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Abstract. Compiler is substantially regarded as the most essential com-
ponent in the software toolchain to promote a successful processor de-
sign. This paper describes our preliminary employment of the Open Re-
search Compiler (ORC) infrastructure on a novel VLIW DSP processor
(known as PAC DSP core) and its specific compilation and optimization
design. The PAC DSP processor exceedingly utilized port-restricted, dis-
tinct partitioned register file structures in addition to the heterogeneous
clustered datapath architecture to attain low power consumption and re-
duced die size; however, these architectural features lend new challenges
to the compiler construction. As part of an effort to deal with the chal-
lenges of efficient code generation for PAC DSP, the register allocation
scheme developed in this work and other retargeting optimization phases
are also presented. Results indicated that our compiler development for
PAC DSP could gives an early estimation of architecture performance
so that refinements of architectures are possible with the software feed-
backs. Our experiences in designing the compiler support for heteroge-
neous VLIW DSP processors with irregular resource constraints may
benefit those who have interests in the compiler construction for the
similar architectures.

1 Introduction

Optimizing compiler development has always been the key factor of building
a productive environment for new embedded processors and SOC chips. Since
high-end embedded processor design is moving towards exploiting intensively
instruction level parallelism (ILP) and incorporating many advanced applica-
tion specific features, the complexity of compilers for these advanced processors
grows into immensity, which demands more long-term development efforts and
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extremely larger manpower than before. Hence, designing code generation sup-
ports and optimizations based on open-source compiler infrastructures instead of
developing everything from scratch are the alluring trend to shrink the delivery
time of the compiler for a newly designed processor.

ORC [1] is an open-source compiler infrastructure released from Intel, which
is the successor of Pro64 [2], the open-source compiler project for IA-64 by SGI
in May 2000. Since the Pro64 was originally evolved from the commercial SGI
MIPSPro compiler suite which had been developed by SGI as the production
compiler for a long period, ORC has incorporated most of the optimization
techniques of industry strength so far. Undoubtedly, it is expected to provide
as a well-stabilized base infrastructure for further research works and as the
satisfying foundation for any new target porting works. In addition, ORC/Pro64
has already achieved an excellent porting status for IA-64, enabling the compiler
to generate codes with good performance by utilizing numbers of EPIC/VLIW
architectural advantages. As modern VLIW DSP processors incorporate many
of the advanced architecture features likewise, it looks interesting and promising
to explore possible ORC employments for VLIW DSP processors.

In this paper, we study the issue of supporting ORC/Pro64 platforms for
VLIW DSP Processors. We present our experiences in the development of code
generation support and preliminary optimization design for a novel 32-bit VLIW
DSP processor designed with several new architectural features, such as distinct
partitioned register files with significant port restriction [3]. The target proces-
sor, named as Parallel Architecture Core (PAC) DSP [4], is being developed from
scratch by SOC Technology Center at Industrial Technology Research Institute
in Taiwan with several joint efforts of academic research works [5,6]. PAC DSP is
natively designed to meet the high-performance computing requirement of mul-
timedia and the low power consumption demand of mobile system. In the early
design stage in developing PAC DSP, several tuning iterations may be needed
between architecture and software designs by co-exploration, to attain the finest
result with satisfactory in the end. As a result, our work gave a preliminary
estimation of architecture performance so that refinements of architectures can
be established according to the software feedbacks. We proposed effective regis-
ter allocation policies in the compiler framework to support the specific register
file organizations in PAC architectures, the peephole optimization for the ar-
chitecture, and the essential modeling for the architecture to support loop-nest
optimizer. Moreover, we revealed evident steps in employing our development
works on top on the ORC infrastructure for PAC DSP, which is a series of our
research work to develop high-performance and low-power compiler toolkit for
VLIW DSP processors and SOC platforms [7,8]. This paper provides the feasible
information to develop essential compiler supports for heterogeneous clustered
VLIW architectures with port-restricted, distinct partitioned register file struc-
tures, which may benefit anyone who has interests in developing compilers for
novel VLIW DSP processors with similar architectures.

