reaching definitions, or
other useful sets of properties can be computed for all points in a program using
a generic algorithmic framework. Current research results in compiler optimiza-
tions for cluster-based architectures have focused on partitioning register files to
work with instruction scheduling [13] [16]. However, it remains open how the
conventional data flow analysis scheme can be incorporated into optimizations
over embedded VLIW DSP processors with distributed files by taking commu-
nication costs into account.

In this paper, we present a case study to illustrate how to address this register
communication issue for an important class of compiler optimization problems,
known as copy propagations, for PAC architectures. Parallel Architecture Core
(PAC) is a 5-way VLIW DSP processors with distributed register cluster files and
multi-bank register architectures (known as ping-pong architectures) [1] [8] [9].
Copy propagation is in the family of data flow equations and traditionally known
as an effective method used as a compiler phase to combine with common avail-
able expression elimination and dead code elimination schemes. We illustrate
that a naive deployment of copy propagations in embedded VLIW DSP pro-
cessors with distributed files might result in performance anomaly, a reversal
effect of performance optimizations. In our proposed scheme, we derive a com-
munication cost model by the cluster distance, register port pressures, and the
distance among different type of register banks. The profits of copy propaga-
tions are also modeled among program graphs. We then use this cost model to
guide the data flow analysis for supporting copy propagations for PAC archi-
tectures. The algorithm is modeled with a flavor of shortest path problem with
the considerations of shared edges in program graphs. Our model will avoid per-
formance anomaly produced by conventional copy propagations over distributed
register file architectures. Our compiler infrastructure is based on ORC/Open-64
compiler infrastructure and with our efforts to retarget them in a VLIW DSP
environments with multi-cluster and distributed register architectures. We also
present experimental results with DSPstone benchmark to show our schemes
are effective to support copy propagations over embedded VLIW DSP proces-
sors with distributed register files.

The remainders of this paper are organized as follows. In Section 2, we will in-
troduce the processor architecture and register file organizations of PAC VLIW
DSP processors. Section 3 presents motivating examples to point out perfor-
mance anomaly phenomenon with copy propagations over embedded VLIW DSP
processors with irregular register files. Section 4 then presents our algorithm and
solution to this problem. Next, Section 5 gives experimental results. Finally, Sec-
tion 6 presents the related work and discussions, and Section 7 concludes this

paper.

2 PAC DSP Architecture

The Parallel Architecture Core (PAC) is a 32bit, fixed-point, clustered digital
signal processor with five way VLIW pipeline. PAC DSP has two Arithmetic
Logic Units (ALU), two Load/Store Units (LSU), and one single Scalar unit.
The ALU and LSU are organized into two clusters, each containing a pair of
both functional unit (FU) types and one distinct partitioned register file set. The
Scalar unit can deal with branch operations, and is also capable of load/store
and address arithmetic operations. The architecture is illustrated in Figure 1.

‘ Memory Interface ‘

Scalar Unit

Fig. 1. The PAC DSP architecture illustration

As in Figure 1, the register file structure in each cluster is highly partitioned
and distributed. PAC DSP contains four distinct register files. The A, AC, and
R register files are private registers, directly attached to and only accessible by
each LSU, ALU, and Scalar unit, respectively. The D register files are shared
within one cluster and can be used to communicate across clusters. Each of the
D-register files have only 3 read ports and 2 write ports (3R/2W). Among them,
1R/1W are dedicated to the Scalar Unit, leaving only 2R/1W for the cluster FUs
to use. The remaining set of 2R/1W ports are not enough to connect to both
cluster FUs simultaneously. Instead, they are switched between the LSU/ALU:
during each cycle, the access ports of each of the two D-register files (in a sin-
gle cluster) may be connected to the LSU or ALU, but not both. This means
that access of the two D-register files are mutually-exclusive for each FU, and
each LSU/ALU can access only one of them during each cycle. For one indi-
vidual public register sub-block, we can’t perform reading and writing on it in
two different FUs at the same time. Due to this back-and-forth style of regis-
ter file access, we call this a ‘ping-pong’ register file structure. We believe this

