pTest: An Adaptive Testing Tool for Concurrent
Software on Embedded Multicore Processors

Shou-Wei Chang, Kun-Yuan Hsieh and Jenqg Kuen Lee
Department of Computer Science
National Tsing-Hua University, Hsin-Chu, Taiwan
{swchang, kyshief@pllab.cs.nthu.edu.tw, jklee@cs.nthu.edu.tw

Abstract—More and more processor manufacturers have developed to test concurrent software and the robustness of
launched embedded multicore processors for consumer eleoh- complex systems. For example, ConTest [3] and CHESS [4]
ics products because such processors provide high performee ;.o significant tools for finding concurrency bugs in multi-

and low power consumption to meet the requirements of mobile threaded softw b t ticall lori I ibl
computing and multimedia applications. To effectively utlize Ur€aded Software Dy systemalically exploring all pogsi

computing power of multicore processors, software desigme thread interleaving. ConTest debugs multi-threaded jamogr
interest in using concurrent processing for such architeatre. The by randomly interleaving the execution of threads. Comghare

master-slave model is one of the popular programming models to ConTest, CHESS uses model checking techniques [5] to
for concurrent processing. Even if it is a simple model, the provide higher fault coverage. However, model checking is

potential concurrency faults and unreliable slave systemsstill . . s
lead to anomalies of entire system. In this paper, we presersn not efficient when searching infinite state spaces and the

adaptive testing tool called pTest to stress test a slave sgm and implementation may be incorrect due to the demands of
to detect the synchronization anomalies of concurrent softare in ~ disciplined design [6].
the master-slave systems on embedded multicore processov¥e In this paper, we present an adaptive testing tool called
use a probabilistic finite-state automaton(PFA) to model te test ,7ast on embedded multicore systems to perform a stress test
patterns for stress testing and shows how a PFA can be applied e -
to pTest in practice. on a slave system for verifying the cqrrectness of services
provided by the slave system and detecting the synchromizat
l. INTRODUCTION anomalies of concurrent processes in the embedded melticor
Embedded multicore processors have been widely adoptsdtems. pTest constructs a probabilistic finite-stateraat
in the consumer electronics market to meet the ever-inicrgaston(PFA) [7], [8] from the probability information and the
performance requirements of mobile computing and multimesgular expression provided by users. We use a PFA to describ
dia applications. Such architecture is conventionally posed the slave system services and generate each test pattern as a
of clusters of processing cores connected by the on-clsgt of the slave system services arranged in rational order.
communication networks, high-bandwidth memory subsy#é- PFA provides the quantitative, probabilistic informatitm
tems, and integrated peripheral interfaces. The TI OMAP [t§solve nondeterministic choices about which elementseto b
dual-core processors adopting heterogeneous cores tackalancluded in the test patterns. The concept of pTest is first to
performance requirements and save power consumption isaastruct the PFA from the regular expression to automitica
typical example of a multicore design. One of the popular prgenerate adaptive test patterns and then according to these
gramming models on the embedded multicore systems is tlest patterns, a committer on the master core automatically
master-slave model. The master-slave model is a simple Imoidsues remote commands to test the slave system at runtime.
for concurrent processing and is widely used on asymmetiiio precisely construct the PFA, the probability distribas are
multicore processors to utilize distributed computingreses forwarded to the pattern generator of pTest. pTest rectels t
more effectively [2]. In the master-slave model, a cluster @xecution status of test activities and the state of presess
processing cores is classified into two categories, the anagnaster-slave systems. When pTest detects that the slaeasys
and slave, where the executable processes in the slave cerashes or faults, it terminates the current job and helpssus
are controlled by the remote processes in the master pingesseproduce the bugs.
cores. We have applied pTest on TI OMAP dual-core processor
Although the master-slave model is a simple model, thie examine its effectiveness. In the current design, werassu

embedded multicore system that adopts it still may cra#at most users do not know the probability distributiongegi
by unreliable software. Two of the obvious factors that rde pTest to construct the relative PFA. The knowledge about
sult in the failures of embedded multicore systems are tpeobability distributions can be learned through systenfipr
crash of the slave system under heavy loads and synchr@ or by providing analytic model to estimate the transitio
nization anomalies, such as deadlock and starvation, whittivity of real systems. We give the case study to discuss ho
may occur in concurrent programs. The common functiongTest models the runtime system called pCore [9] running
testing methodologies are not sufficient to find these saftwaon the DSP core in the TI OMAP dual-core processor as
faults during the development stage. Various tools have besdlave. The evaluation of effectiveness of pTest runs the tes