The remainder of this paper is organized as follows. Section 2 first introduces
the target architecture of PAC DSP. Section 3 then describes the compilation



challenges for the architecture. Next, the development of code generation and
preliminary optimizations for PAC DSP, including the specific design for the
architecture, are presented in Section 4. Experimental results of the early stage
evaluation are then illustrated in Section 5. Finally, Section 6 concludes this
paper.

2 An Insight into PAC DSP Architectures

PAC DSP is a 32bit, fixed-point, VLIW digital signal processor core which can
be used as a co-processor in a multi-core SOC platform (like TI’s OMAP plat-
form [9]) or employed as stand-alone solutions for any DSP system. The PAC
DSP originally features a clustered VLIW architecture which boosts scalability,
a feature-rich instruction set with SIMD operation support, a variable-length
instruction encoding scheme, large number of registers which are arranged as
innovative heterogeneous and distinct partitioned register file structures.

Being unlike symmetric architectures of most DSP processors available nowa-
days, the PAC DSP processor is constructed as a heterogeneous five-way is-
sue VLIW architecture, comprised of two integer ALUs (I-unit), two memory
load/store units (M-unit), and the program sequence control unit/scalar unit
(B-unit) which is mainly in charge of control flow instructions like branch and
jump. The M- and I- units are organized in pairs, and each pair contains exactly
one M-unit and one I-unit to form a cluster arrangement with associated reg-
ister files. It is apparent that each cluster is logically appropriate for one data
stream processing, and the current design of PAC DSP consists of two clusters
to support maximum workload capacity of two concurrent data stream. But the
scalability of the cluster design in PAC DSP could allow the processor to easily
involve more clusters to handle larger data processing workload demand. The B-
unit consists of two sub-components, the program sequence control unit, and the
scalar unit, due to the hierarchical decoder design for variable-length instruction
encoding in PAC DSP. The program sequence control unit, which primarily takes
charge of operations of control flow instructions. The scalar unit, which is capa-
ble of simple load/store and address arithmetic, is placed separatedly from data
stream processing clusters, with its own register file. The overall architecture is
illustrated in Fig. 1.

As shown in Fig. 1, registers in PAC DSP are organized into four distinct par-
titioned register files and placed as cluster structures, to reduce wire connections
between functional units and registers so that chip area and power consumption
may be decreased. The A, AC, and R register files are private registers, di-
rectly attached to and only accessible by the M-, I-, and B-unit, respectively;
D register files are shared within a cluster and can be used to communicate
across clusters; only the B-unit, being able to access all D registers, is capable
of executing such cross-copy operations to move data between clusters. The in-
ternal of the D register file is further designed to utilize the instructional port
switching technology in order that reducing more wire connections between the
shared functional units. The technology, being referred to the name as ‘ping-
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Fig. 1. The PAC DSP architecture illustration

pong register file structure’, is that dividing one register file into two banks, and
each bank can only be accessed mutual-exclusively by one functional unit at the
same time. The instruction bundle encoding contains the information of which
bank to be accessed for each functional unit so that the hardware can do port
switching between register file banks and functional units, to attain the purpose
of data sharing within a cluster. The advantage of such a ‘ping-pong register file
structure’ design is believed to consume less power due to its reduced read/write
ports [10] while retaining an effective way of data communication capability. The
illustration of the register file structure inside a data stream cluster is shown as
Fig. 2.
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3 Code Generation Issues with PAC DSP Architectures

The PAC DSP incorporates various leading edge architectural features, attempt-
ing to take more opportunities for both high-performance and low-power; nev-



ertheless, this design introduces interference between valid code generation, in-
struction scheduling, and register allocation than typical VLIW architectures.
Furthermore, these compilation issues impact the code optimizations between
performance, size, and power consumption.

