
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper.00;00:1–21 Prepared usingcpeauth.cls [Version: 2002/09/19 v2.02]

Support and optimization of
Java RMI over a Bluetooth
environment
Pu-Chen Wei, Chung-Hsin Chen, Cheng-Wei Chen,
Jenq-Kuen Lee∗,†

Department of Computer Science, National Tsing Hua University,
HsinChu 30055, Taiwan

SUMMARY

Distributed object-oriented platforms are increasingly important over wireless environments for providing
frameworks for collaborative computations and for managing a large pool of distributed resources. Due to
limited bandwidths and heterogeneous architectures of wireless devices, studies are needed into supporting
object-oriented frameworks over heterogeneous wireless environments and optimizing system performance.
In our research work, we are working towards efficiently supporting object-oriented environments over
heterogeneous wireless environments. In this paper, we report the issues and our research results related to
the efficient support of Java RMI over a Bluetooth environment. In our work, we first implement support
for Java RMI over Bluetooth protocol stacks, by incorporating a set of protocol stack layers for Bluetooth
developed by us (which we callJavaBT) and by supporting the L2CAP layer with sockets that support
the RMI socket. In addition, we model the cost for the access patterns of Java RMI communications. This
cost model is used to guide the formation and optimizations of the scatternets of a Java RMI Bluetooth
environment. In our approach, we employ the well-known BTCP algorithm to observe initial configurations
for the number of piconets. Using the communication-access cost as a criterion, we then employ a spectral-
bisection method to cluster the nodes in a piconet and then use a bipartite matching scheme to form the
scatternet. Experimental results with the prototypes of Java RMI support over a Bluetooth environment
show that our scatternet-formation algorithm incorporating an access-cost model can further optimize the
performances of such as system.

KEY WORDS: Distributed Object-Oriented Computing; Wireless Computing; Java RMI; Bluetooth Architec-
tures; Collaborative Computing

∗Correspondence to: Department of Computer Science, National Tsing Hua University, HsinChu 30055, Taiwan
†E-mail: jklee@pllab.cs.nthu.edu.tw
Contract/grant sponsor: The work was supported in part by NSC-90-2218-E-007-042, NSC-90-2213-E-007-074, NSC-90-2213-
E-007-075, MOE research excellent project under grant no. 89-E-FA04-1-4, and MOEA research project under grant no. 91-EC-
17-A-03-S1-0002 of Taiwan.

2 P. C. WEI ET AL.

Java ProgramsDigital Rendering
Component

Financial Service
Object

Interactive Medical-
Modeling Applets

Decision-Making
ObjectsNumerical Analysis

Object

QoS

RMI

Wired Wireless

Ethernet
VIA

InfiniBand … WLAN
Bluetooth

GPRS …

Figure 1. Java RMI over heterogeneous networks.

1. Introduction

Distributed object-oriented platforms operating over wireless environments have become important
components for distributed computing and collaborative software frameworks. Among distributed
object-oriented software, Java RMI is one of the key methods for performing distributed computing
in Java environments. For example, Jini network technology (based on Java RMI) provides an
administration-less network environment over which devices can collaborate together via remote
service, service discovery, etc. The Java RMI protocols supported over wireless environments, such
as Bluetooth, GPRS, and CDMA, can provide a software infrastructure for mobile and parallel
environments. In the case of Java RMI, parallel computing can use asynchronous thread invocations of
RMI to the remote site, including wirelessly. With the increasing number of small devices in computing
environments, the software support, scalability, and optimization issues of such environments must be
considered. Computation-intensive tasks can be performed on mobile devices, with limited computing
power, by communicating with servers via RMI. As illustrated in Figure 1, the RMI services can be
implemented on heterogeneous networks, either wired or wireless. Java proxy supports and exception
handling can also be employed to support Java RMI over heterogeneous network environments;
optimization is then based on the connectivity assignments among networks and the quality of service.
We have developed several key technologies in our research efforts to develop a framework for
supporting heterogeneous networks. Supporting Java RMI over heterogeneous wireless environments
requires components in each wireless environment and the provision of roaming capabilities in the RMI
layers over them. In this paper, we report a method for efficiently using Java RMI over a Bluetooth
environment.

Bluetooth is an emerging technology for short-range, low-power wireless applications. The original
purpose of Bluetooth as proposed by Ericsson was to replace cables with RF transmissions,
with applications such as cellular phones, PDAs, and digital cameras. Physical limits on the
data transmission rate means that it achieves data rates up to 723 kbps, which is sufficient for
many applications. Several piconets can be combined into a scatternet. However, interpiconet
communications are expensive, and there are physical limits to the number of nodes within the same

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

SUPPORT AND OPTIMIZATION OF JAVA RMI OVER A BLUETOOTH ENVIRONMENT 3

piconet. In a specified area, nodes can be configured as connected networks containing masters and
bridges. In addition, the communication patterns via RMI of a Java program significantly affect the
runtime performance in an ad hoc network, and this should be taken into account when configuring
scatternets using Bluetooth.

