
Enabling Streaming Remoting on Embedded Dual-core Processors

Kun-Yuan Hsieh, Yen-Chih Liu, Po-Wen Wu, Shou-Wei Chang, Jenq Kuen Lee
Department of Computer Science

National Tsing-Hua University, Hsin-Chu, Taiwan
{kyshieh, ycliu, pwwu, swchang, jklee}@pllab.cs.nthu.edu.tw

Abstract
Dual-core processors (and, to an extent, multicore pro-

cessors) have been adopted in recent years to provide plat-
forms that satisfy the performance requirements of popu-
lar multimedia applications. This architecture comprises
groups of processing units connected by various inter-
process communication mechanisms such as shared mem-
ory, memory mapping interrupts, mailboxes, and channel-
based protocols. The associated challenges include how
to provide programming models and environments for de-
veloping streaming applications for such platforms. In
this paper, we present middleware called streaming RPC
for supporting a streaming-function remoting mechanism
on asymmetric dual-core architectures. This middleware
has been implemented both on an experimental platform
known as the PAC dual-core platform and in TI OMAP
dual-core environments. We also present an analytic model
of streaming equations to optimize the internal handshak-
ing for our proposed streaming RPC. The usage and effi-
ciency of the proposed methodology are demonstrated in
a JPEG decoder, MP3 decoder, and QCIF H.264 decoder.
The experimental results show that our approach improves
the performance of the decoders of JPEG, MP3, and H.264
by 24%, 38%, and 32% on PAC, respectively. The com-
munication load of internal handshaking has also been
reduced compared to the naive use of RPC over embed-
ded dual-core systems. The experiments also show that the
performance improvement can also be achieved on OMAP
dual-core platforms.

1 Introduction
Dual-core processors are increasingly used to provide

platforms that satisfy the ever-increasing performance re-
quirements of popularmultimedia applications. This archi-
tecture comprises groups of processing units connected by
various interprocess communication mechanisms such as
shared memory, memory mapping interrupts, mailboxes,
and channel-based protocols. The TI OMAP [1] platform
is a typical example in this category. The associated chal-
lenges include how to provide programming models and
environments for developing applications for such plat-
forms. One of the most important issues is to provide
streaming functionality in the application domain of mul-
timedia applications. Applications such as video encoding
and decoding, image processing, data mining, and graphic

rendering naturally include data streaming. With applica-
tion characteristics in mind, it is important to explore the
programming flow and environments of streaming when
attempting to support middleware for embedded dual-core
processors. In this paper, we present methods to enable
streaming RPC (remote procedure call) flow to support
streaming-function off-loading on asymmetric dual-core
architectures.

One of the most promising programming models on
distributed systems is the Java RMI, which is a form of
RPC. Improving the efficiency of such layers has been
widely investigated. For example, the ARMI [2] and
Manta [3] systems overcome various drawbacks of RMI
and provide new RMI-style systems with extended func-
tionality. KaRMI [4] improves the implementation of RMI
by exploiting Myrinet hardware features to reduce laten-
cies. Adopting this layer for wireless environments has
also been investigated [5]. Although remoting mechanisms
represent a promising and easy way to model applications
on distributed systems, how to enable streaming data flow
to control and program embedded dual-core or multicore
systems remains challenging. Moreover, the requirement
to have programming models on asymmetric dual-core ar-
chitectures to utilize data streaming flow makes it difficult
to model and interface interprocess communications and
data streaming on such architectures [6, 7].

Research work such as StreamIt [8] and Brook [9] pro-
vide language supports for streaming programming. There
are research tried to apply the stream language on multi-
core system [10] or to provide a runtime system that au-
tomatically maps stream program onto multiple proces-
sors [11]. However, few research discussed about sup-
porting such programming paradigm in the layer of remote
procedure invocation. Yang et.al [12] proposed a stream-
ing style of RMI programming model based on Java RMI
which provides a good indicator that this layer of model is
a possible direction for embedded dual-core programming.

In this paper, we present methods to enable stream-
ing RPC flow to support streaming-function off-loading
on asymmetric dual-core architectures, which is applica-
ble to both on PAC [13, 14] dual-core platforms and TI
OMAP dual-core environments. The concept of streaming
RPC provides several advantages. First, it provides RPC-
style abstraction to provide programmers with a program-
ming environment to develop function off-loading pro-
grams, with the abstraction being at a higher level than

MPU DSP

DMA/
Share Memory

MPU
VIC

SPU
VIC

Mail
Box

SMI

SDRAM
Controller

On-chip
SRAM

I S WLANGPIOs

Timer RTC
Watch
Dog

SPI2

...
Devices

...

