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Abstract. Information gathered by the existing pointer analysis techniques can
be classified as must aliases or definitely-points-to relationships, which hold for
all executions, and may aliases or possibly-points-to relationships, which might
hold for some executions. Such information does not provide quantitative de-
scriptions to tell how likely the conditions will hold for the executions, which
are needed for modern compiler optimizations, and thus has hindered compilers
from more aggressive optimizations. This paper addresses this issue by propos-
ing a probabilistic points-to analysis technique to compute the probability of each
points-to relationship. Initial experiments are done by incorporating the proba-
bilistic data flow analysis algorithm into SUIF and MachSUIF, and preliminary
experimental results show the probability distributions of points-to relationships
in several benchmark programs. This work presents a major enhancement for
pointer analysis to keep up with modern compiler optimizations.

1 Introduction

There have been considerable efforts on pointer analysis by researchers [1, 4, 6, 7, 8,
12, 17, 18, 20, 22, 24, 25]. They have proposed various algorithms to compute either
aliases or points-to relationships at program points. They categorize aliases or points-to
relationships into two classes: must aliases or definitely-points-to relationships, which
hold for all executions, and may aliases or possibly-points-to relationships, which might
hold for some executions. However, the information gathered by these algorithms based
on this classification does not provide the quantitative descriptions needed for modern
compiler optimizations, e.g. data speculation, data prefetching, etc., and thus has hin-
dered compilers from more aggressive optimizations. Neither may aliases nor possibly-
points-to relationships can tell how likely the conditions will hold for the executions,
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and consequently compilers have to make a conservative guess and assume the con-
ditions hold for all executions. This paper addresses this issue by proposing a proba-
bilistic points-to analysis approach to give a quantitative description for each points-to
relationship to represent the probability that it holds.

Useful optimizations and transformations can be performed if it is known that cer-
tain alias or points-to relationships hold with high or low probabilities. One application
is to guide data speculation on advanced architectures. For example, IA-64 [5], which
relies on static scheduling, may provide hardware support for speculative motion of
loads across possibly aliasing stores. This allows the loads to be executed early but with
potentially incorrect values. The hardware in conjunction with software provides a re-
covery mechanism to recover from any mis-speculation. This feature allows a compiler
to generate optimal code by breaking memory dependences, which are often on perfor-
mance critical paths. However, a mis-speculation on such architecture typically incurs
a large recovery penalty. Therefore, to properly guide data speculation, it is important
for a compiler to derive the aliasing probability for a pair of data speculation candidates
(i.e. a load and a store) and compare an amortized recovery cost with the benefit of
a ‘good’ speculation. A probabilistic memory disambiguation approach was proposed
for numeric applications [11]. However, the problem remains open for pointer-induced
memory references.

foo(int a, int b, int c) {
int *p; ...
p = ..
if( a < b ) { p = &c; }
st c = ..;
ld = *p

}

Above is an example of using aliasing probability to guide data speculation. Before
the if-clause, p does not point to c, but it does so in the clause. After the if-clause, a store
to c is followed by a load from �p. Assume that the load is on a critical path, and hence
a compiler wants to schedule the load before the store. However, since �p may alias
with c, a compiler would not be able to do so without a support like data speculation
(or alternatively some code duplication). The compiler must be able to estimate the
aliasing probability between the load and the store and hence how often p points to c.
If the amortized recovery cost outweighs the benefit of the shortened critical path after
moving the load across the store, this data speculation is unprofitable and should not be
performed.

Another application will be optimizations for pointer-based objects on distributed
shared memory parallel machines. With affinity analysis [3] and data distribution anal-
ysis [13], the advanced analyzer will be able to know or estimate which processor an
object is resided in. For task allocations, the optimizer will attempt to assign the proces-
sor that owns most of the objects for that task for executions. For programs employing
pointer usages, a pointer will be pointing to a set of objects with may-aliases. Therefore,
the ability for the analyzer to be able to tell the probability of the aliasing objects for
a pointer reference will help the analyzer calculate the amortized amount of objects a
processor owns for a task execution.

Probabilistic points-to analysis can be applied to compiler optimizations with mem-
ory hierarchies as well. Suppose a pointer, p, points to a set of may-aliasing objects.
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With the limited amount of the fast memory and working set, only the objects among
the aliased objects with high probabilities should be brought into the faster memory of
the memory hierarchies. In that case, we should use the information gathered during the
probabilistic points-to analysis to have the one with higher probability. In general, the
probabilistic points-to information help the compilers to estimate an amortized cost for
object placements among memory hierarchies.

This paper proposes a probabilistic points-to analysis approach to address these
open issues by giving quantitative descriptions which represent the probabilities that
points-to relationships might hold. A probabilistic data flow analysis framework is pre-
sented for the probabilistic points-to analysis. In this framework, transfer functions are
first computed to identify the probabilities each points-to relationship will be generated
and preserved respectively, and then the probabilities of each points-to relationship that
might hold at program points will be computed from the transfer functions. This work,
to the authors’ best knowledge, is the first algorithm for probabilistic points-to analysis.
Initial experiments are done by incorporating the intraprocedural probabilistic points-to
analysis algorithm into SUIF [9] and MachSUIF [21]. Preliminary experimental results
reporting the probability distributions of probabilistic points-to relationships will be
given as well.