In this paper, we investigate the issues underlying the support of Java RMI over a Bluetooth
environment. Our supports include several key technologies. First, a set of protocol stack layers written
in Java for Bluetooth – which we callJavaBT– was developed, in which the host controller interface
(HCI) layer provides a uniform interface for accessing Bluetooth hardware capabilities. The logical
link control and adaptation protocol (L2CAP) provides connection-oriented and connection-less data
services to upper layer protocols with protocol multiplexing capability, segmentation and reassembly
operations, and group abstractions. These two layers of protocol drivers can help programmers to write
Bluetooth applications in the Java programming language. Next, we provide a socket in the L2CAP
layer for the RMI socket, which provides the support for Java RMI over Bluetooth. In addition, we
model the cost for the access patterns of Java RMI communications. The cost model is used to guide
the formation and optimizations of the scatternets of a Bluetooth environment associated with Java
RMI environments. In our approach, we first initially configure the number of piconets based on the
well-known BTCP algorithm [20]. However, this method does not take the access patterns of RMI
communications into consideration. In our method, we use a cost model for access patterns of RMI
communications. With the support of runtime profiling in Java, we can then dynamically reconfigure
the scatternets to optimize the Java RMI performance over them. This is particularly useful for systems
with periodic behavior or other system behaviors related to historical or profiling data. With the cost
model for access patterns of RMI communications, we then execute a two-step algorithm. In the first
stage, we employ a recursive spectral bisection method and KL-refinement procedure to cluster nodes
making the frequent transmissions. After this stage, a postconfiguring method employing a bipartite
matching scheme is used to determine the role of nodes and hence form an optimal scatternet topology.

We report experimental results that demonstrate that our prototype model supports Java RMI over a
Bluetooth environment. In our experimental test bed, our implementation of the Bluetooth protocol
stack for Java platforms,JavaBT, is tested with a pair of Ericsson Bluetooth Development Kits
(EBDKs) connected to the personal computer. The EBDK is a Bluetooth hardware and software
development board, and we connect the EBDK to the computer in the test bed. The current
implementation ofJavaBTis implemented with the JDK 1.1.8 platform with JavaCOMM API 2.0
for Microsoft Windows. We performed experiments using numerous benchmarks: the RMI benchmark
suite [17], the DHPC Java benchmarks [15], and the Java Grande Forum MPJ benchmarks [6]. In
addition, we tested the scalability of scatternet formation by considering the access-cost patterns of
RMI methods by incorporating our proposed mechanisms. The experimental results show that our
scatternet-formation algorithm incorporating an access-cost model outperforms the one that does not
consider the access graphs of Java RMI over a Bluetooth environment. This work also forms part of
research excellence projects of our university and of our research efforts to develop and investigate
technologies for distributed-component architectures [4, 12, 13].

The remainder of the paper is organized as follows. Section 2 gives the technical details for our
support of Java RMI over L2CAP sockets of a Bluetooth environment. Section 3 provides the cost
model for the access patterns of RMI communications. Section 4 presents our optimization schemes to
form scatternets based on our cost model. The experimental results are then given in Section 5. Section

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

4 P. C. WEI ET AL.

��������

�	
�� �
�

��

�
�������

������
�

����������������

��������

�	
�� �
�

������
�

����������������

(a) (b)

Figure 2. (a) Running Java RMI over TCP/IP in the Bluetooth protocol stack. (b) Running Java RMI over the
Bluetooth L2CAP layer directly.

6 describes related work and presents a discussion. Finally, Section 7 concludes this paper. Appendix
A presentsJavaBT, a protocol stack written in Java for the Bluetooth environment.

2. Supporting Java RMI over a Bluetooth Environment

2.1. Support for Java RMI over Bluetooth Layers

In this section, we present our methodology for supporting Java RMI over a Bluetooth environment. In
our research framework, we have implemented two sets of software infrastructure: we first implement
a set of layers for Bluetooth protocol stacks in Java – the software is calledJavaBT, and we then
implement the Java RMI layer on top of our software with Bluetooth protocol stacks. Traditionally,
the Java RMI implementation in the Sunr JDK is running over a TCP/IP network. However, the
current TCP/IP support in Bluetooth passes through several protocol layers, including baseband,
L2CAP, SDP/RFCOMM, PPP, IP, and TCP. This degrades the communication performance and require
additional resources. However, this problem can be reduced by running the TCP/IP over an L2CAP
layer.