One of the most significant issues is caused by the ‘ping-pong register file
structure’. As mentioned in Section 2, the PAC DSP features a heterogenous,
distinct partitioned register file design with irregular port access constraints
(referring to Fig. 1 and Fig. 2). Each cluster inside the architecture contains:
A and AC register files, which is directly connected to the M-unit and I-unit
respectively, and one D register files. Each D register file is divided into two
banks which share a single set of access ports connecting to M- and I- units; in
each VLIW instruction bundle, there is a bit-field that controls the access ports
to be switched between the D register banks and the two FUs in each cluster. In
other words, if the M-unit is accessing the first bank of the D register file, then
the I-unit can only access the second bank at the cycle, and vice versa; accesses
from two different FUs to the same D register bank are mutually exclusive in a
cycle. In addition, each FU in the PAC DSP has different set of instructions that
could be executed and each instruction has its own register access constraints. All
of these irregular designs make more challenges in generating effective code while
considering optimization issues. Conventional instruction scheduling policies and
register allocation strategies are seldom applicable to the code generation for the
PAC DSP architecture. For example, the short code sequence:

mov TN1, 1
mov TN2, 2
add TN3, TN1, TN2

moves two constants into two virtual registers, TN1 and TN2 and then takes an
arithmetic operation on them. While observing the first two instructions, these
two can be scheduled in parallel only if TN1 and TN2 are assigned registers
from distinct D register bank; if both are assigned to the same D register bank,
they can only be scheduled and issued sequentially. But ‘ping-pong register file
structure’ affects more than limiting the parallelism in the instruction scheduling.
While further observing the third instruction, the instance becomes complicated.
Since the last instruction in the code sequence refers TN1 and TN2, which are
the results of the first two instructions, TN1 and TN2 must be in the register
access range of the last instruction. Referring to the Fig. 3, without considering
other hazards, there must be a copy instruction insertion before the last instruc-
tion if allocating TN1 and TN2 to different D register banks for parallelizing
the first two instruction. Therefore, the advantage of parallelizing the first two
instruction is counteracted by the insertion of the additional copy instruction
and the generated code may be worse because the code size is larger than the
case of allocating both TN1 and TN2 to the same D register bank. But allo-
cating the same D register bank will always raise the register pressure of that
bank when the compiler process the register allocation, and spilling from dif-
ferent register file will make different cost in the PAC DSP architecture, these
cause more unpredictability of the combined effects of all code generation issues.



Currently, no past method can be used for PAC DSP to effectively produce the
finest result before finalizing the instruction scheduling and the register alloca-
tion of all codes, to the best of our knowledge; the development of new compiler
schemes to handle the issues caused by the innovative architecture of PAC DSP
is undoubtedly necessary.
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Fig. 3. The Illustration of interference caused by Ping-Pong register file structures.
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Fig. 4. An example of generating optimal scheduled codes across clusters

Another critical subject of how the register allocation interferences with both
the instruction scheduling and the code generation is issued by the implementa-
tion of data communication across clusters in the PAC DSP architecture. The
current version of PAC DSP require the code to explicitly issue a cross-cluster
copy instruction to complete the data communication between clusters. Although
the cross-cluster copy instruction is designed to be issued by the stand-alone
scalar unit without occupying a slot in the clusters, the additional instruction
insertion introduces additional data-dependency and data available latency for
any code which is scheduled and distributed into two clusters. Fig. 4 gives an
illustration of the two possible scheduling of code distributed on the two clus-
ters (considering only major constrainsts for easier understanding), which both
have their own benefit. As a result, it seems that the compiler for PAC DSP
needs a well evaluation before generates code distributed into two clusters to



avoid the penalty of cross-cluster communication disadvantaging the parallelism
of two clusters; however, the evaluation becomes more complicated and non-
deterministic with the interference of the ‘ping-pong register file structure’ issue.
This makes more challenges to construct an good compiler for the PAC DSP
architecture. The Table 1 summaries the current considered interference in PAC
DSP compiler design, but not limits to these.