special register file design can help us achieve low-power consumption because
it retains an effective way of data communication with less wire connections be-
tween FUs and registers. Note that the public register files are shared register
but can only be accessible by either LSU or ALU at one time. PAC DSP pro-
cessor [1] is currently developed at ITRI STC, and our laboratory is currently
collaborating with ITRI STC under MOEA projects for the challenging work to
develop high-performance and low-power toolkits for embedded systems under
PAC platforms [12], [16], [18], [19], and [20].

3 DMotivating Examples

This section gives examples to motivate the needs of our optimization schemes.
Consider the code fragment below:

Code Fragment 1

(1) x := t3;

(2) alt2] := tb;

(3) alt4] := x + t6;
(4) alt7] := x + t8;

The traditional technique for compilers to optimize the above code is to
use t3 for x, wherever possible after the copy statement x := t3. The related
work in optimizing this code sequence by the copy propagation technique can
be found in Aho’s book [4]. Following the common data flow analysis and copy
propagation applied to Code Fragment 1, we have the optimized code below:

Code Fragment 2

(1) x := t3;
(2) alt2] := t5;
(3) al[t4] := t3 + t6;
(4) alt7] := t3 + t8;
This propagation can remove all data dependency produced by x := t3,

providing the compiler with possibility to eliminate the assignment x := t3.
However, the scheme above is not appropriate for the design of PAC DSP archi-
tecture. Due to this specific-architecture design with clustering and distributed
register files , extra intercluster-communication code needs to be inserted if there
occurs the data flow across clusters. Suppose t3 is allocated to a different cluster
from t6,t8, and x, the insertion of intercluster-communication code will then
need to be done if applying conventional copy propagation. Such overhead of
communication code increases the total cycles of the optimized code compared
with non-optimized one. Figure 2 is an example of VLIW code fragment. Code
bundle at the left-hand side represents one propagation path exists from Cluster
2 to Cluster 1, i.e. TN2 (Temporary Name, which is referred as a virtual register
representation) can be propagated from Cluster 2 to Cluster 1. Code bundle at
the right-hand side shows extra inter-communication costs needed after propa-
gation.

{ {
Scalar : nop Scalar : nop
Cluster 1: nop Inter cluster Cluster 1: nop Inter cluster
Cluster 1: nop . Cluster 1: nop -
t i
Cluster 2: lw TN2,mem T communication Cluster 2. Iw TN2,mem T communigation
Cluster 2: nop Cluster 2: nop
} }
Scalar nop Scalar : nop
Cluster 1: nop Cluster 1: nop
Cluster 1: TN3=TN2 % Cluster 1: TN3=TN2 %
Cluster 2: nop Cluster 2: nop
Cluster 2: nop |:“ > Cluster 2: nop
} }
{
Scalar : nop Scalar : nop
Cluster 1: nop Cluster 1: nop
Cluster 1: TN4 =TN3 Cluster 1: TN4=TN2 <
Cluster 2: nop Cluster 2: nop
Cluster 2. nop Cluster 2. nop
} }

Fig.2. A VLIW Code Example for Inter Cluster Communication

Not only does the clustered design make data flow across clusters an addi-
tional issue, but also compiler needs to take the distributed register file structure
into consideration. The private access nature of A and AC registers makes data
flows more difficult. For the convenience to trace the properties of private regis-
ter access, Code Fragment 3 lists assembly code generated from Code Fragment
1. Assume that D register d2, and private registers al, acl, ac2 are allocated to
the variables x, t3, t6 and t8, respectively.