ROM

FLASH

SRAM

Figure 1. Conventional dual-core architec-
ture

message passing. Second, streaming RPC overlaps com-
munication and computation to improve performance in a
parallel execution environment. Third, the APIs and pro-
gramming model provided by streaming RPC guide the
programmer to exploit the potential control and data paral-
lelism in a intuitive way. Finally, streaming RPC reduces
the amount of hand-shaking between the client and server
by automatically streaming data from the server to the
client. We present a software architecture to enable such
communication flow for embedded dual-core processors.
In addition, to manage the buffers for our proposed stream-
ing RPC, an analytic model of streaming equations is pro-
posed to reduce the amount of redundant communications
caused by the asymmetry of the two processing units due
to their different streaming rates in accessing the streamed
data elements. The discrepancy in the streaming rate be-
tween two processors produces frequent remote function
invocations between the server and client, which leads to
a large amount of redundant communications. We present
a streaming equation that suggests an appropriate thresh-
old parameter to control the streaming rate in the stream-
ing RPC to further reduce interactions between the client
and server. A JPEG decoder, MP3 decoder, and H.264 de-
coder are presented to demonstrate both the use and effi-
ciency of the proposed methodology. The experimental re-
sults show that our approach improves the performance of
the decoders of JPEG, MP3, and H.264 by24%, 38%, and
32% on PAC, respectively and reduces the internal hand-
shaking compared to the naive use of RPC over embedded
dual-core systems.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of the software framework and
programming model of streaming RPC. Section 3 presents
the systematic methodology and procedures of the commu-
nication mechanism. Section 4 details the streaming equa-
tions to prune redundant communications when perform-
ing streaming RPC. Section 5 provides the experimental
results. Finally, Section 6 concludes this paper.

2 Overview
2.1 Software Design Flow on Dual-core

Architecture

As shown in Figure 1, to achieve the processing re-
quirements of high performance, multifunction, and low
power-consumption, a conventional dual-core architecture

O
perating system

Toolkit chain
(C

om
piler, assem

bler, linker)

Hardware system design

Hardware communication
mechanism design

Performance evaluation

Multicore SoC
development

platform

ESL virtual
platform simulation

Mailbox

VICDMAShared
memory

Software communication design

Streaming RPC modeling

Applications

Figure 2. Dual-core application design flow
based on streaming RPC

comprises a dedicated processor(e.g. a digital signal pro-
cessor), a microprocessor(MPU), and integrated periph-
eral controllers. Compared to the design of a MPU, a
digital signal processor(DSP) is optimized for processing
high computational tasks with different architectural fea-
tures of memory system, data operation, and instruction
sets. The asymmetric design of such architectures raise
challenges of programming in language support, algo-
rithm design and standard communication protocols, vari-
ous instruction-sets, new parallel computing scenario, and
debugging challenges [15]. One of the architectural issues
affecting the performance and modeling of applications on
dual-core architectures is the design of DSP. Take PACDSP
for example, the design of multibank and distributed reg-
ister files are adopted to provide a low power consump-
tion and cost architecture. To support high computation
power, PACDSP is constructed as five-issue VLIW proces-
sor. Such design brings challenges to the programmers of
how to exploit potential parallelism provided by architec-
ture and utilize the computation power of DSP.

Figure 2 presents an overview of the application design
flow for embedded dual-core systems conforming with
our design. It includes toolkit chains, operating systems,
ESL (electronic system level design) for dual-core simula-
tions, and interprocess communication mechanisms. The
modeling of applications involves the underlying inter-
processor communication mechanisms provided by the ar-
chitecture [16]. The basic communication protocol for
interacting the MPU and DSP is both processor polling
through shared memory [17] or sending events by trig-
gering interrupts. When polling is used, both processors
agree with a specific memory partition scheme. When a
task asks resources from tasks resided in the other proces-
sor, it writes a flag in the shared memory and then polls the
status until the flag is polled by the corresponding task.
Alternative approach for inter-processor communication
mechanism is sending events by invoking interrupts which
provides a basic hardware mechanism for implementation
software communications.

