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Abstract—More and more processor manufacturers have
launched embedded multicore processors for consumer electron-
ics products because such processors provide high performance
and low power consumption to meet the requirements of mobile
computing and multimedia applications. To effectively utilize
computing power of multicore processors, software designers
interest in using concurrent processing for such architecture. The
master-slave model is one of the popular programming models
for concurrent processing. Even if it is a simple model, the
potential concurrency faults and unreliable slave systemsstill
lead to anomalies of entire system. In this paper, we presentan
adaptive testing tool called pTest to stress test a slave system and
to detect the synchronization anomalies of concurrent software in
the master-slave systems on embedded multicore processors. We
use a probabilistic finite-state automaton(PFA) to model the test
patterns for stress testing and shows how a PFA can be applied
to pTest in practice.

I. I NTRODUCTION

Embedded multicore processors have been widely adopted
in the consumer electronics market to meet the ever-increasing
performance requirements of mobile computing and multime-
dia applications. Such architecture is conventionally composed
of clusters of processing cores connected by the on-chip
communication networks, high-bandwidth memory subsys-
tems, and integrated peripheral interfaces. The TI OMAP [1]
dual-core processors adopting heterogeneous cores to balance
performance requirements and save power consumption is a
typical example of a multicore design. One of the popular pro-
gramming models on the embedded multicore systems is the
master-slave model. The master-slave model is a simple model
for concurrent processing and is widely used on asymmetric
multicore processors to utilize distributed computing resources
more effectively [2]. In the master-slave model, a cluster of
processing cores is classified into two categories, the master
and slave, where the executable processes in the slave cores
are controlled by the remote processes in the master processing
cores.

Although the master-slave model is a simple model, the
embedded multicore system that adopts it still may crash
by unreliable software. Two of the obvious factors that re-
sult in the failures of embedded multicore systems are the
crash of the slave system under heavy loads and synchro-
nization anomalies, such as deadlock and starvation, which
may occur in concurrent programs. The common functional
testing methodologies are not sufficient to find these software
faults during the development stage. Various tools have been

developed to test concurrent software and the robustness of
complex systems. For example, ConTest [3] and CHESS [4]
are significant tools for finding concurrency bugs in multi-
threaded software by systematically exploring all possible
thread interleaving. ConTest debugs multi-threaded programs
by randomly interleaving the execution of threads. Compared
to ConTest, CHESS uses model checking techniques [5] to
provide higher fault coverage. However, model checking is
not efficient when searching infinite state spaces and the
implementation may be incorrect due to the demands of
disciplined design [6].

In this paper, we present an adaptive testing tool called
pTest on embedded multicore systems to perform a stress test
on a slave system for verifying the correctness of services
provided by the slave system and detecting the synchronization
anomalies of concurrent processes in the embedded multicore
systems. pTest constructs a probabilistic finite-state automa-
ton(PFA) [7], [8] from the probability information and the
regular expression provided by users. We use a PFA to describe
the slave system services and generate each test pattern as a
set of the slave system services arranged in rational order.
A PFA provides the quantitative, probabilistic information to
resolve nondeterministic choices about which elements to be
included in the test patterns. The concept of pTest is first to
construct the PFA from the regular expression to automatically
generate adaptive test patterns and then according to these
test patterns, a committer on the master core automatically
issues remote commands to test the slave system at runtime.
To precisely construct the PFA, the probability distributions are
forwarded to the pattern generator of pTest. pTest records the
execution status of test activities and the state of processes in
master-slave systems. When pTest detects that the slave system
crashes or faults, it terminates the current job and helps users
reproduce the bugs.

We have applied pTest on TI OMAP dual-core processor
to examine its effectiveness. In the current design, we assume
that most users do not know the probability distributions given
to pTest to construct the relative PFA. The knowledge about
probability distributions can be learned through system profil-
ing or by providing analytic model to estimate the transition
activity of real systems. We give the case study to discuss how
pTest models the runtime system called pCore [9] running
on the DSP core in the TI OMAP dual-core processor as
slave. The evaluation of effectiveness of pTest runs the test



Process S1 Process S2

a: x = 1 f: y = 1

b: while (y = 1) g: while (x = 1) 

c:     yield(); h:     yield();
d: x 0; i: y 0;

e: end; j: end;

Process M1 Process M2

K: remote _cmd(Resume, S1);     L: remote_cmd (Resume, S2);

... x = 0 y = 0

Shared Memory in Multi-Core Processor

Fig. 1. Example of a concurrency fault.

cases to examine the robustness of pCore and to find out the
concurrency bugs from dual-core programs.