Code Fragment 3
(1) MoV 42, ai
(2) MOV d3, a3
(3) ADD d4, 42, aci
(4) SW d4, do, 24
(5) ADD d6, d2, ac2
(6) SWw dé, do, 28

Note that the operation MOV d2, al reaches the use of d2 in line 3 and line
5. However it is impossible to replace all the uses of d2 with a1 directly, for the
reason that A register files are only attached to LSU and AC register files are also
only attached to ALU. If d2 is replaced with a1, compiler must insert extra copy
instructions for private register access properties. This insertion of extra copy
instructions also brings the penalty and occupies additional computing resources,
and therefore needs to be considered for performing copy propagations.

In addition, the reduced wire connection is another important issue. Referring
to the short Code Fragment 4 and Code Fragment 5, the left part of Figure 3
illustrates how Code Fragment 4 being scheduled into bundles and also shows
read/write ports attached to D register files, and the right part of Figure 3 shows
Code Fragment 5. Note that we arrange all the instructions into cluster 1 to
avoid the cross-interference between port pressure and clustered design because
we want to focus on the port pressure issue.

Code Fragment 4
(1) Lw 42, a0, 16
(2) COPY ac2, d3
(3) sw d4, a0, 40
(4) ADD d5, ac2, d2

After propagating d3 to ac2, the resulted code is as follows:

Code Fragment 5
(1) LW d2, a0, 16
(2) COPY ac2, d3
(3) SwWw d4, a0, 40
(4) ADD d5, 43, d2

We observe that there are 3 read ports needed in the second bundle, but our
architecture only has 2 available read ports and 1 available write port. Due to
the port constraint, the bundle must be separated. Figure 4 illustrates the final
bundles of Code Fragment 5.

Scal ar nop Scal ar nop

Cl.LSU|LW d2, a0, 16] Read Wite C1.LSU|LW d2, a0, 16] Read Wite

Cl. ALU| coPY ac2, d3 1 1 cl. ALU| copy ac2, d3 1 1

C2.Lsu -- Q2. Lsu
C2. ALU - C2. ALU
Scal ar nop Scal ar nop

Cl.LSU| SW d4, a0, 40 } Read Wite Cl1.LSU|SW d4, a0, 40 } Read Wite

Cl. ALU| ADD d5, ac2, d2 2 1 Cl. ALU| ADD d5, d3, d2 3 1
C2.LsuU .- C2.LSuU
C2. ALU -- C2. ALU

Fig. 3. The bundles of Code Fragment 4

In summary, Figure 2 illustrates a scenario that there might be data flows
from one cluster to another cluster. In Code Fragment 3, due to private reg-
isters can only be accessible by the corresponding function units, compiler has
to allocate a new temporary register first and then move data from one regis-
ter to the temporary register. Propagation makes access between two different
private register file types increases register pressure. In Code Fragment 4 and
5, compiler does not need to spend extra registers or communications through
memory. However, due to the reduced wire connections with global register files,
the instruction scheduler can only schedule them into two different bundles and
fill the empty slots with nops. We name the above three behaviors as ‘perfor-
mance anomaly’. In the following section, this problem is solved by deriving cost

Scal ar nop

Cl.LSU| LW d2, a0, 16

Cl. ALU| COPY ac2, d3

C2.LsU

C2. ALU

Scal ar nop

Cl.LsU|lSw d4, a0, 40 } Read Wite
Cl. ALU nop 1 0

C2.LSU

C2. ALU

Scal ar nop
Cl.LSU nop } Read Wite
CL. ALU| ADD d5, d3, d2 2 1

C2.LSU

C2. ALU

Fig. 4. Schedule of Code Fragment 5 according to the register ports constraint

models and using the cost models to guide the copy propagation process for
performance benefits.

4 Enhanced Data Flow Analysis on PAC Architecture

4.1 Cost Model and Algorithm

As mentioned in section 3, a naive application of data flow analysis scheme
to programs on PAC DSP actually increases execution cycles because of mem-
ory interface access, register pressure, and separated bundles. In the following
discussions, we will first introduce our cost models, and we will then develop
an algorithm based on our cost models to guide the analysis process to avoid
performance anomaly.