2.2 Programming Model

P1

P2

P3

P4

P5

s1

I1

I2

I3

RPC client RPC server

P1

P2

P3

P4

P5

I1

I2

I3

s1

(a) Sequential (b) Typical RPC

 RPC client

P1

P2

P3

P4

P5 I1

I2

I3s1

(c)Streaming RPC

RPC

RPC

Streaming RPC

RPC server

fork

transmitter

Huffman decoding
and scale factor

decoding

Requantize

Joint stereo decoding

Reordering

Alias reduction

IMDCT

Overlap

Frequency
inversion

Synthesize via
polyphase filter bank

P1

P2

P3

P4

P5

I1

I2

I3

S1

Stream
data

Stream
data

imdct

imdct

Figure 3. Flow control in a simplified MP3 decoder

Program 1. Sample code of an MP3 decoder
/∗ S t r eam ing RPC c l i e n t ∗ /
void MP3 decoder () {

s t r e am r p c (imdc t , t r a n s m i t t e r) ;
}
void t r a n s m i t t e r () {
STREAM ID i d = 4 ;

/∗ I n i t i a l i z i n g s t r eam ing channe l ∗ /
s t r e a m c r e a t e (i d) ;
/∗ Push ing da ta t o s t r eam ing channe l ∗ /
s t r e am pu t (id , DATA) ;
s t r e am push (i d) ;
. . .

}
. . .
/∗ S t r eam ing RPC s e r v e r ∗ /
void imdc t () {
STREAM ID i d = 4 ;

/∗ I n i t i a l i z i n g s t r eam ing channe l ∗ /
s t r e a m c r e a t e (i d) ;
/∗ Aggrega t i ng da ta from s t r eam ing

channe l ∗ /
s t r e am g e t (id , DATA) ;
s t r e am pop (i d) ;
. . .

}
. . .

The proposed streaming RPC is based on a middle-
ware called pCore Bridge which provides basic commu-
nication modules on dual-core architectures. pCore Bridge
is built based on dual-OS environment with Linux running
on MPU and pCore [18] running on DSP. pCore is a multi-
threaded, priority-based, preemptive, and dual-core/multi-
core supportive kernel designed for the DSP on dual-core
architectures. With transparent kernel modules and well-
defined design patterns, pCore cooperates well with the
OS on the MPU. Moreover, as a highly flexible and con-
figurable system, pCore supports the developers to easily
adopt various programming models according to different
needs to provide a high-productivity runtime environment
with efficient execution model on the dual-core architec-

ture of PAC.
The software APIs used for the streaming RPC are

based on a conventional C-function call with Linux sys-
tem library and pCore Bridge support. The programming
model for streaming RPC is illustrated using an MP3 de-
coder. Figure 3(a) shows the decoding flow, and Fig-
ure 3(b) shows the execution flow of the applications on
dual-core SoCs, which represents about 25% of the work-
load on the DSP. The client invokes the remote module
imdct by calling rpc invoke(imdct). The procedure in-
vocation is synchronized in the paradigm of a typical RPC.
This represents a simple programming model of a dual-
core application, and it does not exploit the potential ar-
chitectural parallelism. Moreover, it fails to model the
data streaming of the multimedia application. Figure 3(c)
shows the execution model of streaming RPC the maps the
application level parallelism to the hardware communica-
tion mechanism by providing simple programming APIs.
A streaming RPC client is invoked as follows:

s t r e am r p c (imdc t , t r a n s m i t t e r) ;

Program 1 lists sample code of an MP3 decoder imple-
mented by a streaming RPC. In the mechanism, the thread
in which data are pushed from a sender is called the trans-
mitter, while the thread in which data are aggregated on the
receiver is called the aggregator. When invoking a stream-
ing RPC, the data required are transmitted to the RPC
server by the transmitter that is monitored by the stream
controller. After invoking stream rpc(), the client is al-
lowed to continue computation concurrently. The stream
controller then schedules the transmitter specified in the
argument for data transmission. To initialize the streaming
communication, the transmitter and aggregator first create
a streaming channel by flagging the same identifier to the
API stream create. Processes with the same stream id are
bound to the same streaming channel.

The transmitter uses stream put to put data into the
stream buffer and stream push to send it to the streaming
channel. The APIs allow the developer to shape the stream-
ing kernel by assembling the available stream buffers.

Application

Remote procedure communication

Communication protocol
External data representation

Operating systems

RPC
client

RPC
server

VIC Mailbox
Shared

memory
DMA

Architecture-supported
communication mechanism

RPC stub RPC stub

Registry

Retrieve registry

RPC

Figure 4. Software architecture of RPC on
dual-core architectures

Once the transmitter has successfully transmitted the data
required, the stream controller invokes imdct for compu-
tation. To retrieve the data from the streaming channel, the
aggregator in the server first creates a streaming channel
with the same identifier, then gets the data from the stream-
ing channel by invoking stream get. The aggregator is re-
quired to free the streaming buffer by applying stream pop
to the data that is not needed.