The remainder of this paper is organized as follows. Sec-
tion II first discusses the concept of stress testing and then
provides an overview of pTest. Section III presents the for-
mal description and the algorithm of our proposed testing
methodology. Section IV shows case studies and evaluates the
effectiveness of pTest. Finally, the conclusion and the future
work are presented in Section V.

II. OVERVIEW

A. Stress Testing

In practice, stress testing is an efficient method used to
examine the robustness of complex systems under heavy
load [10], [11]. Stress testing can be used to detect garbage
collection issues, memory leaks, and concurrency faults caused
by the unpredictable progress of concurrent processes. For
example, assume that there are four processes, S1, S2, M1,
and M2, running in the embedded multicore system as shown
in the Figure 1. Both S1 and S2 are suspended in the slave
system and the other two are run in the master system. The
scheduling policy of the slave system and the master system
are preemptive priority-based and time-sharing scheduling
policy respectively. The priority of the processS1is lower than
that of the processS2. In addition, the processM1 invokes the
remote processS1 by calling remote cmd(Resume, S1)and
the functionyield() means that the current process yields the
processor to other waiting processes. The system can finish all
of the processes in the execution orderL→ f → g → K →
i → j → a → b → d → e. However, if the execution order
is K → a → L → f → g → h → b → c → g → h → . . .,
the system enters the deadlock state. The stated, e, i, j
are unreachable. The callback function wrapper is one of
approaches to determine if a process is terminating or not.
If processes do not terminate or stay in the same state for
a period of time, the system may contain synchronization
anomalies. The potential concurrency faults can be found out
by performing a stress test. Furthermore, the effects of code
coverage influences the quality of fault detection. To detect
more software faults, the code coverage analysis is a useful
information for stress testing on large software systems.
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Fig. 2. Software architecture of pTest.

B. Overview of the Adaptive Testing Tool

pTest is designed to execute a stress test on a runtime system
running on a specialized processing unit of the embedded
multicore processors. pTest runs on the master system to
issue a large number of commands for stress testing the
runtime behavior of the slave system. Figure 2 shows the
software architecture of pTest, which is comprised of three
key components described as follows:

• Pattern generator The work of pattern generator is to
produce test patterns by running a PFA. It interprets the
regular expression and probability distributions to con-
struct the corresponding PFA. In addition, the knowledge
about the probability distributions is forwarded to the
pattern generator in advance. Both the regular expression
and the corresponding PFA recognize the same patterns
that is a sequence of the slave system services arranged
in rational order. Each test pattern represents a set of the
possible slave system services associated to a process on
slave system.

• Pattern merger Because each process in the slave system
is controlled by the remote processes in the master
system, the process execution order in the master system
affects the process execution order in the slave system.
To simulate the concurrent execution in master-slave
systems, the pattern merger extracts subsequences from
each test pattern produced by the pattern generator and
then systematically merges all subsequences into one final
test pattern. The work of the pattern merger is to generate
the interleaved test patterns. It is similar to a process
scheduler.

• Bug detector The bug detector tracks the progress of
test activities until it detects the potential system failures
and then it terminates the test activity that results in
these failures. The execution records of each test activity
including the state of a process of a slave system and the
execution status of commands are reserved by a slave



system and the committer. When the potential system
failures have been detected, the bug detector dumps the
related information to help users reproduce the bugs.

Each processing core in embedded multicore processors
is connected by the on-chip communication network. The
common inter-processor communication mechanisms adopted
in such processors are processors polling events through shared
memory and sending events by triggering interrupts. The
master-slave systems implement the software communication
infrastructure based on such communication mechanisms to
exchange messages between master core and slave core. pTest
can use a native communication library to link committer and
committee across cores. According to the regular expression
and configuration parameters, pTest automatically generated
the adaptive test pattern to the committer. The committer issues
the remote commands for the committee through the software
communication infrastructure to start the testing work.