With the above mechanism, we can make Java environment over the Bluetooth wireless network by
running the Java RMI on the TCP/IP over Bluetooth wireless network. This will still need the TCP/IP
support of the Bluetooth protocol stack (see Figure 2(a)). In our research software framework, we have
the Java RMI over the L2CAP layer directly to reduce the protocol stack implementations overhead
and to improve the performance (see Figure 2(b)). This reduces the number of layers in the protocol
stack as well as the well-known overhead of TCP/IP layers.

We developed a custom Java RMI library that uses the Bluetooth L2CAP layer instead of a TCP/IP
socket. A custom RMI socket factory is used to transfer data in the Bluetooth L2CAP layer. Under

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

SUPPORT AND OPTIMIZATION OF JAVA RMI OVER A BLUETOOTH ENVIRONMENT 5

�����������	
�	������

���������������

����������	���

���������	���
����������	���

���������	���

�	�����������

�	���

���������������

	���

�	���	���

������

��	
�	

������

����������������	���

�����������������	��� ����������������	���

�����������������	���

Figure 3. Support for Bluetooth sockets for Java RMI.

the Java RMI layer, we also develop a Java Bluetooth protocol stack including an L2CAP layer, an
HCI layer, and a replaceable transport layer to communicate with the Bluetooth hardware through Java
Native Interface.

2.2. The Bluetooth Socket for Java RMI

We build a family of classes to provide functionality for the Java socket over our Bluetooth driver
(Figure 3): BluetoothServerSocket, BluetoothSocket, BluetoothInputStream, BluetoothOututStream,
and BluetoothInetAddress. Our BluetoothServerSocketclass extends thejava.net.ServerSocketto
provide the same interface as the originalServerSocketin one that listens to the L2CAP layer. It
also implements theL2CAPEventIndicationInterfaceto receive L2CAP events. The functions of the
BluetoothServerSocketclass are as follows:

1. Listen to the connection request.BluetoothServerSocketoverloads the constructor methods
for initializing the L2CAP service and waiting for connections. After creating an instance of
theBluetoothServerSocketclass, it listens to a special Bluetooth L2CAP PSM and waits for the
BluetoothSocket’s connection requests.

2. Accept the connection request.BluetoothServerSocketoverrides theaccept method of
java.net.ServerSocketto accept the connection fromBluetoothSocket. BluetoothServerSocket
implementsL2CAPEventIndicationInterfaceto receive the L2CAPConnectIndevent, after
which BluetoothServerSocketcreates aBluetoothSocketwith the specific L2CAP channel
identifier (CID) from that event and returns it.

3. Retrieve the local Bluetooth address.BluetoothServerSocketoverrides thegetInetAddress
method of java.net.ServerSocket. In the originalServerSocket, this method returns the local
address; but in theBluetoothServerSocket, it returns aBD ADDR object that represents the
Bluetooth address of the local Bluetooth device by callinggetLocalBDADDRof the L2CAP
service.

Next, ourBluetoothSocketclass extendsjava.net.Socketto provide the same interface as the original
socket but whilst transmitting data over the L2CAP layer. The functions of theBluetoothSocketclass
are as follows:

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

6 P. C. WEI ET AL.

1. Connect to the remote host.BluetoothSocketoverrides the constructor methods for initializing
the L2CAP service and connecting to the specific Bluetooth address and PSM.

2. Read data from BluetoothSocket. BluetoothSocketoverrides thegetInputStreammethod of
java.net.Socket. This method returns an instance ofBluetoothInputStreamthat reads data from
the L2CAP channel.

3. Write data to BluetoothSocket. BluetoothSocketoverrides thegetOutputStreammethod of
java.net.Socket. This method returns an instance ofBluetoothOutputStreamthat writes data to
the L2CAP channel.

4. Retrieve the local and remote Bluetooth address.BluetoothSocketoverrides the
getLocalAddressand getInetAddressmethods ofjava.net.Socket. In the original socket, the
getLocalAddressreturns the local address; but inBluetoothSocket, it returns aBD ADDR
object that represents the Bluetooth address of the local Bluetooth device by calling
the getLocalBDADDR method of the L2CAP service. ThegetInetAddressmethod of
BluetoothSocketreturns the remote Bluetooth address by callinggetRemoteBDADDRof the
L2CAP service.

Next, we design aBluetoothInputStreamclass as an input stream for reading data from an L2CAP
channel – this is an extension ofjava.io.InputStream. In addition, aBluetoothOutputStreamclass is
implemented as an output stream for writing data to an L2CAP channel. – this is an extension of
java.io.OutputStream. Next, we have theBluetoothInetAddressclass extendingjava.net.InetAddress
to represent the Bluetooth address.BluetoothInetAddresswraps theBD ADDRand provides the same
interface asInetAddress.