As shown in Figure 3, streaming RPC not only provides
a mechanism of data streaming function off-loading, but
also exploits the parallelism in the applications. The un-
derlining mechanism of streaming RPC execute the appli-
cation while concurrently running aggregator and transmit-
ter for data transferring. In addition to provide a middle-
ware for streaming programming, streaming RPC exploit
the performance of dual-core applications by aggressively
utilizing the hardware resources and exploiting the poten-
tial parallelism in the architecture.

3 Supporting Data Streaming for Remote
Function Invocation

3.1 Software Architecture of Streaming
RPC

Remote procedure call(RPC) is a promising technique
in distributed systems that allows the invocation of a re-
mote procedure on a different processor. Figure 4 shows
the software architecture of RPC in the dual-core archi-
tectures that have been adopted in programming dual-core
system-on-chip(SoC) in recent years [19]. Applications
running on different processors communicates by invoking
commands provided by the software communication pro-
tocol. The software communication is built on top of the
hardware communication modules. The lower layer of the
communication design employs a standard RPC design for
function off-loading.

As shown in Figure 4, the client and the server com-
municate with each other through the RPC stub to per-
form proper communication strategies. The stub queries
a shared structure called registry that resided in the operat-
ing systems to keep the descriptions of each remote appli-
cation.

Our proposed streaming RPC is based on the software
framework of RPC and is implemented in the upper layer
of design flow of communication layers. The novel pro-
gramming paradigm allows developers to model streaming
applications by exploiting potential parallelism for multi-
media applications by streaming data required for the RPC
calls. In the proposed model, a stream is a data pipe asso-
ciated with an RPC invocation. To date we have enabled
streaming RPC flow for two dual-core platforms, PAC and

Application

Remote procedure communication

Communication protocol
External data representation

Operating systems

RPC
client

RPC
server

VIC Mailbox
Shared

memory DMA
Architecture-supported

communication mechanism

RPC stub
Streaming layer

Stream
controller

RPC

Streaming channelStreaming bufferStreaming buffer
Streaming buffer

Figure 5. Software architecture of streaming
RPC

TI OMAP 5912, both of which comprise a general pro-
cessing unit as the main processor and a DSP as a special-
ized slave processor for accelerating multimedia applica-
tions. Figure 5 depicts the software architecture of stream-
ing RPC, which comprises the three key components de-
scribed below:

• Streaming channel A streaming channel is associ-
ated with an RPC request for transmitting data by set-
ting the predefined stream identifier. The streaming
channel provides a communication channel between
the RPC client and server.

• Streaming buffer The streaming operations allow the
client and server to overlap communications and com-
putations by continuously receiving and sending data
through the streaming channel. To support such data
streaming, multiple streaming buffers are associated
with a streaming channel for providing data buffering
while performing streaming operations.

• Stream controller The discrepancies in processing
speed and I/O latency between processors mean that
the production rate of the sender and the consumption
rate of the receiver are not equal. This results in the
computation unit with a faster streaming rate having
to wait for data communications. To avoid the asso-
ciated blocking overhead, the stream controller moni-
tors and manages the streaming channel to implement
data-driven streaming operations.

3.2 Pushing and Aggregating Mechanism
Streaming RPC is based on the typical RPC communi-

cation mechanism that allows the invocation of a remote
procedure on a different processor. For this mechanism to
support efficient data streaming, we introduce a pushing
and aggregating mechanism for data transmission to avoid
the typical call-and-wait mechanism of typical RPC. The
pushing and aggregating mechanism automatically trans-
fers data from the sender to the receiver by pushing data
into the streaming channel using an asynchronous commu-
nication protocol. In the mechanism, the thread in which
data are pushed from a sender is called the transmitter,
while the thread in which data are aggregated on the re-
ceiver is called the aggregator. When a transmitter/aggre-
gator queries the streaming channel for a streaming buffer
to perform data transfer, the corresponding stream con-
troller first checks if a streaming buffer is ready; if it is not,
the transmitter/aggregator is suspended until a free stream-
ing buffer is available.