Table 1. Major interferences in the code compilation for the PAC DSP architecture

Code Generation Code Scheduling Register Allocation
Instruction Selection Execution Unit Constraints Register Bank Selection
Insert Copy to Cluster Com-
munications

Register Access Constraints Register Pressure

Insert Copy to Generate
Valid Code

Instruction Latency Vary Spill Cost for Different
Register Bank

Hardware Hazard

Trade-Off between Performance, Code Size, and Power Consumption

4 Compiler Supports for PAC DSP Processors

In this section, we describe our development works of applying compiler supports
for the PAC DSP architecture. Our compiler prototype is based on the ORC in-
frastructure, which is constructed by modularized components that are ideal
for putting incremental development achievements and optimization improve-
ments on the compiler framework. Roughly speaking, the compilation procedure
by ORC starts with processing by the front-ends, generating an intermediate
representation (WHIRL IR) of the source program, and then feeding it in the
back-end. Since WHIRL IR has five levels of representation forms, the back-end
will invokes several components to perform a series of lowering processes and
optimizations on the WHIRL IR before transforming WHIRL IR into CGIR
which is a target specific low-level IR near the real instruction representation.
The developing components for optimizations could optionally be activated on
the WHIRL IR level include the inter-procedural analysis/optimizer, loop nest
optimizer, global optimizer. The loop nest optimizer, which is one of our priori-
tized working items, is based on a cost model of code generation in ISA of PAC
DSP. It is designed to perform optimizations related to locality, parallelization,
and loop transformation.

After the WHIRL level processing, the back-end will invoke the code gen-
erator to transform the WHIRL IR into the CGIR. Besides register allocation,
compilation modules may be activated to process the CGIR depending on the
code optimization level before emitting the final codes. Fig. 5 illustrates PAC
compiler phases, as it is extended based on our research innovations to include
several new optimization/analysis modules that may benefit more for PAC DSP
processors. These include probabilistic point-to analysis schemes, allocations dis-
tributed register clusters, low-power optimizations, and DSP-specific optimiza-
tions. Many of these new phases are based on our previous research innovations
and we are in the process of integrating those technologies into this infrastruc-
tures. These schemes include low power optimizations [11–13] advanced pointer
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Fig. 5. The refinement of compiler code generation phases for PAC DSP processors

analysis/optimizations [14,15], and DSP-specific optimizations [7]. Til now, our
development of compiler support for PAC DSP is still an on-going effort. In this
paper, we will first focus on the studies of supporting basic ORC infrastructures
for PAC VLIW DSP processors.

4.1 Code Generation with Target Information Extension

The Target Information Table (Targ info) in ORC is the most essential part to
support the code generation by providing the parameterized data about the ar-
chitecture and the ISA of the target processor. In this subsection, we present our
employment from IA64 to PAC DSP and the improvement of the Target Infor-
mation Table to support more flexible CGIR level processing and optimizations
for the PAC DSP architecture. The original Targ info is written in the constructs
of C language, and then they are processed by the generator utilities to generate
the actual source files of Targ info library. The machine parameters described in
the Targ info library are referred everywhere in the codes of almost all CGIR-
level components after the WHIRL-to-CGIR expansion phase; they are used to
abstract the target machine dependent information and are distinguished from
the compiler’s algorithms to reduce the effort of compiler construction when
changing the target machine.

To conform to the PAC architecture and minimize the complexity of in-
struction scheduling and register allocation, the same instruction for different
functional units is defined to be distinct in Targ info, i.e. the register alloca-
tion range can be determined by the instruction used so that the management
of the register file usage may be much clear for the implementation of register
allocators. As PAC DSP processor has two clusters with no shared register files,
some special purpose registers that are treated as always available to all opera-
tions (e.g., stack pointer and frame pointer) need to be defined in both clusters



and the code generation must implement the duplication of these register con-
tent to meet calling conventions. Moreover, to overcome the disadvantage of the
unit-binded instruction definition, we design new descriptions that can assist
the CGIR-level phases to choose the appropriate instruction in different units
to complete the same semantics. The hazard descriptions and handler functions
in original Targ info are also fully redesigned to manipulate multiple hazards of
multi-type for single instruction because the constraints of PAC DSP are more
complicated than the original IA-64 architecture.