III. E NABLING ADAPTIVE TESTING

A. Probabilistic Finite-State Automata

Probabilistic finite-state automata are used in various do-
mains such as mutation testing [12], machine translation [13],
and bioinformatics [14]. The PFA is a promising model to
specify systems that introduces probabilistic choice to deal
with possible actions. For example, in practice, a hidden
Markov model (HMM) [15] that emits a sequence of symbols
according to probability distributions is the most common type
of probabilistic finite-state automata. In this section, wegive
a formal definition of the PFA that is simplified by removing
initial state probabilities and final state probabilities to meet
our requirement in this paper. We introduce the concept
of a PFA to generate test patterns according to probability
distributions.

Definition 1: A probabilistic finite-state automaton is a six-
tuple (Q, Σ, δ, q0, F, P ), where:

1) Q is a finite set of states;
2) Σ is a finite alphabet;
3) δ ⊆ Q× Σ×Q is the state transition relation;
4) q0 ∈ Q is the initial state;
5) F ⊆ Q is the set of final states;
6) P : δ → R

+ is the transition probability function such
that:

∑

∀a∈Σ,q′∈Q

P (q, a, q′) = 1, where q ∈ Q. (1)

Figure 3 shows a simple graphical representation of PFA
with three states,Q = {q0, q1, q2}, only one initial state,
q0, a four-symbol alphabet,Σ = {a, b, c, d}, and four state
transition probabilities,{P (q0, a, q1) = 0.6, P (q0, b, q2) =
0.4, P (q1, c, q1) = 0.3, (q1, d, q2) = 0.7}. Each transition
has an associated probability that is a real number strictly
between 0 and 1. The sum of the probabilities of all possible
transition for a given state is equal to 1. The regular expression
describing the language recognized by this simple PFA is
(ac∗d) | b.

q0

q1

a (0.6)

b (0.4)

c (0.3)

d (0.7)

q2

Fig. 3. A simple PFA.

B. Adaptive Testing Mechanism

As mentioned previously in Section II-B, there are three key
components, which include pattern generator, pattern merger,
and bug detector, in pTest. Algorithm 1 written in pseudocode
illustrates the procedure of the adaptive testing.

Algorithm 1 : Adaptive Testing Procedure
procedureAdaptiveT est(RE, n, s, op)

1: for i = 1 to n do
2: T [i]← PatternGenerator (RE, PD, s)
3: end for
4: M ← PatternMerger(T , n, op)
5: CreateChildProcess()
6: if CurrentProcess = ChildProcessthen
7: BugDetector(op)
8: else
9: Committer(M )

10: end if
end procedure

The configuration parameters aren, s, andop. The proce-
dure,AdaptiveT est, of pTest initially invokes the procedure,
PatternGenerator, to run the PFA to generate the setT of
n test patterns. The size of each test pattern is denoted bys.
Then the generated test patterns are systematically mergedinto
one, M , by invoking the procedure,PatternMerger. The
work of PatternMerger is to generate the interleaved test
patterns to explore all feasible process interleaving in a master-
slave system. It acts as a scheduler to perform interesting
concurrency scenarios for systematical testing. In addition,
the bug detector is run as a new process to fully monitor the
progress of the testing. The parameter,op, indicates the pattern
merger to produce the specific test pattern that can help the bug
detector find out the specific bug such as slave system crashes
or concurrency faults. The bug detector tracks the execution
history of each test activity to find out the potential failures in
master-slave systems. Eventually, according to the test pattern,
the committer issues the corresponding commands to enable
the remote testing for a slave system.