2 Probabilistic Points-to Analysis

2.1 Problem Specifications

The goal of probabilistic points-to analysis is to compute at every program point the
probability of each points-to relationship that might hold. For each points-to relation-
ship, say that p points to v, denoted as a tuple (p, v), it computes the probability that
pointer p points to v at every program point during the program execution. In other
words, a probabilistic points-to relationship (p, v, P ) is computed for each points-to
relationship (p, v) at every program point, where P is the probability that (p, v) holds.
When P is equal to 1, the points-to relationship (p, v) always holds every time the pro-
gram point is visited. On the other hand, if P is equal to 0, then p will never points to v
at this program point. Consequently, if P is between 0 and 1, p will point to v at some
instances when the program control reaches the program point, while p will not point
to v at other instances.

The Domain The probability P of each probabilistic points-to relationship (p, v, P )
at a program point s can be defined as follows:

P =
E(s, (p, v))

E(s)

where E(s) is the number of times s is expected to be visited during program execution
and E(s, (p, v)) denotes the number of times the points-to relationship (p, v) holds at
s [15]. Consequently, all the possible values of P for each probabilistic points-to rela-
tionship will be the real numbers ranging from 0 to 1. In addition, before the probability
P is computed, it is set as ⊥, and hence the domain of P will be

Domain(P ) = {p | p ∈ [0, 1] ∨ p = ⊥}
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Program Representations Programs will be represented by control flow graphs
(CFGs) whose edges are labeled with a static assigned execution frequency [15, 23]
or an actual frequency from profiling. An empty node will be added at the entry of ev-
ery loop as the header node, while an empty node will be augmented as the header node
and an empty node as the join node.

Meet Operator � Although the domain of the probabilistic points-to analysis is not a
semilattice, the notion of meet operations is used to represent the actions of merging val-
ues at join nodes. Suppose the probabilities that the points-to relationship (p, v) holds at
the program point right after B1 and B2 in the control flow graph shown in Figure 1 are
P1 and P2, respectively. In other words, (p, v, P1) ∈ OUTB1 and (p, v, P2) ∈ OUTB2 ,
where OUTB1 and OUTB2 are the sets of probabilistic points-to relationships at the pro-
gram points right after B1 and B2. Then the possibility P that the points-to relationship
(p, v) holds at the join node will be

P =
P1 · E(B1) + P2 · E(B2)

E(B1) + E(B2)

where E(B1) and E(B2) are the numbers of times B1 and B2 are expected to be
visited during program execution. Consequently, the probabilistic points-to relationship
(p, v, P ) at the join node can be computed by the following the meet operation:

(p, v, P ) = E(B1) · (p, v, P1) � E(B2) · (p, v, P2) = (p, v,
P1 · E(B1) + P2 · E(B2)

E(B1) + E(B2)
)

where the scalar multiplication operator ‘·’ over probabilistic points-to relationships is
defined as

E(B1) · (p, v, P1)
def
= (p, v, E(B1) · P1)

Furthermore, the meet operation on OUTB1 and OUTB2 can be defined:

OUTB1 � OUTB2 = {E(B1) · (p, v, P1) � E(B2) · (p, v, P2) |
(p, v, P1) ∈ OUTB1 ∧ (p, v, P2) ∈ OUTB2}

B21B

Join

⊥ � ⊥ = ⊥
P1 � ⊥ = ⊥
⊥ � P2 = ⊥
P1 � P2 = P ≡ P1·E(B1)+P2·E(B2)

E(B1)+E(B2)

Fig. 1. Meet Operation Fig. 2. Rules for �
The meet operator� merges the possibilities of each probabilistic points-to relation-

ship of different inedges at a join node. If the possibilities of any incoming probabilistic
points-to relationships are unknown, i.e. ⊥, the possibility P at the join node will be
computed following the rules for � operator shown in Figure 2.

2.2 Approach

The probabilistic points-to analysis can be formulated as a data flow framework [4, 10,
14]. The data flow framework for the probabilistic points-to analysis includes transfer
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functions, which formulate the effect of statements on probabilistic points-to relation-
ships. Suppose the sets of probabilistic points-to relationships at the program points
right before and after S are INS and OUTS , respectively. Then the effect of S on prob-
abilistic points-to relationships can be represented by the transfer function FS :

OUTS = FS (INS)

Transfer Functions For every statement S, a transfer function will be computed
for each points-to relationship. Therefore, a transfer function 〈p, v, Pgen(S), Pprv(S)〉
will be computed at S for the points-to relationship (p, v), where Pgen(S) and Pprv(S)
are defined as follows:

– Pgen(S) ≡ probability that (p, v) will be generated at S.
– Pprv(S) ≡ probability that (p, v) will be preserved at S.

where Pgen(S) + Pprv(S) ≤ 1. Consequently, the transfer function FS of statement S
consists of the transfer functions for all probabilistic points-to relationships, i.e.