Process S1 Process S2

arx=1 fiy=1

b: while (y = 1) g: while (x=1)
c: yield(); h: yield();

d: x < 0; iy «0;
e:end; j:end;

Shared Memory in Multi-Core Processor

‘ ‘X:O ‘y:O ‘ ‘

Process M1 Process M2

K:remote _cmd(Resume, S1); L: remote_cmd (Resume, S2);

Fig. 1. Example of a concurrency fault.

cases to examine the robustness of pCore and to find out the
concurrency bugs from dual-core programs.

The remainder of this paper is organized as follows. Sec-
tion Il first discusses the concept of stress testing and then

Testing Tool

Regular Configuration Bug
expression parameters information
<Panern generator | (Bug detector \

) AN /

|

\ Pattern merger >

Multi-Core System

Master

Committee
0os

Hardware units

Communication:
infrastructure

os

Hardware units

/
|
|
|
|
| Committer
|
|
|
|
|

Fig. 2. Software architecture of pTest.

provides an overview of pTest. Section Il presents the fog, Overview of the Adaptive Testing Tool

mal description and the algorithm of our proposed testing

methodology. Section IV shows case studies and evaluages thPTest is designed to execute a stress test on a runtime system

effectiveness of pTest. Finally, the conclusion and theirti
work are presented in Section V.

¢ running on a specialized processing unit of the embedded
multicore processors. pTest runs on the master system to

issue a large number of commands for stress testing the
Il. OVERVIEW runtime behavior of the slave system. Figure 2 shows the
A. Stress Testing software architecture of pTest, which is comprised of three

In practice, stress testing is an efficient method used K8Y components described as follows:

examine the robustness of complex systems under heavy
load [10], [11]. Stress testing can be used to detect garbage
collection issues, memory leaks, and concurrency fauitsex

by the unpredictable progress of concurrent processes. For
example, assume that there are four processes, S1, S2, M1,
and M2, running in the embedded multicore system as shown
in the Figure 1. Both S1 and S2 are suspended in the slave
system and the other two are run in the master system. The
scheduling policy of the slave system and the master system
are preemptive priority-based and time-sharing schedulin
policy respectively. The priority of the proceS4&is lower than

that of the procesS2 In addition, the proceddll invokes the «
remote proces$1 by calling remote cmd(Resume, SHnd

the functionyield() means that the current process yields the
processor to other waiting processes. The system can fithish a
of the processes in the execution order~ f — g — K —

i — j—a—b— d— e. However, if the execution order
isK—»a—L—>f—>g—h—>b—>c—g—>h—..,

the system enters the deadlock state. The state, i, j

are unreachable. The callback function wrapper is one of
approaches to determine if a process is terminating or not.
If processes do not terminate or stay in the same state for
a period of time, the system may contain synchronizatione
anomalies. The potential concurrency faults can be fournd ou
by performing a stress test. Furthermore, the effects oécod
coverage influences the quality of fault detection. To detec
more software faults, the code coverage analysis is a useful
information for stress testing on large software systems.

Pattern generator The work of pattern generator is to
produce test patterns by running a PFA. It interprets the
regular expression and probability distributions to con-
struct the corresponding PFA. In addition, the knowledge
about the probability distributions is forwarded to the
pattern generator in advance. Both the regular expression
and the corresponding PFA recognize the same patterns
that is a sequence of the slave system services arranged
in rational order. Each test pattern represents a set of the
possible slave system services associated to a process on
slave system.

Pattern merger Because each process in the slave system
is controlled by the remote processes in the master
system, the process execution order in the master system
affects the process execution order in the slave system.
To simulate the concurrent execution in master-slave
systems, the pattern merger extracts subsequences from
each test pattern produced by the pattern generator and
then systematically merges all subsequences into one final
test pattern. The work of the pattern merger is to generate
the interleaved test patterns. It is similar to a process
scheduler.