Frequent suspending and waking up is avoided by as-
signing a threshold to a streaming channel, with the stream

Algorithm 1 : Pushing mechanism
Require: Q streaming channel
Require: P next empty streaming buffer from Q

Require: n rate control threshold
Require: DATA data to be transmitted

while P �= φ do
P ⇐ DATA
Push P to Q

Bufferready++
if Bufferready ≥ n and aggregator is suspended
then

Trigger aggregator by passing messages
end if

end while
if P = φ then

Suspend the transmitter

end if

controller only waking up procedures when a streaming
channel satisfies the threshold criterion. For example, if the
data streaming speed of the transmitter is faster than that of
the aggregator, the stream controller blocks the transmitter
when there is no streaming buffer available. When there is
an empty buffer, the transmitter is woken up immediately.
However, such a mechanism increases the redundant com-
munication overhead caused by frequent message passing.
Thus, we proposed a new rate-controlling parameter n to
reduce such overhead. By setting the threshold of n to be
any number k larger than 1, the stream controller wakes up
the transmitter when there are k streaming buffers avail-
able, rather than waking up the transmitter immediately.
Controlling the threshold allows the programmer to im-
prove the performance by reducing the frequency of sys-
tem call invocations for internal RPC hand-shaking.

Algorithm 1 illustrates the pushing mechanism. Once
invoked, the transmitter first queries the corresponding
streaming channel Q for a empty streaming buffer P to
transmit the data to the receiver. The stream controller
records the number of the ready buffer in the Bufferready

parameter for implementing the streaming flow. When
Bufferready is greater than n, this indicates that the buffer is
large enough to support data streaming. After the data are
successfully pushed to the streaming channel, the stream
controller checks the state of the aggregator, and if the ag-
gregator is suspended and Bufferready is greater than n,
the transmitter then wakes up the aggregator so that it re-
ceives data. If there is no empty stream buffer available,
the transmitter suspends itself instead of actively waiting
for a buffer to be released. Such a paradigm allows the
processor to be fully utilized by making more computation
power available to other applications.

The data aggregating mechanism in streaming RPC is
illustrated in Algorithm 2. The aggregator first queries the
streaming channel Q for a ready buffer P . After success-
fully retrieving data from streaming buffer to DATA, the
streaming buffer is then released for the transmitter to keep
transferring more data. When there is no ready buffer in
the streaming channel, the aggregator checks the state of

Algorithm 2 : Aggregating mechanism
Require: Q streaming channel
Require: P next ready streaming buffer from Q

Require: DATA data to be aggregated to
while P �= φ do

DATA ⇐ P

Pop P from Q

Bufferready−−
if Bufferready≤ n and transmitter is suspended
then

Trigger transmitter by passing messages
end if

end while
if P = φ then

Suspend the aggregator

end if

the transmitter. If the transmitter is suspended, the aggre-
gator wakes it up and then suspends itself to wait for the
transmitter to transfer data. The proposed pushing and ag-
gregatingmechanism improves the efficiency of data trans-
mission by using an asynchronous communication proto-
col without waiting during busy periods.

4 Optimizing Internal Handshaking
Whilst the proposed streaming RPC provides an effi-

cient data streaming mechanism, differences in the pro-
cessing speed and I/O latency between processors results
in discrepancies in the streaming rates between the trans-
mitter and aggregator. The streaming rate refers to the
amount of stream data accessed by the transmitter or the
aggregator per unit of time. The asymmetry in the stream-
ing rates between application client and server could re-
sult in a large amount of implicit internal RPC commu-
nication for hand-shaking. In this section, we propose a
governing equation to avoid redundant communication us-
ing a threshold parameter in the streaming channel with-
out invalidating the real-time requirement of a multimedia
application. Moreover, the proposed streaming RPC pro-
vides an option to estimate an appropriate threshold value
by profiling the architectural parameters using a proposed
slack-less analysis.

�� �� ����

��	
�����
�����
��� ��

δ
Data Data

ϵ

Figure 6. Pipelined streaming application

Figure 6 shows a conventional streaming application
model with data-pipelined execution flow where the sender
and receiver access the streaming channel at average rates
of ε and δ, respectively. Assume that the application trans-
fers k bytes of data through the streaming channel be-
tween each pipeline stage, where the data are processed
by the sender on processor 1 (P1) in β seconds. If P1
can access 1

TP1

bytes in the memory per second, a time of
k×TP1 seconds is required to write the data to the stream-

Figure 7. Performance evaluation of different application kernels

ing channel. Transferring k bytes of data from one pipeline
stage to the next stage through the streaming channel takes
k×TP1+β seconds. Thus, the streaming rate of the sender
is