Finally, to run the RMI over Bluetooth, we create a class,BluetoothRMISocketFactory, that extends
java.rmi.server.RMISocketFactory, and implements thecreateServerSocketandcreateSocketmethods.
The createServerSocketmethod creates aBluetoothServerSocketwith a specific port, and returns
it; the createSocketmethod creates aBluetoothSocketthat connects to a specific Bluetooth address
with a specific port, and returns it. To use ourBluetoothRMISocketFactoryclass in the RMI, we
call the static method,setSocketFactoryof the RMISocketFactoryclass, and create an instance of
BluetoothRMISocketFactoryfor the parameter.

For clarity of the main text, the technical details ofJavaBT– the set of protocol stacks supported by
us – are provided in Appendix A.

3. Cost Model for RMI over Scatternets

In the scatternet formation, we have seven nodes forming each piconet which can then be clustered
into scatternets. For a Java or Jini system over a Bluetooth environment, objects communicate mainly
via RMI and also on top of Bluetooth. The access communication patterns of RMI can be used to
help guide the formation of scatternets. Figure 4 shows an example of a packet routing path, which is
configured with the BTCP algorithm [20] and is guaranteed to minimize the piconets with complete
connections when constructing a scatternet. In Figure 4, filled and open circles denote masters and
slaves, respectively. The whole scatternet requires only a single bridge node (S14/S22). Suppose that
a remote object placed on S21 is invoked by S11 which is at a different piconet. Assume that the path
marked by triangles is the path, and the weights of edges are data flows (in bytes) conveyed from

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

SUPPORT AND OPTIMIZATION OF JAVA RMI OVER A BLUETOOTH ENVIRONMENT 7

���

� �� ���

���
� ��

� ��
��� ��	

������

��

 ��
 � � ��

 ��
 � � ��

Figure 4. A scatternet with 2 piconets and 11 BT devices.

���

� ��

���

���
� ��

� ��

���

��	

���

���

 ��
 � � ��

 ��
 � � ��

Figure 5. A configuration that takes the communication patterns into consideration.

callers. BTCP is a conventional approach to form scatternets; it does not consider the access graphs
of RMI communication patterns. Figure 5 examines another configuration, which considers the access
patterns of communications in forming scatternets. Frequently communicated notes S11 and S21 are
kept in the same piconet in order to reduce the communication cost. In terms of communication cost,
in this case the configuration in Figure 5 is superior to that shown in Figure 4.

A cost model is used to guide the formation of the scatternets for RMI over the Bluetooth
environment. We describe our cost model below. The Bluetooth scatternet can be represented as a
undirected graph G=(V,E). V is a set of nodes of scatternet; E is set of links connecting two nodes,

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

8 P. C. WEI ET AL.

where ei, j=(vi ,v j)∈E. Let Pi, j = (vi ,vi+1,..,vj) be a ordered set denoting a path from nodevi to nodev j .
The cost model of scatternet traffics over RMI is characterized by the following parameters:

1. A remote methodk implemented on nodev j denotesRMj
k. Fj

k(i) is the number of calls for which
the caller at nodevi invokes a remote methodk onv j during a certain time period.

2. Di
n(RM j

k) denote the amount of message traffics when nodevi calls nodev j with RMI method
k in its nth call. Throughout a call/return pair, the caller passesdin parameters (in byte) during
transmission and the callee returnsdout processed data (in bytes) whilst invokingRMj

k. We then

have Di
n(RM j

k)=(din+dout) bytes transferred during thenth call.
3. Actually, there are six kinds of SCO packets that can be selected in the Bluetooth specification

to ensure quality of service, but we merely use DH1 packets here to simplify the cost model.

Our configuration criteria for scatternets under RMI operations are twofold: (1) the cost of
interpiconet communication is very expensive and hence the most frequently exchanged data should be
placed on the same piconet whenever possible, and (2) the number of members located at each piconet
should be similar.

Let A be an adjacent matrix of G, where ai, j=1 if a direct edge linking vi , and vj exists; otherwise
ai, j=0, ai, j∈A. We define the weighted message cost of any two nodes as c’i, j with caller vi and callee
v j , and C’ is an n×n cost matrix for the whole cost. hop(i,j) denotes the number of hops in a path Pi j .
Therefore,

c′i, j = ∑
k∈RMj

F j
k (i)

∑
n=1

Di
n(RMj

k).min(hop(i, j)), (1)

whereRMj is the set of methods to be invoked at nodev j . In addition, since the coordinator has
detailed information about all nodes in scatternet, the shortest path min(hop(i,j)) can be found by
Floyd’s algorithm [5]. C’ finds all the unidirectional traffic between node pairs, but the path workloads
are what concerns us. We therefore use the new matrix C, where ci, j = c′i, j +c′j,i . This symmetric matrix
can be regarded as a complete graph with weighted edges whose values are message costs during a time
period between two nodes. This is used as the cost model to guide the formation of scatternets.