Bug detector The bug detector tracks the progress of
test activities until it detects the potential system fiaghi

and then it terminates the test activity that results in
these failures. The execution records of each test activity
including the state of a process of a slave system and the
execution status of commands are reserved by a slave

system and the committer. When the potential system
failures have been detected, the bug detector dumps the
related information to help users reproduce the bugs.

Each processing core in embedded multicore processors
is connected by the on-chip communication network. The
common inter-processor communication mechanisms adopted
in such processors are processors polling events throagbdh
memory and sending events by triggering interrupts. The
master-slave systems implement the software communicatio
infrastructure based on such communication mechanisms to Fig. 3. A simple PFA.
exchange messages between master core and slave core. pTest
can use a native communication library to link committer and
committee across cores. According to the regular expmessig adaptive Testing Mechanism
and configuration parameters, pTest automatically geserat] .))
the adaptive test pattern to the committer. The committergs ~ AS mentioned previously in Section 1I-B, there are three key
the remote commands for the committee through the softw&@mPonents, which include pattern generator, pattern energ

communication infrastructure to start the testing work. ~ and bug detector, in pTest. Algorithm 1 written in pseudacod
illustrates the procedure of the adaptive testing.

IIl. ENABLING ADAPTIVE TESTING
A. Probabilistic Finite-State Automata Algorithm 1 : Adaptive Testing Procedure

Probabilistic finite-state automata are used in various dgr_ocedgre AdaptiveTest(RE, n, s, 0p)
mains such as mutation testing [12], machine translati@h [1 for i = 1 ton do
and bioinformatics [14]. The PFA is a promising model to2 T[i] « PatternGenerator (RE, PD, s)
specify systems that introduces probabilistic choice tal de end for
with possible actions. For example, in practice, a hidderf" M Patt.emMerger(T’ n, op)
Markov model (HMM) [15] that emits a sequence of symbols5: CTeateChildProcess()
according to probability distributions is the most commgpet 6 if CurrentProcess = ChildProceshien
of probabilistic finite-state automata. In this section, gee /- BugDetector(op)
a formal definition of the PFA that is simplified by removing & €lse ,
initial state probabilities and final state probabilitiesreet 9 Committer(M)
our requirement in this paper. We introduce the concept" end if
of a PFA to generate test patterns according to probabilgpd procedure
distributions.

Definition 1: A probabilistic finite-state automaton is a six- The configuration parameters ames, andop. The proce-

tuple (@, %, 4, qo, F',), where: dure, AdaptiveTest, of pTest initially invokes the procedure,

1) Q is a finite set of states; PatternGenerator, to run the PFA to generate the sBtof

2) X is a finite alphabet; n test patterns. The size of each test pattern is denotesl by
3) 0 CQ x X xQ is the state transition relation; Then the generated test patterns are systematically mernged

4) qo € @ is the initial state; one, M, by invoking the procedurePatternMerger. The

5) F C Q is the set of final states; work of PatternMerger is to generate the interleaved test
6) P : 6 — RT is the transition probability function suchpatterns to explore all feasible process interleaving iraater-

that: slave system. It acts as a scheduler to perform interesting

, concurrency scenarios for systematical testing. In aafditi
Z P(g,a,q") =1, where g € Q- (1) he bug detector is run as a new process to fully monitor the
Vaex.q'eQ progress of the testing. The parametgy,indicates the pattern
Figure 3 shows a simple graphical representation of PRAerger to produce the specific test pattern that can helpupe b
with three states) = {qo, 41,92}, only one initial state, detector find out the specific bug such as slave system crashes
qo, @ four-symbol alphabet. = {a,b,¢,d}, and four state or concurrency faults. The bug detector tracks the exegutio
transition probabilities{P(qo,a,q1) = 0.6, P(qo,b,q2) = history of each test activity to find out the potential fa@arin
0.4, P(q1,¢,q1) = 0.3,(q1,d,q2) = 0.7}. Each transition master-slave systems. Eventually, according to the tetrpa
has an associated probability that is a real number strictlje committer issues the corresponding commands to enable
between 0 and 1. The sum of the probabilities of all possiblee remote testing for a slave system.
transition for a given state is equal to 1. The regular exgpoes Algorithm 2 written in pseudocode illustrates the procedur
describing the language recognized by this simple PFA d$ the pattern generator. The pattern generator generdgss a
(ac*d) | b. pattern with sizes at each invocation. A generated test pattern