FS = {〈p, v, Pgen(S), Pprv(S)〉 | (p, v, Pin(S)) ∈ INS}
Suppose the probability that the points-to relationship (p, v) holds at the program

point before S is Pin(S), i.e. (p, v, Pin(S)) ∈ INS . Then the probabilistic points-to
relationship (p, v, Pout(S)) holds at the program point after S will be

(p, v, Pout(S)) = FS ((p, v, Pin(S))) = (p, v, Pgen(S) + Pin(S) · Pprv(S))

where 〈p, v, Pgen(S), Pprv(S)〉 ∈ FS .

Default Transfer Functions The transfer functions that are computed in this paper
model how the probabilistic points-to relationships are modified by statements. When a
probabilistic points-to relationship, say (p, v, P ), will not be modified by a statement
S, the transfer function FS of the statement S will not include the transfer function
〈p, v, 0, 1〉 for (p, v, P ). Instead, 〈p, v, 0, 1〉 will be considered as a default transfer
function of S, and hence will not be explicitly listed. For the rest of the paper, when
the transfer functions for any probabilistic points-to relationships are not specified, the
default transfer functions will be applied.

Composition of Transfer Functions The composition of transfer functions FS1 and
FS2 of two contiguous statements S1; S2 can be denoted as FS1 ◦FS2 and is defined as

FS1 ◦ FS2 (x)
def
= FS2( FS1 (x))

Suppose 〈p, v, Pgen(S1), Pprv(S1)〉 and 〈p, v, Pgen(S2), Pprv(S2)〉 are the trans-
fer functions of two contiguous statement S1; S2 for the points-to relationship
(p, v), respectively. That is, 〈p, v, Pgen(S1), Pprv(S1)〉 ∈ FS1 and 〈p, v, Pgen(S2),
Pprv(S2)〉 ∈ FS2 . Then the transfer function of S1; S2 for the points-to relationship
(p, v) can be computed by the following formula

Pgen(S1; S2) = Pgen(S1) · Pprv(S2) + Pgen(S2)

Pprv(S1; S2) = Pprv(S1) · Pprv(S2)

and consequently 〈p, v, Pgen(S1; S2), Pprv(S1; S2)〉 ∈ FS1; S2 .
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Meet Operator � of Transfer Functions Given transfer functions FB1 and FB2 , the
merge of FB1 and FB2 is the transfer function E(B1) · FB1 � E(B2) · FB2 which is
defined by

(E(B1) · FB1 � E(B2) · FB2)(x)
def
= E(B1) · FB1(x) � E(B2) · FB2(x)

Therefore, the corresponding transfer functions for each probabilistic points-to rela-
tionship in FB1 and FB2 will be merged. Suppose the transfer functions of FB1 and FB2

for the probabilistic points-to relationship (p, v, P ) are 〈p, v, Pgen(B1), Pprv(B1)〉
and 〈p, v, Pgen(B2), Pprv(B2)〉, respectively. Then the merge of the transfer func-
tions FB1 and FB2 for the probabilistic points-to relationship (p, v, P ) will be defined
as follows:

Pgen(E(B1) · FB1 � E(B2) · FB2) =
Pgen(B1) · E(B1) + Pgen(B2) · E(B2)

E(B1) + E(B2)

Pprv(E(B1) · FB1 � E(B2) · FB2) =
Pprv(B1) · E(B1) + Pprv(B2) · E(B2)

E(B1) + E(B2)

and hence 〈p, v, Pgen(E(B1) · FB1 �E(B2) ·FB2), Pprv(E(B1) ·FB1 �E(B2) ·FB2)〉 ∈
E(B1) · FB1 � E(B2) · FB2 .

Comparison with Bitvector Data Flow Framework The data flow analysis frame-
work proposed in this paper can be called as the probabilistic data flow analysis frame-
work, which is adapted from the bitvector data flow analysis framework [14]. As a
bitwise transfer function f is computed for every bit of bitvectors with the bitvectors
GENf and THRUf in the bitvector data flow analysis framework, where f is defined by
bitwise logical operations:

f(x) = GENf ∨ (x ∧ THRUf )

a probabilistic transfer function is computed for every points-to relationship in proba-
bilistic data flow analysis framework. Therefore, the relationships between the transfer
functions of these two data flow analysis frameworks are listed in the following table:

Pgen Pprv

GENf 1 0

THRUf 0 1

The main difference is for every condition the probabilistic data flow analysis frame-
work computes a real number ranging from 0 to 1 as the possibility that the condition
might hold, whereas the bitvector data flow analysis framework computes a boolean
number either true or false to indicate whether the condition might hold or not.