Our cost models for data flow analysis are to model the total weights we spend
and the total gains we get. We have defined several attributes for evaluating the
costs and gains of data propagation. The total weights of data flow path are the
costs of propagation from the TN n of instruction p to the TN m of instruction
g- Note that one TN (Temporary Name) of register type is referred as a virtual
register required to be allocated to a physical register in the machine level IR
used in compilers.

We also build equations to evaluate the extra communication costs of data
propagations from variable n to variable m, i.e. the three performance anomaly

effects mentioned in section 3. We define our cost equation as follows:
Cost(n,m) = PP(n,m)+ RP(n,m) + CBC(n,m), (1)

where PP(n, m) shows the port pressure caused by data flows from variable n
to variable m. And PP(n,m) is the extra cycles caused by the separation of
bundles. We rewrite PP(n,m) as

PP(nm) =[S (Rl ©)

where k,./k,, is the number of read /write ports needed after data flows from vari-
able n to variable m, and p,/p,, is the number of read/write port constraint we
have mentioned in section 2. k.., k, p,, and p,, need to be calculated according
to the instructions in n and m, respectively.

RP(n, m) represents the register pressure caused by data access between two
different private register file types. Due to the distributed register file constraint,
one extra copy instruction must be inserted to move data from one private regis-
ter to a temporary register. RP(n, m) returns the number of extra copy instruc-
tions. CBC(n,m) returns the cost of memory access cycles when propagating
across clusters. PAC DSP provides a special instruction pair (BDT and BDR)
to broadcast data from one cluster to another.

Table 1 shows the corresponding cost functions used in each kind of data flow
path. Note that we have local register A for data movement units, local register
AC for ALU unit, register D as a ping-pong register to be interleaved between
ALU and load/store units.

Data Flow Clusterl.D Clusterl.A Clusterl.AC Cluster2.D Cluster2.A Cluster2.AC

Clusterl.D - PP PP CBC CBC CBC
Clusterl.A - - RP CBC CBC CBC
Cluster1.AC — RP - CBC CBC CBC
Cluster2.D CBC CBC CBC - PP PP
Cluster2.A CBC CBC CBC - - RP
Cluster2.AC CBC CBC CBC - RP

Table 1. Costs in each data flow path

The total gains are the reduced communication codes and the reduced copy
assignments from propagations between TN n of instruction p to TN m of in-
struction q. We define the total gains as

Gain(n,m) = RCC(n,m)+ Y ACA(c[j]), (3)
j€E€path(n,m)

where RCC(n, m) represents the original communication cost on this n-m path,
and the communication cost can possibly be reduced if the assignment is done

directly instead of going through a sequence of copy propagations. AC A(c[j]) is
to calculate the number of all available copy assignments which can be reduced
along this n — m data flow path. ¢[j] is the intermediate copy assignment on
n —m path, and path(n, m) represents the set of intermediate nodes in the flow
path from n to m.

We view each variable as a node, and the data flows between those nodes form
an acyclic DFG. Our analysis algorithm mainly comprise 2 procedures. In the
first procedure, we perform the ordinary copy propagation algorithm illustrated
in Figure 5. Let U be the ‘universal’ set of all copy statements in the program.
Define c_gen[B] to be the set of all copies generated in block B and c_kill[b] to be
the set of copies in U that are killed in B [4]. The conventional copy propagation
algorithm can be stated with the following equation.

out[B] = c_gen|B] U (in|B] — c_kill[B]) (4)
in[B] = N out[P] for B not initial (5)

P is a predecessor of B

in[B1] = 0 where By is the initial block (6)

Note that we don’t perform the step 3 in Figure 5 at this time. After per-
forming the first two steps of the copy propagation algorithm in Figure 5, we
keep every traversed nodes in the same data flow path into a list L. While find-
ing out all possible nodes, we import these nodes in L into the other equations
(equation (1), and equation (3)) to find a data propagation path with the best
profits. Finally, we propagate data according to the best data flow path. Note
that we can choose not to take the data flow path if no path makes a profit. The
algorithm in Figure 6 shows the whole processes of both the weight evaluation
and the data flow selection.