Algorithm 2 : Pattern Generator Procedure CP;
procedure PatternGenerator(RE, PD,
s)

1: NFA — ConvertToN F A(RE)

2: PFA «— ConstructPF A(NFA, PD)

3: Q < Initial state in the PFA

4 P[] < Q

5: for i =2 to s do

6: if Q has probabilistic choicethen
7 Q' — MakeChoice(Q, PFA)
8: Pli]—Q
9 Q—Q CPy = (mp, s1, p1->P2->p3, 2, Pa)
10: else [CP2=(ms, Sz, pz->P1->Ps, 1, pr->pa)
11: Q' «— The reachable state
12: P[Z] —Q Fig. 4. A sample expression of state recording of concurpeotesses.
13: Q—Q
14: end if
15: end for the corresponding slave process. The current state of a slav
16: return P process and the given test pattern are stored, respectinely
end procedure the second and third field. Furthermore, the sequence number

given in the fourth field of the recor@ P; indicates that the
current state of the test patterng. The fifth field of the

is denoted byP. It first constructs the nondeterministic finitefecordC' Py represents the subsequence of the test pattern,
state automaton(NFA) by interpreting the regular expoessi should be executed in the next time. The implication of the
RE, and then converts the NFA to the PFA by attaching tHecordC'P; is the same as the recodP; .

probability distributionsPD. When the state transition occurs,

the current state in the PFA calls the procedMekeChoice,)) } .
to obtain the next state if it has a probabilistic choice tkena 1 hiS section presents the evaluation of our proposed gestin
mechanism described in Section 1ll. We have implemented

C. State Recording of Concurrent Processes pTest on OMAP5912 OSK platform. This platform contains
We define the related expression to clearly describe t ?\;itsrsogglezneo#_shdyal-core syzte?-oiléazl-%l;p(ioé\)ﬂ %'%;Ejs
state recording of concurrent processes in master-slaterag W ('jc f’ggoliﬂngos_ﬁ C055a DSF; z ith 1('30
for multicore processors. The state recording of conctirre processor, and a “MHz X processor wit
bytes of internal memory. The two processor can exchange

processes is useful for the bug detector to monitor the pssgr . .
of the testing. Each process in a slave system is COhtI’O”S\éentS and data via four mailboxes and 250 Kbytes of shared

by the corresponding remote process in a master system\.Agrnal SRAM. pTetst wasdexecfuted.m Ltltr:ux :unnmtg otn the
assume that there is a one-to-one correspondence bet core as master and periorming the stress test on a

processes in & slave system and processes in a master sy§ e coen?%itr?i:?a?o”nesdb%ct:vcv);i:lurr:z]algt%ro g;gtzgizg Zizv?assigleerﬁ
and build the expression to meet our requirement in thispa)
P d P pon OMAP5912 processor were handled by a middleware called

Definition 2: The expression of the state recording of con- Brid 161 which ides the basi icati
current processes in a master-slave system is a five-tuﬁ]%(;Leanigm%e [16] which provides the basic communication

(¢m,qs, TP, SN, és), where:

IV. EVALUATION

1) g¢,. is a state of a master process; A. Case Study: pCore

2) gs is a state of a slave process; We now describe the real testing case to demonstrate the

3) TP is the test pattern for the slave process; usage of pTest. We applied the PFA of pCore to pTest. pCore

4) SN is the sequence number of the state of the tgsta microkernel designed for specialized processing units
pattern; such as a VLIW DSP processor, of a embedded multicore

5) ds is the subsequence of the test pattern. processor. The basic execution unit in pCore is a task eerr

Figure 4 shows a sample expression of state recordingtofa thread in the POSIX standard [17]. pCore supports up to
concurrent processes with two state reco€dB; andCP,. In 16 concurrent threads on the specialized processing uath E
this sample expression, the set of states for a master grodesk is typically forked with a unique priority by a thread in
is {m1, m2, ms} and the set of states for a slave process isnux to perform sub-functions. pCore provides preemptive
{s1, s2}. The test pattern has three statfs,, p», p3}. In the priority-based scheduling policy that always schedulegaisk
recordC P, the first field is the last state of a master procesgth highest priority to run. Two main features in the deyelo
before it enters a state that issues remote commands tatomniment of pCore are providing efficient kernel services witly ti

kernel size and supporting dual-core/multicore commuitina correctness of concurrent programs in our dual-core enviro
protocaols. ment. When the bug detector of pTest detected bugs in pCore
or concurrency bugs, we reproduced them according to the
information reported by the bug detector of pTest. In the firs
test case, pTest kept the number of active tasks at 16 in pCore