Algorithm 2 written in pseudocode illustrates the procedure
of the pattern generator. The pattern generator generates atest
pattern with sizes at each invocation. A generated test pattern



Algorithm 2 : Pattern Generator Procedure
procedure PatternGenerator(RE, PD,
s)

1: NFA← ConvertT oNFA(RE)
2: PFA← ConstructPFA(NFA, PD)
3: Q← Initial state in the PFA
4: P [1]← Q
5: for i = 2 to s do
6: if Q has probabilistic choicesthen
7: Q’ ←MakeChoice(Q, PFA)
8: P [i]← Q’
9: Q← Q’

10: else
11: Q’ ← The reachable state
12: P [i]← Q’
13: Q← Q’
14: end if
15: end for
16: return P

end procedure

is denoted byP . It first constructs the nondeterministic finite-
state automaton(NFA) by interpreting the regular expression,
RE, and then converts the NFA to the PFA by attaching the
probability distributions,PD. When the state transition occurs,
the current state in the PFA calls the procedure,MakeChoice,
to obtain the next state if it has a probabilistic choice to make.

C. State Recording of Concurrent Processes

We define the related expression to clearly describe the
state recording of concurrent processes in master-slave systems
for multicore processors. The state recording of concurrent
processes is useful for the bug detector to monitor the progress
of the testing. Each process in a slave system is controlled
by the corresponding remote process in a master system. We
assume that there is a one-to-one correspondence between
processes in a slave system and processes in a master system
and build the expression to meet our requirement in this paper.

Definition 2: The expression of the state recording of con-
current processes in a master-slave system is a five-tuple
(qm, qs, TP, SN, δS), where:

1) qm is a state of a master process;
2) qs is a state of a slave process;
3) TP is the test pattern for the slave process;
4) SN is the sequence number of the state of the test

pattern;
5) δS is the subsequence of the test pattern.

Figure 4 shows a sample expression of state recording of
concurrent processes with two state records,CP1 andCP2. In
this sample expression, the set of states for a master process
is {m1, m2, m3} and the set of states for a slave process is
{s1, s2}. The test pattern has three states,{p1, p2, p3}. In the
recordCP1, the first field is the last state of a master process
before it enters a state that issues remote commands to control

m1

m2

s1

m3

s2

CP1

m1

m2

s1

m3

s2

CP2

CP1 = (m2, s1, p1->p2->p3, 2, p3)

CP2 = (m3, s2, p2->p1->p3, 1, p1->p3)

Fig. 4. A sample expression of state recording of concurrentprocesses.

the corresponding slave process. The current state of a slave
process and the given test pattern are stored, respectively, in
the second and third field. Furthermore, the sequence number
given in the fourth field of the recordCP1 indicates that the
current state of the test pattern isp2. The fifth field of the
recordCP1 represents the subsequence of the test pattern,p3,
should be executed in the next time. The implication of the
recordCP2 is the same as the recordCP1.

IV. EVALUATION

This section presents the evaluation of our proposed testing
mechanism described in Section III. We have implemented
pTest on OMAP5912 OSK platform. This platform contains
a heterogeneous dual-core system-on-a-chip(SoC) processor,
OMAP5912, which is composed of a 192-MHz ARM 926EJ-
S processor, and a 192-MHz TI C55x DSP processor with 160
Kbytes of internal memory. The two processor can exchange
events and data via four mailboxes and 250 Kbytes of shared
internal SRAM. pTest was executed in Linux running on the
ARM core as master and performing the stress test on a
runtime system called pCore running on the DSP core as slave.
The communications between master system and slave system
on OMAP5912 processor were handled by a middleware called
pCore Bridge [16] which provides the basic communication
mechanisms.

A. Case Study: pCore

We now describe the real testing case to demonstrate the
usage of pTest. We applied the PFA of pCore to pTest. pCore
is a microkernel designed for specialized processing units,
such as a VLIW DSP processor, of a embedded multicore
processor. The basic execution unit in pCore is a task referred
to a thread in the POSIX standard [17]. pCore supports up to
16 concurrent threads on the specialized processing unit. Each
task is typically forked with a unique priority by a thread in
Linux to perform sub-functions. pCore provides preemptive
priority-based scheduling policy that always schedules the task
with highest priority to run. Two main features in the develop-
ment of pCore are providing efficient kernel services with tiny



kernel size and supporting dual-core/multicore communication
protocols.