Similar to the composition of probabilistic transfer functions defined in Section 2.2,
the composition f ◦ g of bitvector transfer functions f and g is defined by

f ◦ g (x)
def
= g( f (x))

while the computation of f ◦ g can be computed by

GENf◦g = (GENf ∧ THRUg) ∨ GENg

THRUf◦g = THRUf ∧ THRUg
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2.3 Algorithm

The algorithm is adapted from the elimination methods [14, 19]. It performs proba-
bilistic points-to analysis in two phases:

1. Regions are reduced to abstract CFG nodes repeatedly to obtain a sequence of
abstract CFGs (ACFGs) [14]. Their transfer function will be computed during the
transformation process and then annotated to the corresponding ACFG nodes.

2. Traverse the sequence of ACFGs to compute the probabilistic points-to relation-
ships at every region using the transfer functions computed in the first phase.

Basic Pointer Assignment Statements Basic pointer assignment statements can be
classified into four types: address-of assignment, copy assignment, load assignment,
and store assignment [18]. For every basic pointer assignment of the first three types, i.e.
p = · · ·, it first kills all the points-to relationships of the pointer p, before generating any
new points-to relationships. Therefore, it will be semantically equivalent if it is preceded
immediately by the statement p = nil. Similarly, it will be semantically equivalent if
any store assignment �p = q is preceded immediately by the statement �p = nil.
Therefore, programs will be normalized such that each basic pointer assignment of the
first three types p = · · · will be preceded by a p = nil while each store assignment
�p = q will be preceded by a �p = nil. Consequently, in addition to the transfer
functions of the four basic types of pointer assignment statements, transfer functions of
statement types p = nil and �p = q will be computed as well.

• S : p = nil Statement S : p = nil kills all the points-to relationships of p. Therefore,
the transfer function FS of S is

FS = {〈p, �, 0, 0〉}
where � is a wildcard character that means that p points to every variable.

• Address-of Assignment S : p = &q Statement S : p = &q generates a points-to
relationship (p, q). Therefore, the transfer function FS of S for (p, q) will be

FS = {〈p, q, 1, 0〉}
while the transfer functions for other points-to relationships are default transfer func-

tions 〈¬p, �, 0, 1〉, where ¬p represents the pointers other than p, and consequently are
not listed explicitly.

• Copy Assignment S : p = q The copy assignment S : p = q will generate new
points-to relationships of p by copying all the points-to relationships of q. Consequently,
the transfer function FS of S will be

FS = {〈p, v, P, 0〉 | (q, v, P ) ∈ INS}

• Load Assignment S : p = �q

FS = {〈p, v,
∑

x

P x
1 · P x

2 , 0〉 | ∀x (q, x, P x
1 ) ∈ INS ∧ (x, v, P x

2 ) ∈ INS}
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• S : �p = nil

FS = {〈x, �, 0, 1 − P 〉 | (p, x, P ) ∈ INS}

• Store Assignment S : �p = q

FS = {〈x, v, P1 · P2, 0〉 | (p, x, P1) ∈ INS ∧ (q, v, P2) ∈ INS}

Sequence of ACFG Nodes S1; S2; · · · ; Sn

FS1; S2; ···; Sn = FS1 ◦ FS2 ◦ · · · ◦ FSn

FThen

t
p f

Header

Join

FElseThen Else

p

F IfThenElse IfThenElse

FBody Body

Header

.B

A

C

.

.pt pf F While While

.A

C.
(a) if-then-else Region (b) ACFG Node (c) while Region (d) ACFG Node

Fig. 3. Computing Transfer Functions of if-then-else and while Regions

if-then-else Construct The merge of the Then and Else branches summarizes all
paths through the if-then-else construct shown in Figure 3(a) and (b).

FIfThenElse = pt · FThen � pf · FE lse

where FThen and FE lse are the transfer functions of Then and Else branches respec-
tively while pt and pf are the branching probabilities of Then and Else branches respec-
tively and pt + pf = 1.

Suppose 〈p, v, Pgen(Then), Pprv(Then)〉 and 〈p, v, Pgen(Else), Pprv(Else)〉 are
the transfer functions for the points-to relationship (p, v) at Then and Else branches, re-
spectively. Then the transfer function for (p, v) of the if-then-else construct
will be 〈p, v, Pgen(IfThenElse), Pprv(IfThenElse)〉, where Pgen(IfThenElse) and
Pprv(IfThenElse) can be computed by the follow equations:

Pgen(IfThenElse) = pt · Pgen(Then) + pf · Pgen(Else)

Pprv(IfThenElse) = pt · Pprv(Then) + pf · Pprv(Else)
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Once the transfer function of an if-then-else construct is computed at the first phase,
the sets of probabilistic points-to relationships at program points within the if-then-else
region can be computed:

OUTIfThenElse = FIfThenElse(INIfThenElse)

INThen = INIfThenElse

INE lse = INIfThenElse

while Loops Figure 3(c) and (d) depicts the process of summarizing the region of a
while loop at the first phase. Since a loop can iterate an arbitrary number of times, its
transfer function can be defined by the following equation:

FWhile =

∞�

i=0

(pf · pi
t) · (FBody)

i

where FBody is the transfer function of the loop body, while the probability of entering
the loop from the header is pt and the probability of leaving the loop is pf .