TABLE |
KERNEL SERVICES OF EORE FOR TASK MANAGEMENT

Abbreviation Description to execute the stress test on pCore. All of 16 active tasks
task create TC Create a task Al : indlivsi
tasi delete s Doleto & taok perfgrmed the same quick ;ort a]gorlthm to |_nd|V|duaIIytso
task suspend TS Suspend a task 128 integer elements. The size of integer data is 2 byteshend t
task resume TR Resume a task H H H
task chanprio TCH Change the priority of a task stack size of each task is 512 bytes_. pTest continued toecr(_aat
task yield TY Terminate the current running task tasks and removed them when their work was done. During

the first testing period, pTest detected the crash of pCat th

.)) was caused by the failure of garbage collection.
Table I lists the related kernel services provided by pCore|, ihe second test case. we attempted to verify if pTest

for task management. In the development of .concurrer?t Piuld find the potential concurrency faults such as deadlock
grams under master-slavg model, each task. n pCore IS Colie implemented a buggy version of the dining philosophers
trolled by the corresponding remote thread in Linux. It is 8ophjem that could lead to deadlock. The algorithm condiste
one-to-one correspondence between tasks in pCore and$hreg 06 concurrent tasks in pCore and three shared resource
in Linux. By surveying the activities of tasks in pCore, the, . \\ere mutually exclusive. A task needed two shared
regular expression describing the behavior of tasks can b, rces to resume its execution. We set the patten merger
modeled as of pTest to produce the test pattern that forced these tasks t
complete several set of cyclic execution sequences. pegst k
RE =TC(TCH)* | TSTR(TCH)*)*(TD$ | TY$). (2) tracing the states of these tasks to determine if these tasks
were terminating or not. A potential deadlock situation was

Task creation is the initial state during the life cycle obakt < giscovered by pTest during the second testing period.

in (2). After a task is created with a unique priority, thetrefs

the task operations include priority change, suspendisk, ta V. CONCLUSIONS ANDFUTURE WORK

resuming task and task termination can be performed m_zh IegaConcurrent software is more difficult to test than sequéntia
execution order. For example, the task resuming opera#ion G« e Moreover. the multicore programming brings more
be performed only when the corresponding task is SUSpend@H{allenge for testin’g. This paper proposes an adaptive test
pTest interpreted the above regular expression and the giYﬁ'g tool called pTest for concurrent software on embedded
probability distributions to construct the corresponditieA as multicore processors that adopt the master-slave modektpT
shown in Figure 5. The probability distributions were obead has been implemented on TI OMAP dual-core processor. The
regular expression describing the behavior of each task in
pCore is inputted to pTest to construct the correspondifg PF
pTest uses the PFA to model the test patterns for stresegesti
pCore and also detects the potential concurrency faults of
dual-core programs. The preliminary evaluation shows that
pTest can be a suitable testing tool for embedded multicore
processors.

The concepts of probability as well as the feasible combina-
tions of test patterns provide us a novel idea to systeniligtica
test a concurrent program through its possible executitimspa
To verify further the efficiency of pTest, we plan to identify
the influence of probability distributions on the genenatod
test pattern for different testing scenarios. MoreovereghT
currently does not consider the problems of that the refgita

through our experiences in developing concurrent prograf§st patterns can reduce the effectiveness of pTest. The fau
under the master-slave model for pCore on OMAP systenf§verage of pTest also does not be verified. We would like to
The pattern generator of pTest ran the PFA of pCore to produ@&@mine these problems of pTest in the future work.

the test patterns for pattern merger of pTest. The testrpatte
were used to verify if pCore would meet the demand for task
services.

Fig. 5. The graphic representation of the PFA for pCore.