TABLE I
KERNEL SERVICES OF PCORE FOR TASK MANAGEMENT

Abbreviation Description

task create TC Create a task
task delete TD Delete a task
task suspend TS Suspend a task
task resume TR Resume a task
task chanprio TCH Change the priority of a task
task yield TY Terminate the current running task

Table I lists the related kernel services provided by pCore
for task management. In the development of concurrent pro-
grams under master-slave model, each task in pCore is con-
trolled by the corresponding remote thread in Linux. It is a
one-to-one correspondence between tasks in pCore and threads
in Linux. By surveying the activities of tasks in pCore, the
regular expression describing the behavior of tasks can be
modeled as

RE = TC((TCH)∗ | TSTR(TCH)∗)∗(TD$ | TY $). (2)

Task creation is the initial state during the life cycle of a task
in (2). After a task is created with a unique priority, the rest of
the task operations include priority change, suspending task,
resuming task and task termination can be performed in a legal
execution order. For example, the task resuming operation can
be performed only when the corresponding task is suspended.
pTest interpreted the above regular expression and the given
probability distributions to construct the correspondingPFA as
shown in Figure 5. The probability distributions were obtained

TCH

TC TS
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b(0.1)

d(0.2)

c(0.1)
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g(0.2)

h(0.1)

i(0.1)

j(0.1)

k(0.4)

m(0.2)

l(0.3)

start

TD

TY

Fig. 5. The graphic representation of the PFA for pCore.

through our experiences in developing concurrent programs
under the master-slave model for pCore on OMAP systems.
The pattern generator of pTest ran the PFA of pCore to produce
the test patterns for pattern merger of pTest. The test patterns
were used to verify if pCore would meet the demand for task
services.

B. Fault Discovery

To evaluate the effectiveness of pTest, we designed two
test cases to test the robustness of pCore and to check the

correctness of concurrent programs in our dual-core environ-
ment. When the bug detector of pTest detected bugs in pCore
or concurrency bugs, we reproduced them according to the
information reported by the bug detector of pTest. In the first
test case, pTest kept the number of active tasks at 16 in pCore
to execute the stress test on pCore. All of 16 active tasks
performed the same quick-sort algorithm to individually sort
128 integer elements. The size of integer data is 2 bytes and the
stack size of each task is 512 bytes. pTest continued to create
tasks and removed them when their work was done. During
the first testing period, pTest detected the crash of pCore that
was caused by the failure of garbage collection.

In the second test case, we attempted to verify if pTest
could find the potential concurrency faults such as deadlock.
We implemented a buggy version of the dining philosophers
problem that could lead to deadlock. The algorithm consisted
of three concurrent tasks in pCore and three shared resources
that were mutually exclusive. A task needed two shared
resources to resume its execution. We set the patten merger
of pTest to produce the test pattern that forced these tasks to
complete several set of cyclic execution sequences. pTest kept
tracing the states of these tasks to determine if these tasks
were terminating or not. A potential deadlock situation was
also discovered by pTest during the second testing period.

V. CONCLUSIONS ANDFUTURE WORK

Concurrent software is more difficult to test than sequential
software. Moreover, the multicore programming brings more
challenge for testing. This paper proposes an adaptive test-
ing tool called pTest for concurrent software on embedded
multicore processors that adopt the master-slave model. pTest
has been implemented on TI OMAP dual-core processor. The
regular expression describing the behavior of each task in
pCore is inputted to pTest to construct the corresponding PFA.
pTest uses the PFA to model the test patterns for stress testing
pCore and also detects the potential concurrency faults of
dual-core programs. The preliminary evaluation shows that
pTest can be a suitable testing tool for embedded multicore
processors.

The concepts of probability as well as the feasible combina-
tions of test patterns provide us a novel idea to systematically
test a concurrent program through its possible execution paths.
To verify further the efficiency of pTest, we plan to identify
the influence of probability distributions on the generation of
test pattern for different testing scenarios. Moreover, pTest
currently does not consider the problems of that the replicated
test patterns can reduce the effectiveness of pTest. The fault
coverage of pTest also does not be verified. We would like to
examine these problems of pTest in the future work.
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