Although the above equation merges an infinite number of transfer functions, it can
be easily reduced into very simple expressions. Suppose the transfer function of the loop
body Body for each probabilistic points-to relationship, say (p, v, P ), is 〈p, v, Pg(B),
Pp(B)〉, then transfer function 〈p, v, Pgen(While), Pprv(While)〉 ∈ FWhile of the loop
for the points-to relationship (p, v) can be computed:

Pprv(While) = pf + pt · Pp(B) · pf + (pt · Pp(B))2 · pf + · · · + (pt · Pp(B))n · pf + · · ·
= pf (1 + pt · Pp(B) + (pt · Pp(B))2 + · · · + (pt · Pp(B))n + · · ·)
= pf / (1 − pt · Pp(B))

Pgen(While) = pt · Pg(B) · (pf + pt · Pp(B) · pf + (pt · Pp(B))2 · pf + · · ·) +

p2
t · Pg(B) · (pf + pt · Pp(B) · pf + (pt · Pp(B))2 · pf + · · ·) + · · · +

pn
t · Pg(B) · (pf + pt · Pp(B) · pf + (pt · Pp(B))2 · pf + · · ·) + · · ·

= Pg(B) · Pprv(While) · (pt + p2
t + · · · + pn

t + · · ·)
= pt · Pg(B) · Pprv(While) / (1 − pt)

= pt · Pg(B) · pf / (1 − pt · Pp(B)) · (1 − pt)

= pt · Pg(B) / (1 − pt · Pp(B))

The first equation computes Pprv(While) as the summation of the probabilities that
(p, v) is preserved at the loop exit after zero, one, two, · · · iterations. The second
equation specifies that (p, v) will be generated by the loop when it is generated at
the first iteration and preserved hereafter or it is generated at the second iteration and
preserved hereafter, and so on. It also can be proved that the ranges of Pprv(While) and
Pgen(While) fall between 0 and 1.

Once the transfer function of a while loop is computed at the first phase, the sets
of probabilistic points-to relationships at program points within the while region can be
computed

OUTWhile = FWhile(INWhile)

INBody = FHeader(INWhile)
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where the function FHeader (which summarizes the effects from the program point A
to B in Figure 3(c)) is defined as follows:

FHeader =

∞�

i=0

(pt · pi
t) · (FBody) i

Suppose the probabilistic points-to relationship (p, v, Pin) is in INWhile, then the
probabilistic points-to relationship (p, v, Pout) ∈ OUTWhile can be calculated:

(p, v, Pout) = FWhile((p, v, Pin))

= (p, v,
pf · Pin + pt · Pg(B)

1 − pt · Pp(B)
)

Similarly, (p, v, Pi) ∈ INBody can be calculated:

(p, v, Pi) = FHeader((p, v, Pin)) = (p, v,
pf · Pin + pt · Pg(B)

1 − pt · Pp(B)
)

do-while or repeat-until Loops The transfer function of a do-while or repeat-until
loop can be defined by the following equation:

FDoWhile =

∞�

i=1

(pf · pi−1
t ) · (FBody) i

for Loops The transfer function of a for (Einit stmt; Econd.; Eiteration stmt)Body
loop can be defined by the following equation:

FF or = FEinit stmt ◦
∞�

i=0

(pf · pi
t) · (FBody ◦ FEiteration stmt)

i

Computing Transitive Transfer Functions The transfer functions that are gener-
ated by copy, load, and store statements can be called as transitive transfer func-
tions since they depends on the sets of probabilistic points-to relationships right be-
fore the statements. These transfer functions complicate the process of the proba-
bilistic points-to analysis especially for loops since the sets of probabilistic points-
to relationships, which will be computed at the second phase, must be known be-
fore transfer functions are generated at the first phase. This problem can be solved
by assigning a symbolic probability for each probabilistic points-to relationship at
the entry of a loop body. Consider the program shown in Figure 4. The symbolic
probabilities P1, P2, P3, and P4 are assigned as the probabilities of the probabilistic
points-to relationships for (p, v, P1), (p, u, P2), (q, v, P3), and (q, u, P4) respec-
tively at the loop entry, i.e. OUTS3 . The statement S5 : p = q; generates a set of
transitive transfer functions FS5 = {〈p, v, P3, 0〉 〈p, u, P4, 0〉}, while S7 gener-
ates a set of transitive transfer functions FS7 = {〈q, v, P1, 0〉 〈q, u, P2, 0〉}. Conse-
quently, FS4 = {〈p, v, 0.5P3, 0.5〉〈p, u, 0.5P4, 0.5〉〈q, v, 0.5P1, 0.5〉〈q, u, 0.5P2, 0.5〉}
will be the transfer function of the loop body. Furthermore, FS3 will be the trans-
fer function of the loop with elements 〈p, v, 9P3/11, 2/11〉, 〈p, u, 9P4/11, 2/11〉,
〈q, v, 9P1/11, 2/11〉, and 〈q, u, 9P2/11, 2/11〉.
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Program INSi OUTSi FSi