VI. ACKNOWLEDGMENT

This research was supported in part by the NSC under grant
. nos. NSC 97-2218-E-007-009, NSC 97-2218-E-007-008 and
B. Fault Discovery NSC 96-2220-E-007-030, and by the MOEA research project

To evaluate the effectiveness of pTest, we designed twader grant nos. 95-EC-17-A-01-S1-034 and 96-EC-17-A-01-
test cases to test the robustness of pCore and to check $1e034 in Taiwan.

(1]
(2]

(3]

(4]

(5]
(6]

(7]

(8]

El

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

REFERENCES

OMAP5912 Application Processofexas Instuments.

S. L. Shee, A. Erdos, and S. Parameswara, “Heterogeneulispro-
cessor implementations for jpeg: a case study,Pmceedings of the
4th international conference on Hardware/software cogesind system
synthesis 2006, pp. 217-222.

O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby,da8. Ur,
“Framework for testing multi-threaded java progran@gncurrency and
Computation: Practice and Experienceol. 15, no. 3-5, pp. 485-499,
Feb. 2003.

M. Musuvathi and S. Qadeer, “Fair stateless model chmegkiin
Proceedings of the 2008 ACM SIGPLAN conference on Progragmi
language design and implementatjc2008, pp. 362-371.

E. M. Clarke, O. Grumberg, and D. A. Pelelllodel Checking MIT
Press, 2000.

A. Groce and R. Joshi, “Random testing and model checkingding
a common framework for nondeterministic exploration,Hroceedings
of the 2008 international workshop on dynamic analysisdhel con-
junction with the ACM SIGSOFT International Symposium oftvwaoe
Testing and Analysis (ISSTA'Q®008, pp. 22-28.

E. Vidal, F. Thollard, C. de la Higuera, F. Casacubertad &. C.
Carrasco, “Probabilistic finite-state machines-partEEE Transactions
on Pattern Analysis and Machine Intelligenaml. 27, no. 7, pp. 1013—
1025, Jul. 2005.

E. Vidal, F. Thollard, C. de la Higuera, F. Casacubertad &. C.
Carrasco, “Probabilistic finite-state machines-partlitEE Transactions
on Pattern Analysis and Machine Intelligenaml. 27, no. 7, pp. 1026—
1039, Jul. 2005.

K.-Y. Hsieh, Y.-C. Lin, C.-C. Huang, and J.-K. Lee, “Eni@ng micro-
kernel performance on vliw dsp processors via multisetedrgwitch,”
Journal of Signal Processing Systemsl. 51, no. 3, pp. 257-268, Jun.
2008.

R. V. Binder, Testing Object-Oriented Systems: Models, Patterns, and
Tools Addison-Wesley Professional, 1999.

J. E. Forrester and B. P. Miller, “An empirical study dfet robustness
of windows nt applications using random testing,” Fmoceedings of
the 4th conference on USENIX Windows Systems Sympdd@®, pp.
59-68.

R. M. Hierons and M. G. Merayo, “Mutation testing fromopabilistic
finite state machines,” irProceedings of the Testing: Academic and
Industrial Conference Practice and Research TechniquesJTATION
(TAICPART-MUTATION'07)2007, pp. 141-150.

S. Bangalore and G. Riccardi, “Stochastic finite-statedels for spo-
ken language machine translation,” Proceedings of the NAACL-
ANLPWorkshop on Embedded Machine Translation Syst2a@®, pp.
52-59.

E. L. L. Sonnhammer, G. von Heijne, and A. Krogh, “A hiddamarkov
model for predicting transmembrane helices in protein eeges,” in
Proceedings of the Sixth International Conference on ligeht Systems
for Molecular Biology (ISMB)1998, pp. 175-182.

L. R. Rabiner and B. H. Juang, “An introduction to hidderarkov
models,”IEEE ASSP Magazinevol. 3, no. 1, pp. 4-16, Jan. 1986.
K.-Y. Hsieh, Y.-C. Liu, P.-W. Wu, S.-W. Chang, and J. Ke¢, “Enabling
streaming remoting on embedded dual-core processorftaoceedings
of the 37th International Conference on Parallel ProcegsitCPP’08),
2008, pp. 35-42.

IEEE Standard|EEE Standard POSIX 1003.1¢-1995 thread extensions
IEEE, 1995, iSO/IEC 9945-1:1996.