The first step of enhanced data flow algorithm does the initial work to find
out the concerned nodes of a propagation path from node,, to node,,. The nodes
form an acyclic data flow tree. Step 2 evaluates the initial weight of each edge
(i,7). By step 2, we can calculate the initial weight of this n —m path. The initial
weight can be estimated by Gain(n,m) since they tell the same cost but from
different views. In step 3, we perform both the equation (1) and the equation (3)
to check if there are some short cuts to go. Note that the gains represent both
the communication cost and the available copy assignments we can save by going
through the short cut, and the costs show the extra inter/intra cluster costs on
the short cut. We iterate several times over this tree graph, using k as an index.
On the kth iteration, we get the best profit solution to the propagation path
finding problem, where the paths only use vertices numbered n to k. Note that
if this results in a better profit path, we remember it. Due to the comparison
with initial weight, the outcome path must be no more than the weight of no-
propagation method and naive propagation method. After iterations, all possible
short cuts have been examined, and we output the proper propagation path by
step 4. The algorithm produces a matrix p, which, for each pair of nodes v and
v, contains an intermediate node on the least cost path from u to v. So the best

Algorithm 1: Copy Propagation Algorithm

Input: A flow graph G, with ud-chains.
c_in[B] represents the solution to Equation
(4), (5), (6). And du-chains.
Output: A revised flow graph.
Method: For each copy s: x:=y do the following.

1. Determine those uses of x that are reached by this
definition of x, namely, s: x:=y.

2. Determine whether for every use of x found in (1),
s is in c_in[B], where B is the block of this par-
ticular use, and moreover, no definitions of x or y
occur prior to this use of x within B.

3. If s meets the conditions of (2), then remove s and
replace all uses of x found in (1) by y.

Fig. 5. Copy Propagation Algorithm.

profit path from u to v is the best profit path from u to p[u,v], followed by the
best profit path from plu,v] to v. Step 3 of the algorithm is done with a flavor
of the shortest path problem, but only now that we model the problem for copy
propagation and register communications.

4.2 Advanced Estimation Algorithm

The goal of the Enhanced Data-Flow Analysis Algorithm is to collect the infor-
mation of the weights and gains of propagation at each point in a program. If
multiple nodes have the same ancestors, they should share the weights and gains
from their ancestors. The Figure 7 shows a new evaluating method to solve this
sharing problem on a propagation tree.

In the first step, we deal with the issue for shared edges for determining
which path is doing copy propagation and which path does not. In that case,
the intermediate assignment will not be eliminated by dead code eliminations.
This can still be done, but we need to reflect this in our cost model for GAINS
calculated in equation (3). Three small steps are performed. In step 1.a, we first
find the set of all propagation paths. Note that we only need to find out those
paths are not sub-path of other paths, as dealing with the long path (non-proper
sub-path) in copy propagation will cover all cases. Next in Step 1.b, we try to
mark the intermediate stops in all propagation paths according to output of
Path routine in Figure 6 for each path. Next in Step 1.c, we re-adjust the cost
model for GAINS if there are intermediate nodes which will not be eliminated
eventually in dead code elimination phase due to the share edge decides to keep
the intermediate stops.

Algorithm 2: Enhanced Data Flow Analysis

Input: Inputs in Copy Propagation Algorithm.
(Figure 5).
Output: A proper propagation path.

1. Perform the first and the second steps in Copy
Propagation Algorithm in Figure 5 to traverse all
possible propagation nodes on n — m path .