S1: p = &v; (p, v, 1) 〈p, v, 1, 0〉
S2: q = &u; (p, v, 1) (p, v, 1) (q, u, 1) 〈q, u, 1, 0〉
S3: while (...) { (p, v, 1) (q, u, 1) (p, v, P1) (p, u, P2) (q, v, P3) (q, u, P4) 〈p, v, 9P3/11, 2/11〉 〈p, u, 9P4/11, 2/11〉

〈q, v, 9P1/11, 2/11〉 〈q, u, 9P2/11, 2/11〉
S4: if (...) (p, v, P1) (p, u, P2) (q, v, P3) (q, u, P4) (p, v, P1) (p, u, P2) (q, v, P3) (q, u, P4) 〈p, v, 0.5P3, 0.5〉 〈p, u, 0.5P4, 0.5〉

〈q, v, 0.5P1, 0.5〉 〈q, u, 0.5P2, 0.5〉
S5: p = q; (p, v, P1) (p, u, P2) (q, v, P3) (q, u, P4) (p, v, P3) (p, u, P4) (q, v, P3) (q, u, P4) 〈p, v, P3, 0〉 〈p, u, P4, 0〉
S6: else

S7: q = p; (p, v, P1) (p, u, P2) (q, v, P3) (q, u, P4) (p, v, P1) (p, u, P2) (q, v, P1) (q, u, P2) 〈q, v, P1, 0〉 〈q, u, P2, 0〉
S8: }

Fig. 4. Solving Transitive Transfer Functions

The symbolic probabilities P1, P2, P3, and P4 can be solved by the linear system
OUTS3 = FHeader(INS3), where FHeader =

�∞
i=0(pt · pi

t) · (FS4) i. The set of proba-
bilistic points-to relationships at the loop entry will be OUTS3 = {(p, v, 0.55) (p, u,
0.45) (q, v, 0.45) (q, u, 0.55)} if the branching probabilities are pt = 0.9 and pf =
0.1.

3 Experimental Results

3.1 Platform and Benchmarks

A prototype compiler has been implemented upon the SUIF system [9] and CFG li-
brary of MachSUIF [21] to perform the intraprocedural probabilistic points-to analysis
(PPA). Programs are first transformed from the high-SUIF format to the low-SUIF for-
mat by SUIF and then represented by CFGs using the CFG library of MachSUIF. The
compiler will then traverse the CFGs to compute the probability of each probabilistic
points-to relationship at every program point. This section will present the preliminary
experimental results of this implementation.

Program Procedure Description

reverse InsertElement A small program that builds a binary tree and then recursively swaps
the left and right children of each node. (McGill [8])

hash AddToTable A program builds a hash table (McGill)
misr create link list A program creates and uses linked list. (McGill)
queens find A program that finds solutions to the eight-queens chess problem.
cq s81 A test program from lcc-4.0 testsuite.
20000801-2.c test Test programs from gcc-3.0 snapshot testsuite
990127-1.c main (from directory: c-torture/execute/)

Table 1. Benchmark Programs and Selected Procedures

Several applications have been chosen as the benchmarks and a procedure of each
benchmark program has been instrumented, as listed in Table 1. These benchmark pro-
grams will then be executed to gather the detailed points-to information of these proce-
dures at runtime. The runtime results will be compared with the following three varia-
tions of points-to analysis:
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– Probabilistic points-to analysis based on static probabilities (PPA-S)
A probability will be assigned to each outgoing edge of CFG, say pt = pf = 0.5
for if statements and pt = 0.9 and pf = 0.1 for loops, and the probabilistic points-
to analysis algorithm described in Section 2 will be executed based on these edge
probabilities.

– Probabilistic points-to analysis based on profiling information (PPA-P)
The TCOVSUIF profiling tool [2] is used to gather loop counts and branch frequen-
cies, and probabilistic points-to analysis will be performed based on the profiling
information to compute the probabilities of points-to relationships in these selected
procedures.

– Traditional points-to analysis (TPA)
The probability of each points-to relationship is assumed to be 1.

The preciseness of these points-to analysis methods respective to
the runtime results will be compared by the statistics average error
ξ =

∑n

i=1
|Pestimated(i) − Pruntime(i)|/n and standard deviation σ =√∑n

i=1
(Pestimated(i) − Pruntime(i))2/(n − 1).
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Fig. 5. Experimental Results

3.2 Results

Figure 5(a) shows the average errors of estimated probabilities of points-to relationships
by these methods respective to the profiled frequencies at runtime. At each chosen pro-
gram point, the estimated probabilities of all points-to relationships will be compared
with the profiled probabilities. For example, reverse(m) in Figure 5(a) is computed at the
middle point (randomly selected) of the instrumented procedure in the program reverse,
while reverse(e) compares the errors at the end of the procedure in reverse. Similarly,
Figure 5(b) depicts the standard deviations of these points-to analysis techniques re-
spective to the profiled frequencies at runtime. Table 2 summarizes the average errors
and standard deviations depicted in Figure 5(a) and Figure 5(b) in a tabular format.