The further adaptation of WHIRL-to-CGIR code generation functions in-
cludes designing the optimal instruction selection which depends on the op-
timization policies to produce preferable CGIR operations for the PAC DSP
architecture, and implementing the specific handler for the PAC DSP architec-
tural deficiency in generating correct code to follow C language conventions. For
example, the typical passing parameters to functions is through a register stack
or rotating registers; the PAC DSP, not supporting a shared register stack and
convenient register passing mechanisms, requires redesign of the parameter pass-
ing mechanism in the code generation part to employ a runtime memory stack
instead.

4.2 Register Allocation Scheme for PAC DSP Processors

The rationale of PAC’s highly-partitioned register file design is, of course, to
lower register file port counts in order to avoid the slow access speed and high
power consumption of an unified register file, though at the expense of an ir-
regular architecture. With this design, the phase-interaction between register
allocation and instruction scheduling becomes a critical problem, elevating this
classical phase ordering issue in compiler code generation. Not only does the
clustered design make register access across clusters an additional issue, but the
switched access nature of the ‘ping-pong’ register files makes the details of reg-
ister assignment and instruction scheduling dependent on each other, as shown
earlier in Section 3.

Our current proposed solution to this problem, is to add a new instruction
scheduling phase before register allocation/assignment by simulated annealing
(SA). The design is extended from Leupers’ work [16] and our initial implemen-
tation [8], using a hybrid instruction scheduling/cluster assignment algorithm to
iteratively approach the near-optimal result. The algorithm roughly operates by
first generating a random cluster partitioning of instructions; a modified List-
Scheduler (LS) then schedules the partitioned instructions, inserting/managing
cross cluster communications along the way.

The following iterations then make a random change to the partitioning state,
and re-run the LS to schedule again. The LS returns the obtained schedule length
of the instructions as the ‘energy’ value used in an usual simulated annealing
optimization process, representing an evaluation of the current partitioning state.
Depending on that improvement is gained or not, the random change may be
retained or discarded. This process is iterated until the energy/evaluation falls to



be under some thresholds, where we are confident that the obtained optimization
state is of sufficient quality.

Hybrid Instruction Scheduling/Register File Assignment
by Simulated Annealing

Input: n operations to be scheduled
Output: Schedule of the n instructions and a register file assignment (RFA) map:

V R: set of all virtual registers, RF : set of register files
RFA map = {(v1, f1), (v2, f2), ...} vi ∈ V R, fi ∈ RF

1. Choose a schematic register file placement(e.g. 1 cluster, 2 clusters, ...).
2. Make initial register file assignments: randomly assign each

virtual register to any of the wanted register files, and record in RFA map.
3. Given RFA map, run PAC Scheduler,

and set sched len to the computed total schedule length in cycles.
4. Set initial values for:

threshold: threshold value for the simulated annealing process.
energy: initial energy, larger than threshold.
p test: a probability test value p test (0 < p test < 1).

5. Repeat the following steps while energy > threshold:
5a. Make change in RFA map:

randomly choose a virtual register, and assign it to a different register file.
optionally change the schematic register file placement.

5b. With the new RFA assignment change, run PAC Scheduler again,
and set new sched len to the new count of total schedule length.

5c. Adjust energy, sched len, and RFA map by the following rules:
If new sched len < sched len then

decrease energy, set sched len to new sched len,
and keep the new RFA changes made in step 5a.

If new sched len ≥ sched len, get random number 0 ≤ R ≤ 1:
If R > p test then

decrease energy, set sched len to new sched len,
and keep the changes made in step 5a.

If R ≤ p test then
increase energy and revert changes made in step 5a.

6. Optionally choose another schematic register file placement,
and repeat steps 2–5 to select the better results.

7. Retain the final schedule and RFA map as the output results.

Fig. 6. The high-level simulated annealing algorithm

Adapting this simulated annealing solution for the PAC DSP involves changes
in the formulation of optimized state: our search is for register file assignments
in the chosen schematic placement ( as the search space ) for virtual registers,
instead of the original bi-partitioning of the instructions. The above algorithm in
Fig. 6 is the high-level simulated annealing algorithm. it controls the scheduler,
which does fine-grain sequencing of operations, and returns the schedule length
as the evaluation of the current optimization state. The two optional procedures
in the algorithm could let the compiler dynamically control the iterative scale
and limit the register file usage to coordinate with other optimizations; they may
also improve the overall register allocation speed.