2. for i = n to m do

for j = n tom do

/* Evaluate the initial weight, w[z, j]. */
/* This weight includes the communication®/
/* costs and all the copy assignments */
/* along path before propagation. */
Estimate the initial weight wli, j];
end
end

3. for k = n to m do
for i =n tom do
Compute Gain(i, k) and Cost(i, k).
for j = n to m do
Compute Gain(k,j) and Cost(k, 7).
profit = Gain(i, k) — Cost(i, k) +
Gain(k,j) — Cost(k, j);
if (w[¢,] — profit) < wli, 5] do
wli, j] = wli, j] — profit;
pli, 3] = k;
end
end
end
end
4. /* Output a proper propagation path from */
/*utov*/
Path (u, v, p) {
k = plu, v];
if (k == Null) return;
Path(u, k);
output the node k;
Path(k, v);

Fig. 6. The Enhanced Data Flow Analysis Algorithm.

Algorithm 3: Available Copy Assignment Estimation Algorithm

Input: A propagation tree
Output: Proper weights of all propagation paths

Step l.a:
Find the set of all the propagation paths (all the
non-proper propagation paths), PP.
Step 1.b:
For each path p € PP do {
Mark each element in the output of Path routine in Figure 6
for p as intermediate stop.
}
Step 1.c:
For each path p € PP do {
Compare the elements of intermediate stops in p with the
elements from the output of Path routine in Figure 6 for p.
If there are additional elements in the path of p marked
as intermediate stops, revise cost for the GAINS of p.
}
Step 2.a:
For each path p € PP do {
Use reference counting to count the reference count
for each node in p.
}
Step 2.b:
For each path p € PP do {
Revise GAINS for p by using the reference counting
information acquired in the previous step.

Fig. 7. Available Copy Assignment Estimation Algorithm.

In step 2, we also deal with shared edges, but for fine-tuning the cost model.
As if there are shared edges, the gains of copy propagations should be counted
only once (or the benefit needs to be distributed among shared paths). A ref-
erence counting scheme can be used to see the amount of sharing. This is done
in Step 2.a. This information can then be used to re-adjust the cost model for
GAINS in equation (3).

5 Infrastructure Designs and Experiments

We now first describe our compiler testbed for our proposed copy propagations
over cluster-based architecture and distributed register files. Our compiler plat-
form is based on ORC and we retarget the compiler infrastructure for PAC
architecture. ORC is an open-source compiler infrastructure released by Intel. It
is originally designed for IA-64. ORC is made up of different phases. The ORC
compilation starts with processing by the front-ends, generating an intermediate
representation (IR) of the source program, and feeding it in the back-end. The
IR , called WHIRL, is a part of the Pro64 compiler released by SGI [11]. PAC ar-
chitecture introduces additional issues with register allocation under comparison
between different platforms. In our compiler infrastructure, we first implemented
a partitioning scheme to partition the register file among clusters. This is known
Ping-pong Aware Local Favorable (PALF) register allocation [12] [16] to obtain
a preferable register allocation scheme that well partitions register usage into
the irregular register file architectures in PAC DSP processor. The algorithm
involves the proper consideration of various characteristics in accessing different
register files, and attempts to minimize the penalty caused by the interference
of register allocation and instruction scheduling, with retaining desirable par-
allelism over ping-pong register constraints and inter-cluster overheads. After
the phase of register allocation and instruction selections, we then move into
the phase of EBO (basic block optimizations). EBO was a phase originally in
ORC for the basic block optimizations and carrying out optimization such as
copy propagations, constant folding, dead code eleminations. Our enhanced copy
propgation algorithm is implemented in this phase.

We use the PAC DSP architecture described in section 2 as the target archi-
tecture for our experiments. The proposed enhanced data flow analysis frame-
work is incorporated into the compiler tool with PAC ORC [5], and evaluated by
the ISS simulator designed by ITRI DSP team. We also implement the METTS
graph partitioning library [6] for the register allocation scheme. The benchmarks
used in our experiment are from the floating-point version of DSP-stone bench-
mark suite [7]. Notice that benchmarks are indexed with numbers to identify the
specified basic block we used in this experiment. We focused on the major basic
blocks as copy propagation was implemented in peephole optimizations for basic
block optimizations.