ε =
1

k × TP1 + β

Assume the receiver on processor 2 (P2) reads the k bytes
of data in k × TP2 seconds and processes it in α seconds.
The streaming rate of receiver δ can be determined in the
same way:

δ =
1

k × TP2 + α

If δ > ε, the receiver is blocked when there is no stream
element available in the streaming channel. The stream
controller will wake the receiver once the sender pushes
the next element into the streaming channel. This behav-
ior represents a huge overhead to the system. To avoid
frequent triggering of the receiver, the proposed stream-
ing operations allow the programmer to set up a threshold
n, whereby the stream controller waits until there are n

stream data elements available for processing.
One of the problems is to decide the most appropriate

value for threshold parameter n. Ignoring memory con-
sumption and the response-time requirement, the best so-
lution to this problem is to keep the receiver from waiting
once it is triggered by setting n to ∞. However, the mem-
ory is always limited and expensive in embedded dual-
core architectures, and keeping the receiver waiting for a
long period of time conflicts with the requirement for real-
time operation. Let us assume that the response-time re-
quirement of the receiver for the next stage of computation
is Tr, and that the overhead of triggering the receiver is
Ttrigger . Once a receiver is blocked, it has to wait for the
sender to transfer n data elements to the streaming chan-
nel. Then the stream controller triggers the receiver to pro-
cess these data elements. The response time of the receiver
after being blocked with threshold parameter n is deter-
mined by the summation of the times required to transfer
n data elements n

ε
, for the overhead of triggering the re-

ceiver Ttrigger , and to process the first data element α. The
response time must satisfy the following response-time re-
quirement:

Tr ≥ Ttrigger +
n

ε
+ α (1)

The upper bound of threshold parameter n is obtained by
solving the inequality in Equation 1 for n:

n ≤ (Tr − Ttrigger − α) × ε (2)

Setting the threshold to an appropriate value should
reduce the frequency of signal passing for internal RPC
hand-shaking. Moreover, threshold analysis should guide
the developer for future optimizations by adjusting the al-
gorithms to fit the streaming rate or to scale the power sta-
tus when attempting to minimize the power consumption.
To guide the remodeling for enhancing the performance
as mentioned in Section 2, the proposed streaming RPC
provides an option for estimating an appropriate threshold
value. The effects of applying different threshold values in
different applications are demonstrated in Section 5.
5 Experiments

We now describe the methods we used to evaluate the
proposed streaming RPC and the results obtained. The ex-
periments were performed on PAC. The PAC development
board that is built on the ARM Versatile PB926, which
contains a 300-MHz ARM 926EJ-S processor with a 32-
KB cache. It is extended with an evaluation board (EVB)
comprising a 250-MHz PAC DSP, 64 Kbyte of data mem-
ory, and 32 KB of instruction cache. The two processors
can exchange data and signals via 128 MB of SDRAM
residing on the Versatile and 512 MB of SDRAM on the
EVB. Early evaluation were also performed on TI OMAP
5912 to reveal that the mechanism can also be applied on
different architectures. The OMAP starter kits comprise an
ARM 9 core and a DSP core, both operating at 192 MHz
and having 32 MB of SDRAM and 32 MB of ROM. The
evaluation was implemented in Linux on the ARM core
and using a runtime system called pCore on the DSP.

The application kernel, inverse discrete cosine trans-
formation (IDCT) of the JPEG decoder, inverse modified
discrete cosine transformation (IMDCT) of the MP3 de-
coder, and inverse quantization and inverse transformation
(IQ/IT) were evaluated to assess the performance and over-
head of streaming RPC with different computational fea-
tures for various amounts of data. Figure 7 compares the
performances of the evaluated application kernels running
with different numbers of data elements. The IDCT of
the JPEG decoder required 258 bytes data to accomplish
a complete round-trip transformation, while the IMDCT
and IQ/IT required 160 bytes and 1542 bytes respectively.
There was a performance reduction when processing only
a few data elements due to the overhead of maintaining
the streaming channel of the stream controller. However,
the performance of streaming RPC improved as the num-
ber of data elements increased. The data operations benefit
from the pushing and aggregating mechanisms, which im-
prove the total performance of kernels employing stream-
ing RPC. Moreover, an increasing amount of processed

Figure 8. Performance improvement and corresponding internal RPC hand-shaking times for dif-
ferent threshold values on the MP3 decoder

data provides more opportunities for the streaming RPC to
overlap computations and communications. In summary,
the performance of each kernel was improved after apply-
ing streaming on PAC.