The above figures and table show that probabilistic points-to analysis approach can
estimate how likely each points-to relationship would hold with relatively small errors.
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Even with statically assigned edge probabilities, the average error of estimated proba-
bilities by PPA-S compared to the runtime frequencies is about 15.58%. With the aid of
edge profiling information, PPA-P reduces the average error down to 2.27%. Further-
more, the 7.38% standard deviation of PPA-P demonstates that almost all of estimated
probabilities are quite accurate, with errors less than 7.38%.

Average Errors Standard Deviations

Programs PPA-S PPA-P TPA PPA-S PPA-P TPA

reverse(m) 16.67% 0% 16.67% 29.70% 0% 42.01%

reverse(e) 16.16% 5.99% 33.19% 22.60% 15.55% 51.46%

hash(e) 19.10% 0% 39.58% 26.11% 0% 63.96%

misr(m) 0.72% 0.61% 40% 0.86% 0.71% 60.91%

queens(e) 42.86% 0.0002% 42.86% 50% 0.0004% 70.71%

cq(m) 3.56% 0.0174% 22.22% 5.66% 0.0277% 49.01%

20000801-2.c(m) 29.7% 12.50% 66.67% 40.91% 19.76% 86.60%

990127-1.c(m1) 6.49% 0% 14.29% 13.12% 0% 31.71%

990127-1.c(m2) 5% 1.30% 14.29% 10.10% 2.62% 33.67%

Overall 15.58% 2.27% 32.19% 24.11% 7.38% 52.20%

Probability Range PPA-S PPA-P PPA-S PPA-P

0%∼10% 83.33% 100%

10%∼20% 0% 0%
80% 100%

20%∼30% 0% 33.33%

30%∼40% 0% 0%
0% 33.33%

40%∼50% 0% 66.67%

50%∼60% 0% 50%
0% 100%

60%∼70% 0% 100%

70%∼80% 0% 100%
10% 100%

80%∼90% 0% 100%

90%∼100% 95.74% 97.10%
94.64% 97.10%

Table 2. Average Errors and Standard Deviations Table 3. Accuracy of Estimated
Probabilities

This result is significant since most compiler optimizations can benefit from
the ability to determine if points-to relationships hold with high or low probabil-
ities. For instance, data speculation can be performed on reads and writes with
low possibilities of conflicts to avoid costly mis-speculation penalties. Let Points-
toPPA(l%∼h%) be the set of points-to relationships that are estimated by PPA to hold
with the probabilities within the range l%∼h%, and Points-toRuntime(l%∼h%) be
the set of points-to relationships with runtime-profiled probabilities within the range
l%∼h% and are also in the set Points-toPPA(l%∼h%). Then the accuracy within
the probability range l%∼h% of PPA is defined as the ratio of the size of the sets
Points-toRuntime(l%∼h%) over the size of Points-toPPA(l%∼h%), i.e. |Points-
toRuntime(l%∼h%)| / |Points-toPPA(l%∼h%)|. Table 3 presents the accuracy of
PPA-S and PPA-P within different probability ranges based on the above definition.
The first section of Table 3 shows the accuracy of PPA-S and PPA-P in the probability
range 0%∼10% are 83.33 and 100% respectively, while the accuracy of both PPA-S and
PPA-P in the range 90%∼100% are 95.74% and 97.10%. If the interval of the proba-
bility ranges is extended to 20%, the accuracy of PPA-S and PPA-P in the probability
range 0%∼20% is 80% and 100% respectively, and while the accuracy of both PPA-S
and PPA-P in the range 80%∼100% is 94.64% and 97.10%, respectively, as shown in
the second section of Table 3. This result demonstrates that the probabilistic points-to
analysis can identify the points-to relationships with high or low probabilities with very
high accuracy.

Table 4 lists the distributions of probabilities of all points-to relationships estimated
by points-to analysis techniques and profiled at runtime. For most of the benchmarks,
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the probability distributions of PPA-P are the same as the profiled probability distribu-
tions. It shows that the probabilities estimated by the probabilistic points-to analysis are
very accurate.
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reverse(m) Runtime 16.7% 0 0 0 0 0 0 0 0 83.3%

PPA-P 16.7% 0 0 0 0 0 0 0 0 83.3%

PPA-S 0 0 0 0 0 33.3% 0 0 0 66.7%

TPA 0 0 0 0 0 0 0 0 0 100%

reverse(e) Runtime 19% 0 0 0 9.5% 19% 0 0 0 52.5%

PPA-P 19% 0 0 0 9.5% 9.5% 0 0 0 62%

PPA-S 0 14.3% 14.3% 0 0 0 0 14.3% 14.3% 42.8%

TPA 0 0 0 0 0 0 0 0 0 100%

hash(m) Runtime 39.1% 0 0 0 0 0 0 0 0 60.9%

PPA-P 39.1% 0 0 0 0 0 0 0 0 60.9%

PPA-S 13% 0 0 26.1% 0 0 26.1% 0 0 34.8%

TPA 0 0 0 0 0 0 0 0 0 100%

misr(m) Runtime 40% 0 0 0 0 0 0 0 0 60%

PPA-P 40% 0 0 0 0 0 0 0 0 60%

PPA-S 40% 0 0 0 0 0 0 0 40% 20%

TPA 0 0 0 0 0 0 0 0 0 100%

queens(e) Runtime 42.9% 0 0 0 0 0 0 0 0 57.1%

PPA-P 42.9% 0 0 0 0 0 0 0 0 57.1%

PPA-S 0 0 0 0 85.7% 0 0 0 0 14.3%

TPA 0 0 0 0 0 0 0 0 0 100%
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cq(m) Runtime 22.2% 0 0 0 0 0 0 0 0 77.8%