Fig. 7 illustrates more details of the scheduler algorithms. In general, the
overall operation of the algorithm is to proceed through the state space, making
changes according to the feedback obtained from the LS. The assignment of reg-
ister files will improve progressively throughout the SA iterations, with respect
to the schedulable length of the instructions. A final register allocator is then
run to allocate and assign hardware registers, which is guided by the register file
assignments (RFA map).



The PAC Scheduler Algorithm

Input: ReadyList of operations to be scheduled
RFA map, in the form of a function RegisterFile : V R → RF

Output: Schedule of the n instructions, and the schedule length

While ReadyList is not empty:
Select operation Op from ReadyList
Find earliest cycle Cycle we can schedule Op
While Op is not scheduled:

Examine available resources in Cycle, and:
For each register operand oi of Op:

If no resources available to access RegisterFile(oi):
Enumerate possible copy sequences to transfer oi to an accessible register file
For each copy sequence cpseq

If cpseq is schedulable in prior cycles:
Feasible(cpseq) = true

If for each register operand oi of Op we have resources to access RegisterFile(oi),
or we have some c such that Feasible(c):

Schedule Op into Cycle, advance ReadyList
Break from inner loop

else
Increment Cycle

Return length of schedule

Fig. 7. The scheduler/evaluation algorithm

4.3 Peephole Optimizer for PAC DSP Processors

The Extended Block Optimizer (EBO) is a peephole optimizer which performs
some simple optimizations on the scope of extended basic blocks at CGIR level.
Extended blocks are constructed by choosing a sequence of blocks that may con-
tains branch-out, but can only be executed from the start of the first block in
the sequence. Instructions are processed in the forward direction through each
block and the block’s successor list. New blocks are processed until a branch-
to label is encountered, at which time processing backs up and attempts to
take a different path down another successor list. The entry points to invoke
EBO are, respectively, performing optimizations right after instruction transla-
tion, during unrolling and pipelining, after unrolling and pipelining, performing
peephole optimizations on a region, and after register assignment. EBO performs
optimizations such as forward propagation, common expression elimination, con-
stant folding, dead code elimination and a host of special case transformations
that are unique to the architecture of a particular machine. By doing these peep-
hole optimizations, we can improve the performance and the code quality of the
program.

In our case, there are still many situations that should be taken as consider-
ation to rewrite routine as long as the implementation has something to do with
machine-dependent architecture. Hence, our work not only does the refinement
of basic peephole optimizations, but also intends to employ some techniques for
supporting PAC DSP architecture. Table 2 shows the the designs for EBO on
ORC for IA64 and on PAC DSP compiler, respectively.

Both compilers have implemented the basic peephole optimizations. How-
ever, due to that the PAC DSP uses the irregular register files and clustered
architectures, illegal propagation may occur on several TNs (Temporary Name)
which reside in different register files. Hence, as applying such basic peephole
optimizations for PAC DSP, the major problem is that we cannot take all the



Table 2. EBO Refinement from ORC to PACDSP Compiler

ORC for PAC DSP
EBO optimization

IA64 compiler

Forward Propagation × ×
Common Expression Elimination × ×
Constant Folding × ×
Dead Code Elimination × ×
Resolve Conditional Branch × -
Condition Redundant × -
Merge Memory Offset - ×
Compound Operation Conversion × ×
Subword Calculation - ×
Dual Operation - ×

TNs as registers in an unified register file to analyze their relationship. Among
those basic optimizations (forward propagation, common expression elimina-
tion, constant folding, and dead code elimination), constant folding and dead
code elimination are less affected by the impact of restricted register accessing
and instruction inserting for valid code. But forward propagation and common
expression elimination may highly relate to the speciality of the PAC DSP ar-
chitecture, and require the analysis of the cluster/ping-pong information. For
example, propagation between different clusters should be carefully marked as
the may-illegal propagation of data flow. We setup some flags for a TN to han-
dle such condition; each time we find a pair of a replaced TN and the TN being
propagated, then store the cluster/ping-pong relationships as flags. Before the in-
struction scheduling, the flags can provide the information whether EBO should
take propagation related optimizations for the extended basic blocks or not.