In order to assess the performance of streaming RPC
relative to typical RPC in multimedia applications, we im-
plemented three common decoders: a JPEG decoder with
a resolution of 317×255, an MP3 decoder, and a QCIF
H.264 decoder. Figure 9 shows the performance improve-
ment of streaming RPC for these multimedia decoders.
The features of the three decoders are quite different. The
partitioning of the JPEG and MP3 decoders resulted in
about 25% of the program being executed on the DSP with
data of fine granularity and high data parallelism, and with-
out cross referencing between frames. The performance
improvement for the JPEG decoder was 24% on PAC and
the performance of MP3 decoder was improved by 38%
on PAC compared to RPC implementation. The H.264 de-
coder also had 25% of the workload off-loaded to the DSP,
but its operation is much more complex. Decoding a frame
of an H.264 video involves many references to the previ-
ous frame, which potentially reduces the degree of data
parallelism. Moreover, the data are difficult to partition
with good granularity. However, although with coarse-
grain data partitioning, the performance of H.264 was still
improved by 32% on PAC when using streaming RPC.
The early evaluation of two decoders of JPEG and MP3
with streaming RPC support also had been implemented
on OMAP to demonstrate that the proposed mechanism is
applicable to different architectures. The performance im-
provement of JPEG decoder is 26% and the performance
of MP3 decoder is improved by 40% on OMAP. The im-
provement shows that streaming RPC is able to attain high
performance improvement on different architectures com-
pared to naive use of RPC.

To demonstrate the effects of the choice of threshold for

the streaming channel, we measured the execution time of
the MP3 decoder without synchronizing the time ticks for
different threshold values. Figure 8 shows that the perfor-
mance of the MP3 decoder improved dramatically when
the threshold was changed from 1 to 10, and improved less
for larger values. The performance line gives the perfor-
mance improvement of streaming RPC with different num-
ber of thresholds from Equation 2 shown earlier in Sec-
tion 4. The base version is the one set threshold as one.
The LHS of the figure is for MP3 on PAC platform, and
the RHS of the figure is for TI OMAP platform. The line
for RPC times is the communication amount. Significant
amount of reductions on communications were achieved.
Both lines are given with the improvement ratio. Figure 8
shows the corresponding internal RPC hand-shaking times
for different threshold values on the MP3 decoder. Al-
though the performance was not greatly affected by the
threshold value, the amount of communication improved
dramatically as the threshold increased. We also measured
response time Ttrigger + n

ε
+ α (see Section 4) for dif-

ferent thresholds in the MP3 decoder. The decoder played
40 frames per second, where each frame comprised 128
sub-banks. The program was partitioned to process a sub-
bank as a data unit on the DSP. The average response time
Tr for the streaming RPC was 125, 000 microseconds to
satisfy the real-time requirement. Figure 10 shows the dis-
tribution of the response times for different thresholds of
numbers of execution. The results of the response time
of each threshold varies in a range that could be affected
by the Linux scheduler and the on-board I/O latency, how-
ever, it illustrates an average soft-realtime requirement of
the program. The profiler of streaming RPC conserva-
tively suggests a threshold value of 80 on PAC and 100 on
OMAP, which represents a light communication workload
(as shown in Figure 8) and satisfies the real-time require-
ment.

0

0.5

1.0

1.5

JPEG MP3 H.264

1.321.38
1.24

1.001.001.00

Performance improvement of streaming RPC on PAC

P
er

fo
rm

ac
e

im
p

ro
v

em
en

t

Figure 9. Performance evaluation of different
decoders

6 Conclusion
Streaming programming can benefit multimedia appli-

cations by increasing the efficiency of data transmission
and utilizing the potential parallelism in dual-core em-
bedded systems. Here we presented a mechanism called
streaming RPC that supported data streaming. Stream-
ing RPC employed a pushing and aggregating mechanism
for data transmission with an asynchronous communica-
tion protocol. This paradigm improved the performance
of the application and increased the utilization of the pro-
cessors by avoiding waiting for the streaming application
during busy periods. We also presented a systematic way
of analyzing the streaming rate for slack-less data stream-
ing by setting a threshold value for a streaming channel.
The results showed that the proposed mechanism provided
an efficient way of supporting streaming programming on
dual-core SoCs.