Three versions are compared in our research work. The base version is one
without copy propagation mechanism. The original version is one from a work
that only performs the naive copy propagation algorithm in Figure 5. The En-

120%

110%

100%

90%

80%
70%

Ratio of execution cycles

60%
50%

40%

> S 2
0~ g% 36 66 o0 96/ 0~
y,:b/}‘ od\;,\ ;\\(’755\ eé 6@66; R e O ‘*'7-/ d\),“0(\/

‘D No Propagation M Origina DataFlow Anaysis B Enhanced Data Flow Analys's‘

Fig. 8. Ratio of execution cycles in basic block codes.

hanced Data-Flow Analysis scheme proposed in our work is to perform all phases
in Figure 6. Both the original version and the Enhanced Data-Flow Analysis
scheme are incorporated with dead code elimination.

Figure 8 shows that our scheme can achieve an average of 15.0% reduc-
tion comparing to the base method. Note that from our experiment, the orig-
inal copy propagation version (Figure 5) suffers a performance loss in bench-
marks real_update_BB_2, n_real_update_BB_3, and convolution_.BB_2. That’s be-
cause the naive copy propagation produces lots of inter communication codes
and register pressure in real_update_BB_2 and n_real_update_BB_3. The test pro-
gram convolution_BB_2 suffers redundant inter communication codes. Although
the naive propagation version can reduce some of the unnecessary copy assign-
ments, it is still out-performed by our proposed scheme. The test programs
mat1z3_BB_3, dot_prod-uct_-BB_3, fir2dim_BB_5, and matrizl_BB_5 show that
our methods can keep the good nature of the naive propagation version. And
the other benchmarks prove that our proposed methods can also reduce the
performance anomaly over by distributed register files.

6 Related Work

High-performance and low-power VLIW DSP processors are of interests lately
for embedded systems to handle multimedia applications. To achieve this goal,
clustered architecture is one well-known strategy. Examples are given in this
work [8] [9] [10]. The presence of distributed register file architecture presents a
challenge for compiler code generations. Earlier work focused on the partitioning
of register file to combine with instruction scheduler [12] [13] [16]. While the
partitioning scheme for distributed register file is important, there are more
challenging problems ahead as evidenced in this work that we need to handle
copy propagations over such architectures. [17] provides techniques to support

copy propagation during register allocation which is known as node coalescing in
the interference graph. Our work presents an approximation to deal with these
issues in post register phase that we give cost models to guide the process for
copy propagations on embedded VLIW DSP processors with distributed register
files and multi-bank register structures.

Performance anomaly was earlier also found in the problem of array operation
synthesis. The work for Fortran 90 and HPF programs [14] [15] was done in the
context of array operations and source languages for distributed memory parallel
machines. With the distributed memory hierarchies moving from memory layers
into register levels, the performance anomaly was also observed in the register
layers. Previous work was done in loop levels and source levels, while this work
needs to carefully model register communication and architecture constraints in
the instruction levels.

7 Conclusion

In this paper, we presented an enhanced framework for copy propagations over
VLIW architectures with distributed register files. This presented a case study
to address the issues for how to address compiler optimizations for conventional
optimizations schemes over distributed register file architectures. Experimental
results show that our scheme can maintain the benefits of copy propagation
optimizations while prevent performance anomaly. Future work will include the
integration of cost models to cover more cases of compiler optimization schemes
such as common available expression eliminations.

References

1. David Chang and Max Baron: Taiwan’s Roadmap to Leadership in Design.
Microprocessor Report, In-Stat/MDR, December 2004.
http://www.mdronline.com/mpr/archive/mpr_2004.html.