PPA-P 22.2% 0 0 0 0 0 0 0 0 77.8%

PPA-S 22.2% 0 0 0 0 0 0 0 22.2% 55.6%

TPA 0 0 0 0 0 0 0 0 0 100%

20000801-2.c(m) Runtime 33.3% 0 0 0 66.7% 0 0 0 0 0

PPA-P 0 33.3% 33.3% 0 33.4% 0 0 0 0 0

PPA-S 100% 0 0 0 0 0 0 0 0 0

TPA 0 0 0 0 0 0 0 0 0 100%

990127-1.c(m1) Runtime 0 14.3% 0 0 0 0 0 14.3% 0 71.4%

PPA-P 0 0 14.3% 0 0 0 0 14.3% 0 71.4%

PPA-S 0 0 0 14.3% 0 0 14.3% 0 0 71.4%

TPA 0 0 0 0 0 0 0 0 0 100%

990127-1.c(m2) Runtime 0 0 14.3% 0 0 0 0 14.3% 0 71.4%

PPA-P 0 0 14.3% 0 0 0 0 14.3% 0 71.4%

PPA-S 0 0 0 0 28.6% 0 0 0 0 71.4%

TPA 0 0 0 0 0 0 0 0 0 100%

overall Runtime 24.8% 0.9% 1.0% 0 3.8% 3.8% 0 1.9% 0 63.8%

PPA-P 23.8% 0.9% 2.9% 0 2.9% 1.9% 0 1.9% 0 65.7%

PPA-S 11.4% 2.9% 2.9% 6.6% 13.3% 0 6.6% 2.9% 8.6% 44.8%

TPA 0 0 0 0 0 0 0 0 0 100%

Table 4. Distributions of probabilities of Points-to Relationships

3.3 Discussion

PPA-P can accurately estimate probabilities of points-to relations of most selected pro-
cedures in the benchmark programs with errors less than 1%. However, the errors of the
programs reverse and 20000801-2.c are quite significant compared to the errors of the
other programs. The reason is that the current implementation can not handle heap and
recursive data structures properly. Heap locations are named after the program points
where they are allocated. This naming scheme can not provide enough information for
probabilistic points-to analysis to make accurate estimations. It will be improved in the
future implementation.

4 Related Work

There have been considerable efforts on pointer analysis by researchers [1, 4, 6, 7, 8,
12, 17, 18, 20, 22, 24, 25]. The proposed techniques compute at program points either
aliases or points-to relationships. They categorize aliases or points-to relationships into
two classes: must aliases or definitely-points-to relationships, which hold for executions,
and may-aliases or possibly-points-to relationships, which hold for at least one execu-
tion. However, they can not tell which may-aliases or possibly-points-to relationships
hold for the most of executions and which for only few executions. Such information is
crucial for compilers to determine if certain optimizations and transformations will be
beneficial. The probabilistic points-to analysis approach proposed in this paper is the
first algorithm to compute such information.
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The most closely related work is the data flow frequency analysis proposed by Ra-
malingam [15]. It provides a theoretical foundation for data flow frequency analysis,
which computes at program points the expected number of times that certain condi-
tions might hold. The probabilistic points-to analysis approach proposed in this paper
is built upon the probabilistic data flow analysis framework, which is adapted from
Ramalingam’s data flow frequency analysis. However, this paper focuses on points-to
analysis, which is a complicated issue because of the dynamic associations property
of pointers. Extra cares are needed for probabilistic points-to analysis with the recent
establishments for foundations of probabilistic data flow equations. Furthermore, this
technique solves the probabilistic data flow analysis problem on CFGs, eliminating the
overhead of generating the exploded graphs [16].

In the work related to data speculations for modern computer architectures, such
as IA-64 [5], Ju et al. [11] gives a probabilistic memory disambiguation approach
for array analysis and optimizations. However, the problem remains open for pointer-
induced memory references. This work tries to provide a solution to fill-in the open
areas. In the work related to compiler optimizations for pointer-based programs on dis-
tributed shared-memory parallel machines, affinity analysis [3] and data distribution
analysis [13] are currently able to estimate which processor an object is resided in.
For programs with pointer usages, a pointer will be pointing to a set of objects with
may-aliases. In this case, our analyzer can be integrated with the conventional affinity
analyzer, and the integrated scheme can calculate the amortized amount of objects a
processor owns for a task execution. Thus it will help program optimizations.
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