For taking more advantage of the architecture, we propose further machine-
dependent optimizations on EBO phases of the PAC DSP compiler: they include
Merge Memory Offset, Subword Calculation, and Dual Load/Store Operation.
Merge Memory Offset is the one which utilizes the convenience of load/store
instructions. Rather than wasting two instructions to do an actual load/store
operation after the computation of the whole address of base+offset, we calculate
the final address of memory and access data just by one instruction.

In addition, the ISA of PAC DSP includes a rich and general set of subword
instructions to accelerate the process of lower precision operations. A subword
in PAC DSP can be 8 or 16 bits long so that quad or dual subwords can be
accommodated in a single register, which is 32 bits long. The challenge is to find
a set of data-parallel computations that operate on lower precision data and map
them onto packed or unpacked — PAC DSP provides instructions that operate
on two 16-bit data which reside in two registers — subword instructions. A basic
technique is to divide a loop into multiple loops with lower precision data. The
first thing is that we need to extend the TN structure, e.g., to add a new field
for data precision, so that we have the ability to determine which TNs, and thus
operations, are primitives for subword operations. Moreover, a phase for packing
subword operations into one compound instruction before the process of register
allocation is required, so as to integrate subword optimizations into PAC DSP
Compiler.

Finally, Dual LOAD/STORE instructions are powerful operations for access-
ing data from different memory address and then combine/separate the values



into/from two 32-bit registers simultaneously. When processing optimizations of
dual operations, we need to reference the precision field mentioned previously,
and have to examine the operand width of the processing data supposed to be.
Thus, we are able to select the most suitable instructions for dual load/store
operations.

4.4 Loop Optimization Phase for PAC DSP Processors

The loop-nest optimization (LNO) phase development inherits the traditional
loop transformation techniques, for example, fusion, fission, tiling, unrolling,
and unimodular transformation. The purposes of transformations are to make
the optimized forms suitable with machine features, code generation, and low
level optimizations. Three target-specific models, resource, latency, and register
pressure are constructed for PAC DSP to estimate the best unrolling factor and
tiling size for candidate loops at WHIRL-level. Depending on the issue rate,
memory units and the amount of ALU in the PAC DSP architecture, we first
determine the essential information, as Table 3 to model the basic processor
parameters. By resource models, LNO estimates resource usages in each iteration
of a loop from mapping tables about the equivalence between WHIRL operations
and PAC DSP instructions.

issue rate = 4.5; We describe issue rate 4.5, because there are 2 ld/st
num mem units = 2.5; units, 2 ALU units and one scalar unit. And the scalar

unit is used mainly for control, so it is estimated only
0.5. For the same reason, we estimated memory unit at
2.5.

Table 3. Basic parameters to model PAC DSP processor

Next, in the estimating latency constraint phase, LNO builds a dependence
graph for the loops in order to generate codes that are suitable for software
pipelining. This graph can help calculate total latencies by observing each load
and each store. For PAC DSP architectures, new modeling of integer operations is
designed instead of the original ORC floating point considerations, to calculate
the more accurate operation latencies. The latency value is then used in the
scheduling of software pipelining optionally enabled in the later phase to optimize
code for performance.