2. C. M. Overstreet, R. Cherinka, M. Tohki, and R. Sparks. Support of software
maintenance using data flow analysis. Technical Report TR-94-07, Old Dominion
University, Computer Science Department, June 1994.

3. C. M. Overstreet, R. Cherinka, and R. Sparks. Using bidirectional data flow
analysis to support software reuse. Technical Report TR-94-09, Old Dominion
University, Computer Science Department, June 1994.

4. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison-Wesley, November 1985.

5. Cheng-Wei Chen, Yung-Chia Lin, Chung-Ling Tang, Jeng-Kuen Lee. ORC2DSP:
Compiler Infrastructure Supports for VLIW DSP Processors. IEEE VLSI TSA,
April 27-29, 2005.

6. George Karypis and Vipin Kumar. A fast and highly quality multilevel scheme
for partitioning irregular graphs. SIAM J. Scientific Computing, 20(1): 359-392,
1999.

7. V. Zivojnovic, J. Martinez, C. Schlager, and H. Meyr. DSPstone: A DSP-oriented
benchmarking methodology. In Proceedings of the International Conference on
Signal Processing and Technology, pp.715-720, October 1994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

T.J. Lin, C.C. Chang. C.C. Lee, and C.W. Jen. An Efficient VLIW DSP Ar-
chitecture for Baseband Processing. In Proceedings of the 21th International
Conference on Computer Design, 2003.

Tay-Jyi Lin, Chie-Min Chao, Chia-Hsien Liu, Pi-Chen Hsiao, Shin-Kai Chen,
Li-Chun Lin, Chih-Wei Liu, Chein-Wei Jen. Computer architecture: A unified
processor architecture for RISC & VLIW DSP. In Proceedings of the 15th ACM
Great Lakes symposium on VLSI, April 2005.

S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and J. D. Owens.
Register organization for media processing. International Symposium on High
Performance Computer Architecture, pp.375-386, 2000,

SGI - Developer Central Open Source - Pro64
http://oss.sgi.com/projects/Pro64/.

Yung-Chia Lin, Yi-Ping You, Jenq-Kuen Lee. Register Allocation for VLIW DSP
Processors with Irregular Register Files. International Workshop on Languages
and Compilers for Parallel Computing, January 2006.

R. Leupers. Instruction scheduling for clustered VLIW DSPs. In Proceedings of
International Conference on Parallel Architecture and Compilation Techniques,
pp-291-300, October 2000.

Gwan-Hwan Hwang, Jeng-Kuen Lee and Roy Dz-Ching Ju. A Function-
Composition Approach to Synthesize Fortran 90 Array Operations. Journal
of Parallel and Distributed Computing, 54, 1-47, 1998.

Gwan-Hwan Hwang, Jeng-Kuen Lee, Array Operation Synthesis to Optimize
HPF Programs on Distributed Memory Machines. Journal of Parallel and Dis-
tributed Computing, 61, 467-500, 2001.

Yung-Chia Lin, Chung-Lin Tang, Chung-Ju Wu, Jeng-Kuen Lee. Compiler Sup-
ports and Optimizations for PAC VLIW DSP Processors. Languages and Com-
pilers for Parallel Computing, 2005.

Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. Con-
ference on Programming Language Design and Implementation, 1992.

Yi-Ping You, Ching-Ren Lee, Jeng-Kuen Lee. Compilers for Leakage Power
Reductions. ACM Transactions on Design Automation of Electronic Systems,
Volume 11, Issue 1, pp.147-166, January 2006.

Yi-Ping You, Chung-Wen Huang, Jeng-Kuen Lee. A Sink-N-Hoist Framework
for Leakage Power Reduction. ACM EMSOFT, September 2005.

Peng-Sheng Chen, Yuan-Shin Hwang, Roy Dz-Ching Ju, Jeng-Kuen Lee. Inter-
procedural Probabilistic Pointer Analysis. IEEE Transactions on Parallel and
Distributed Systems, Volume 15, Issue 10, pp.893-907, October 2004.