4. Algorithms for Optimizing RMI over Scatternets

The strategy and configuration process for employing the Java RMI cost model for optimizations of
scatternet formations is as follows:

1. Initialize all Bluetooth devices ready for communication.
2. Form an initial scatternet with a coordinator that knows status of other nodes, using the BTCP

algorithm.
3. Coordinate and collect runtime behaviors of programs and access frequency from all nodes.
4. If the scatternet workload is heavy and some nodes at different piconets communicate frequently,

determine the new clustering for scatternets.
5. Connect newly formed clusters.

We describe the above steps in the following subsections.

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

SUPPORT AND OPTIMIZATION OF JAVA RMI OVER A BLUETOOTH ENVIRONMENT 9

4.1. Initial Configuration of Scatternets

In the first step of our algorithm, we adopt BTCP [20] as an initial scatternet-formation algorithm.
BTCP is a state-of-the-art algorithm for forming Bluetooth scatternets, but the standard version does
not consider the access patterns of Java RMI. Therefore, once the initial configuration is obtained, we
refine the configuration according to the following constraints and properties:

1. All nodes must be located on a transmission power-reachable range.
2. The maximum degree of a bridge node is 2.
3. To prevent interference and to reduce packet delays, the number of piconets forming a scatternet

should be minimized.
4. There is at most one bridge between any two piconets.

This algorithm was implemented by finding a central node called the coordinator, allocating minimal
piconets, and establishing the whole scatternet. For the sake of completeness, we outline this algorithm
in Figure 6. An effective and predefined formula is used in the BTCP algorithm to determine the
number of piconets and bridge nodes.

4.2. Scatternet Clustering with Spectral Bisection

By considering the access communication patterns of RMI, we hope to form scatternets that minimize
communication costs. We want to determine which nodes should be formed as a piconet so as to
minimize interpiconet communication. We use a partitioning algorithm to bisect|V| nodes into two
groups of equal size while minimizing the message cost. The partitions can be performed recursively
until the piconets are formed. Moreover, a local refinement method can be used to pick the master of
a piconet by minimizing intrapiconet traffic. We formulate the equation as follows. To find a piconet
of the vertex set in two parts V+ and V−, V+∪V−=V, we define a vector X∈ Rn called the indicator
vector. If vi ∈ V+ then xi=1; otherwise xi=-1. Therefore, the interpiconet connection costs between
two piconets aref (x) = ∑ 1

4.ci j (xi − x j)2. We summarize the constraints and formulate an objective
function as follows:

Minimize: f (x) =
1
4
.∑

ei j

ci j (xi −x j)2 (2)

Sub ject to:
n

∑
i=1

xi = 0,xi = {1,−1} (3)

Equation 2 makes these two partitions fully equivalent if|V| is even. We also define a diagonal matrix
Cd, where cdi,i = ∑ei j

ci, j ; otherwise cdi,i=0 for i 6= j. Inspection of our f(x) reveals

∑
ei j

ci j (xi −x j)2 = ∑
ei j

ci j .(x2
i +x2

j)−2.∑
ei j

xix j .

Following the first theorem of graph theory and formula transformation [22], we obtain

∑
ei j

ci j (xi −x j)2 = XT(Cd−C)X. (4)

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

10 P. C. WEI ET AL.

Input: Bluetooth devices set Sbt where any two nodes in proximity can communicate each
other.

Output: If |Sbt|≤8, construct exactly one piconet; otherwise construct a connected
scatternet.

•To generate the scatternet coordinator

To maintain a mechanism for time-limited scatternet formation and where each node
maintains a local status that is exchanged during election
Do

confront with random pairs(Si ,Sj)
the loser Sj is forced into PAGE SCAN state while
the winner Si continues the contention

Until all the other participants are in PAGE SCAN state

•According to a predefined formula P= d17−√289−8n
2 e, the coordinator allocates P piconets

and P∗(P-1)
2 bridge nodes. Paging the designated nodes and sending them data for setting

up a specified piconet

•Each master builds an individual piconet and connects the other piconets via a predefined
bridge node.

Figure 6. The BTCP algorithm.