Figure 10. Effect of threshold on response
time in the MP3 decoder

Acknowledgment
This research was supported in part by the NSC under

grant nos. NSC 95-2220-E-007-001 and NSC 95-2220-E-
007-002, and by the MOEA research project under grant
nos. 95-EC-17-A-01-S1-034 and 96-EC-17-A-01-S1-034
in Taiwan.
References

[1] Texas Instuments. OMAP5912 Application Processor.

[2] Rajeev R. Raje, Joseph I. William, and Michael Boyles.
An asynchronous remote method invocation (ARMI) mech-
anism for Java. Concurrency: Practice and Experience,
9(11):1207–1211, 1997.

[3] Jason Maassen, Rob van Nieuwpoort, Ronald Veldema,
Henri E. Bal, and Aske Plaat. An efficient implementa-
tion of Java’s remote method invocation. In Proceedings of
Principles Practice of Parallel Programming, pages 173–
182, 1999.

[4] Christian Nester, Michael Philippsen, and Bernhard Hau-
macher. A more efficient RMI for java. In Proceedings of
the ACM Java Grande Conference, pages 152–157, 1999.

[5] Cheng-Wei Chen, Chung-Kai Chen, Jyh-Cheng Chen,
Chien-Tan Ko, Jenq-Kuen Lee, Hong-Wei Lin, and Wang-
Jer Wu. Efficient support of Java RMI over heterogeneous
wireless networks. In Proceedings of the International Con-
ference on Communication, pages 1391–1395, 2004.

[6] Ahmed A. Jerraya, Aimen bouchhima, and Frédéric Pétrot.
Programming models and HW-SW interfaces abstraction
for multi-processor SoC. In Proceedings of Design Automa-
tion Conference, pages 280–255, 2006.

[7] Grant Martin. Overview of the MPSoC design challenge. In
Proceedings of Design Automation Conference, pages 274–
279, 2006.

[8] William Thies, Michal Karczmarek, and Saman Amaras-
inghe. Streamit: A language for streaming applications. In
Proceedings of Computational Complexity, pages 179–196,
2002.

[9] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman,
Kayvon Fatahalian, Mike Houston, and Pat Hanrahan.
Brook for gpus: Stream computing on graphics hardware.
ACM Transactions on Graphics, 23(3):777–786, 2004.

[10] David Chang, Qiuyuan J. Li, Rodric Rabbah, and Saman
Amarasinghe. A lightweight streaming layer for multiore
execution. In Proceedings of International Conference on
Prarallel Processing (ICPP), 2007.

[11] Jayanth Gummaraju, Joel Coburn, Yoshio Turner, and
Mendel Rosenblum. Streamware: Programming gerneral-
purpose multicore processor using streams. ACM SIGOPS
Operating System Review, 42(2):297–307, Mar 2008.

[12] Chih-Chieh Yang, Chung-Kai Chen, Yu-Hao Chang, Kai-
Hsin Chung, and Jenq-Kuen Lee. Streaming support for
Java RMI in distributed environment. In Proceedings of
ACM International Conference on Principles and Practices
of Programming In Java, pages 53–61, 2006.

[13] David Chih-Wei Chang. PAC digital signal processor. In
Proceedings of Fall Microprocessor Forum, 2006.

[14] David Chih-Wei Chang, I-Tao Liao, Jenq-Kuen Lee, Wen-
Feng Chen, Shau-Yin Tseng, and Chein-Wei Jen. PAC DSP
core and application processors. In Proceedings of IEEE
International Conference on Multimedia and Expo, pages
289–292, 2006.

[15] Wayne Wolf. The future of multiprocessor systems-on-
chips. In Proceedings of the 41st annual conference on De-
sign automation, pages 681–685, 2004.

[16] Dana S. Henry. Hardware mechanisms for efficient inter-
processor communication. PhD thesis, Massachusetts In-
stitute of Technology. Dept. of Electrical Engineering and
Computer Science, 1996.

[17] Brian N. Bershad, Thomas E. Anderson, Edward D. La-
zowska, and Henry M. Levy. User-level interprocess com-
munication for shared memory multiprocessors. ACM
Transactions on Computer Systems, 9(2):175–198, 1991.

[18] Kun-Yuan Hsieh, Yung-Chia Lin, Chien-Ching Huang, and
Jenq Kuen Lee. Enhancing microkernel performance on
VLIW DSP processors via multiset context switch. Journal
of VLSI Signal Processing Systems, 51(3):257–268, June
2008.

[19] Steve Preissig. Programming details of codec enging for
DaVinci Techonology whitepaper. Texas Instuments.