Finally, register pressure estimation policies are elaborated to well formula
the effects of the irregular register file structures in PAC DSP. The clustered ar-
chitecture characteristics of PAC DSP are also considered; the register pressure
for a single cluster neglecting the possible inter-cluster interference is appraised
at the initial. If the register pressure of any one cluster is too high, the interfer-
ence of the two clusters are deliberated, to count the possible register resource
usage and communication penalty while accessing cross-cluster content. There-
fore, a cost model adapting for PAC cluster feature was proposed in Fig. 8. It
showed that register pressure estimation affects the decision of loop transforma-
tion.



cycle = cycle_estimation(one cluster resource)
if( (RA+RD/2)>ERA && (RAC+RD/2)>ERAC )

do no fission for candidate loop // can be scheduled in one cluster
else

if( (2*RA+RD)>ERA && (2*RAC+RD)>ERAC )
//cannot be scheduled in one cluster, so extra overhead should be considered.
new cycle = cycle_estimation(two cluster resources) * r

if(new cycle > cycle)
do fission

else
do no fission for candidate loop

else
do fission

RA= number of A register in one cluster
RD= number of D register in one cluster
RAC= number of AC register in one cluster
ERA= estimated register count for addressing usage
ERAC= estimated register count for data usage
cycle= estimated executing cycles in one cluster
new cycle= estimated executing cycles in two clusters
r= cluster interference coefficient

Fig. 8. the register pressure cost model for loop transformation

5 Experimental Results

Preliminary experiments were done with the DSPstone benchmarks [17]. Since
the PAC DSP compiler is still in progress, we only evaluated some stable opti-
mization combinations for early stage performance evaluations our designs. All
benchmark programs are compiled with three types of option combinations and
disabling all other optimizations; they are the traditional-approach-based reg-
ister allocation (TRA), the traditional-approach-based register allocation plus
LNO and EBO (LNO+EBO), and the register allocation using the simulated-
annealing approach (SARA), respectively. The TRA, which is a modification of
the original ORC register allocation that assumes PAC DSP has only one unified
register file containing all registers and inserts necessary codes to make register
allocation result executable, is treated as the base reference in the compari-
son. Fig. 9 compares the speedup of DSP benchmarks on the later two options,
LNO+EBO and SARA, with the numbers of -O0 (with the traditional approach
based register allocation). As shown in Fig. 9, the performance gain for PAC
DSP varies widely across different benchmarks with the average 1.78 speedup
for LNO+EBO and the average 1.58 speedup for SARA. Though the integrated
test of LNO+EBO plus SARA has not yet stable enough to exhibit the overall
advantage, the results shows that our approaches in LNO, EBO, and register al-
location could achieve significant performance improvement for code compilation
in most cases. Also, the simulated-annealing approach gives a locally exhaustive
exploration on how the register usage affects PAC DSP and investigate the flaws
of the architecture. Currently, there is a fateful hazard among any data that has
dependency across different functional units and need 3 cycle delay slots. This
hazard makes a contradictive impact on exploiting ILP on all functional units be-
cause the increase of ILP will often introduce more hazards, causing some of the
benchmark codes, like biquad one section, less affected by our optimizations. By
our evaluations, several suggestions have also been proposed to the DSP design
team, to enhance the architecture support for better compiler code generation.
The revision process is on-going for the next generation of PAC DSP.
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Fig. 9. The Speedup comparison while activating various optimization options

6 Conclusion

In this paper we present the design and implementation of compilers for PAC
DSP – a novel high-end DSP processor with clustered architecture design and
distinct partitioned register files. The compiler was based on the ORC infrastruc-
ture, consisting of PAC DSP specific code generation schemes, register allocation,
peephole optimizer, and loop-nested optimizer. We demonstrated the viability
of our approaches to PAC DSP via several preliminary experiments which are
done with the PAC DSP prototype. By means of the experiences of the compiler
design for the PAC DSP, the effects of various compiler technologies upon the
novel architecture design could be validated. We believe that the experiences of
employing the ORC infrastructures could also be taken to apply to other simi-
lar VLIW DSP processors, providing the qualified code generation beyond the
hand-coded assembly.

Since some drawbacks of the first generation of PAC DSP architecture were
revealed by the evaluation, we are currently referring to the experiences and
reforming the development of compilers for the next generation of PAC DSP
architecture, which will further extend our current works. Moreover, additional
optimization phases and refinements of the code generation have been develop-
ing and may be integrated in the future to get more opportunities of compiler
advantages on PAC DSP architectures.
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