The matrix L= (Cd-C) is a weighted Laplacian matrix, and this type of matrix has proven useful in
graph partitioning. Suppose there is a scalarλ such that LY=λY: eigenvector Y is followed by its
eigenvalueλ. Combining Equations 2 and 4, the original graph-partitioning problem is converted to a
discrete optimal problem. There exists no practical scheme for solving this since the partition problem
is NP-hard. Relaxing the constraint in Equation 3 by∑n

i=1xi = 0,xT .x = n, changes the problem to a
continuous bisection problem. We rewrite our cost function and subjection as

Minimize: f (x) =
1
4
.XT(Cd−C)X (5)

Sub ject to:
n

∑
i=1

xi = 0,xT .x = n (6)

The continuous approximation should be mapped to its primitive problem. If the partition is close to 1,
-1, the result is near to an optimal solution. Some important properties of L have been proven, where we

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

SUPPORT AND OPTIMIZATION OF JAVA RMI OVER A BLUETOOTH ENVIRONMENT 11

are concerned with the second smallest eigenvalue calledλ2 of L whose eigenvector Y2 is the minimal
solution in Equation 5.

Y2 is named the “algebra connectivity of graph” or “Fielder vector”. The algorithm in this stage has
two steps: (1) recursive spectral bisection is used to repartition all nodes in the original scatternet into
P clusters, and (2) the KL [8] procedure is applied to these unbalanced partitions to locally refine and
produce clusters of approximately the same size. The algorithm in Figure 7 integrates recursive spectral
bisection and KL to configure the scatternet according to a cost matrix. This processing produces
P clusters of balanced size. The algorithm in Figure 7 first performs a recursive spectral-bisection
algorithm and then uses the KL algorithm [8] (also known as the mincut algorithm). The fine tuning
of the KL algorithm is used when the number of clusters to be partitioned is not an even number. The
last few partitions, which are not well divided, are fine tuned by KL algorithm to produced clusters of
balanced size.

4.3. Connecting Scatternets

In this section we focus on postprocessing to connect the clusters together after the piconet partitioning
has been performed using the algorithm listed in Figure 7. This phase involves two stages. First we
need to determine the role of each node in the clusters and append a feasible edge (link) into each
node. A “master” attribute must be assinged to designated nodes on all clusters. After this procedure,
two bipartite sets are determined: master and slave. In the second step, “bridges” must be selected from
slave sets to connect the clusters together. Figure 8 gives the main steps for a heuristic approach to
perform these two steps. In the first step, the node for which the summation of total interior links is
maximal among a clusterPi is chosen as the master. In the second step, we calculate the communication
cost between two piconets,Pi and Pj by usingsk as a bridge, and denote it astk

i, j . Once this cost
is calculated, the assignments of bridges is based on it. There are several methods for choosing the
bridges. The method presented in Figure 8 follows the concept of BTCP algorithms to produce a
complete graph for connecting all the clusters together. In this method, each cluster has its slaves that
serve as bridges for other clusters. In this case, a bipartite matching scheme can be used based on the
tk
i, j cost calculated earlier to decide the matching between the slaves of a piconet and other piconets.
Other methods for choosing the bridges and connections for the partitioned clusters include finding the
minimum spanning tree. The minimum-spanning-tree approach gives the connectivity, but reduces the
energy consumption and collisions.

4.4. Complexity Analysis and Discussion

We now give the complexity of our proposed algorithm. The complexity of our initial configuration
follows that of the BTCP algorithm [20]. The complexity of the BTCP algorithm has time complexity
Ω(n/k), where n is the number of nodes and k is the maximum number of slaves in a scatternet. In
our second stage, we partition the communication traffic in the Bluetooth environment using spectral
bisection followed by tuning with the mincut algorithm. The complexity of the spectral bisection is
O(mn) when the Lanczos algorithm is employed. This algorithm normally converges in m iterations,
each requiring O(n) operations [18]. Next, the fine tuning of the KL algorithm is used when the
number of clusters to be partitioned is not an even number. Each iteration of KL algorithm requires
O(|E|) iterations, where E is the set of edges. Finally, we perform postprocessing to connect the

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

12 P. C. WEI ET AL.

Input: A scatternet topology S with n Bluetooth devices

let P = the number of piconets and n >8
let C = a n×n matrix of message cost for peer-to-peer communication
let L = Laplacian of C
Output: P clusters, where each cluster has either b n

Pc or b n
Pc+1 nodes

Do /* Recursive spectral bisection */
Find the Fielder vector Y2 of L
Compute V = X.Y2

Let m be the median value of elements of vector V

if (the i th element of X ≤m)
put vertex vi in cluster V+

else
put vertex vi in cluster V−

end if
Until the number of clusters = P

/* Refining and balancing P clusters */
Best Cluster = Current Cluster
let k∈ {1..P}, Sk = vertices in cluster k

for all vi , compute positive gains for move vi from current cluster to other clusters

While (Find a better cluster is possible) /* mincut */
Do

pick up the largest gain for moving vi ∈ Sm to
Sn

Sm = Sm\vi

Sn = Sn∪vi

if all clusters are balanced and Current Cluster is superior to Best Cluster
Best Cluster = Current Cluster

end if
recompute all the gains for movements

Until no more movements exist
end While

Figure 7. Recursive spectral partitioning with KL refinement.

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

SUPPORT AND OPTIMIZATION OF JAVA RMI OVER A BLUETOOTH ENVIRONMENT 13

Input: cluster sets P, where P={P1, ...Pn}

H = | Pi | ∗ | Pj | distance matrix (H is the hopping distance matrix between two clusters)

Output: a connected topology T

Do
for each Pi ∈ P, to find the master mi and put them into the set M.
To assign (Pi \mi) into slave set S.

Until all mi ∈ Pi are generated

For eachmi ∈M
To assign the slave attribute to j ∈ (S∩Pi).
To make links on (mi , j).

End for

For eachsk ∈ S
To select a bridge sk ∈ (Pi ∪Pj); recompute H for Pi and Pj after assuming sk is the

bridge for Pi and Pj .
To find the minimum communication cost tk

i, j between Pi and Pj using the newly
computed H.
End for

Do for eachPi ∈ P
To apply weighted bipartite matching algorithm to choose the connection cluster for

each slave sk ∈ S.

Constraints in bipartite matching:
permit no more than seven links on the same piconet.

Until all the bridges are generated

Figure 8. Algorithm for designating the role of nodes and the connecting scatternet.

cluster together after the piconets have been partitioned. This phase uses a bipartite matching scheme.
The complexity of bipartite matching [11] isO(P3), whereP is the number of piconets; since this is
performed for each picotnet,O(P4) is the upper bound.

We discuss some of the design and application issues related to our algorithms below. First, the
information for traffic loads can be collected into one server node. The algorithm then performs
graph partitioning as a background process without interfering with the main computations. Once the
partitioning is complete, we can initiate the reformation of scatternets.

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

14 P. C. WEI ET AL.

Table I. Detailed descriptions of benchmarks used.

Name Description Data size Reference
EP NAS EP generating Gaussian random numbers 16,777,216 [15]
Series Fourier coefficient analysis 10,000 [6]
LUFact LU Factorisation 500 [6]
SOR Successive over-relaxation 1,000 [6]
Crypt IDEA encryption 3,000,000 [6]
Sparse Sparse Matrix multiplication 50,000 [6]
MolDyn Molecular Dynamics simulation 2,048 [6]
MonteCarlo Monte Carlo simulation 2,000 [6]
RayTracer 3D Ray Tracer 150 [6]
SelSort Selection Sort 524,288 [9]

Hamming
Given an array of primes, output in numerical order and without
duplicates all the integers of the formai ∗b j ∗ck...≤ n

5 [17]

Second, our cost model assumes static nodes in the network and assumes nodes can be reached by
each other. Taking into consideration the distances between nodes and the interference effects on the
new arrangements of scatternets will be interesting for future explorations. However, our algorithm
can deal with nodes joining or leaving. Nodes joining or leaving the network can be handled by
conventional Bluetooth-formation algorithms (algorithms that do not consider RMI traffic). Once our
system collects sufficient summary information about communication traffic, we can reconfigure the
system according to our proposed mechanisms – this allows our method to deal with nodes joining or
leaving. Our work also considers the interference effects of Bluetooth devices. The initial configuration
and the amount of piconets in our algorithm are decided by BTCP (a conventional algorithm for
Bluetooth scatternet formations). BTCP is known to minimize the number of piconets so as to reduce
interference effects. In the second step of our algorithm, we use spectral bisection to determine which
group nodes will be in the same piconets. After that, in the third step we connect the piconets together
to form scatternets. In this phase of computations, we have some choices regarding the formation of
connections between different piconets. To reduce the interference effects, a minimum spanning tree
might be used instead of connecting the piconets together by a complete graph.

5. Experimental Results

We performed three experiments. In the first experiment, we evaluated the robustness of our
implementation of RMI software over a Bluetooth environment using numerous benchmarks from
the RMI benchmark suite [17], the DHPC Java benchmarks [15], and the Java Grande Forum
MPJ benchmarks [6]. The last benchmarks are based on MPJ, which is an MPI-like message-
passing interface for Java. We have implemented an MPJ interface that follows the mpiJava 1.2
specification [3]. It uses RMI as the underlying communication channel to evaluate the performance
of our implementation of RMI over Bluetooth. Table I lists the applications that our RMI successfully
ran in our early testing of the robustness of our software.

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

SUPPORT AND OPTIMIZATION OF JAVA RMI OVER A BLUETOOTH ENVIRONMENT 15

0

20

40

60

80

100

120

140

160

Hamming EP Series RayTracer SelSort

T
im

e
(s

ec
on

ds
)

1 node

2 nodes

Figure 9. The performance results of some benchmark applications.

In our test bed, the EBDKs are connected to two computers via their COM ports. We tested the
performance with one node and with two nodes : the one- and the two-node versions are sequential
and parallel versions for RMI over Bluetooth, respectively. The RMI server has one 1200-MHz AMD
CPU and 768 MB of RAM, and runs Microsoft Windows 2000 Server. The RMI client runs on an
IBM ThinkPad notebook containing a 700-MHz Intel Pentium III CPU and 256 MB of SDRAM,
and runs Microsoft Windows XP Professional. OurJavaBTBluetooth protocol driver and the test
applications run on Microsoft JavaVM that supports JDK 1.1.8 with additional RMI support and
Sun Java Communications API v2.0 for Microsoft Windows. Despite the limited bandwidth of the
Bluetooth specification, we observed performance gains on Hamming, EP, Series, RayTracer, and
SelSort benchmarks. The performance is shown in Figure 9. Note that due to the client and server
residing in different machines, the optimal speed-up for this case is around 1.7 times. However, with
a peak data rate of 723 kbps it is still much slower than fast Ethernet. Therefore, our experimental
results show that these types of numerical applications run well on our implementation of RMI over
Bluetooth. Collaborative software that requires a low communication bandwidth will probably run well
in this type of environment. Note that our support of RMI over Bluetooth also gives more high-level
control and a better programming environment than other Bluetooth environments. System loads at the
operating-system level can also be distributed to remote site servers with RMIs.

We now provide more insight into one of our experiments – that with selection sort. In this
experiment, we divide the selection-sort task into two parts and send it to remote computer over
Bluetooth RMI. Figure 10 illustrates that when the array size is increased to more than 262,144 bytes,
the distributed version running over the Bluetooth RMI has better performance that the local version.

In the second experiment, we evaluated the bandwidth and overheads with different layers ofJavaBT
and with RMI. The comparison was performed with HCI, L2CAP, and socket layers of ourJavaBT
and our RMI version. In this experiment, we transmitted byte arrays of different sizes between two
computers using our Bluetooth protocol driver. Figure 11 shows the bandwidth for these four layers,
and Figure 12 illustrates the overhead for these four layers in our test. OurHCITransportBaseLayer
supports the COM port communication between the HCI layer and the Bluetooth device. These figures

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

16 P. C. WEI ET AL.

1

10

100

1000

32768 65536 131072 262144

Size of Integer Array (items)

T
im

e
(s

ec
on

ds
)

Local

RMI

Figure 10. SelSort with local computation and a two-node version based on RMI over Bluetooth.

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

data size (bytes)

ba
nd

w
id

th
 (b

yt
es

/s
ec

on
d)

HCI

L2CAP

SOCKET

RMI

HCI 5569.46 5593.79 5534.69 5666.62 5491.21 5660.27 5654.20 5680.86

L2CAP 5514.86 5551.34 5558.72 5629.08 5579.58 5612.50 5661.35 5657.48

SOCKET 5314.51 5551.04 5548.03 5609.04 5548.89 5606.16 5661.35 5659.39

RMI 2244.33 2767.34 3729.13 4441.41 4909.50 5252.98 5400.11 5516.83

512 1024 2048 4096 8192 16384 32768 65536

Figure 11. A bandwidth comparison for different layers.

provide comparisons of additional data being sent at different layers in our current implementation;
most overheads are observed in the RMI version due to the sequential running of RMI.

Finally, we experimented with the scatternet-formation algorithms by exploiting the communication
patterns of RMI over a Bluetooth environment. The experiments involved simulations with our cost
model, with normal distributions being used for the necesary parameters. The cost in the experiment
is defined in Equation 1. Although matrixC is symmetric, the total cost can be only the summation of
the upper-right part of this matrix. To compute the total cost, we need a hop costH, an end-to-end call
frequencyF , and the amountD of data being transferred.H is dependent on the initial topology, and
we use a random-number generator to produce values forF andD. Figure 13 shows the performance
improvements over the initial configurations (BTCP algorithm) without considering the access patterns
of RMI executions for the specified parameter distribution in the figure – improvements of around 40%
are observed in this case.

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

SUPPORT AND OPTIMIZATION OF JAVA RMI OVER A BLUETOOTH ENVIRONMENT 17

0

200

400

600

800

1000

1200

1400

1600

1800

2000

data size (bytes)

av
er

ag
e

ov
er

he
ad

 (
by

te
s/

tim
es

)

HCI
L2CAP
SOCKET
RMI

HCI 9.73 18.73 27.73 54.73 99.73 198.73 387.73 765.73

L2CAP 13.94 26.94 39.94 78.94 143.94 286.94 559.94 1105.94

SOCKET 14.36 27.36 40.36 79.36 144.36 287.36 560.36 1106.36

RMI 103.24 116.24 142.24 194.24 298.24 508.44 929.74 1779.83

512 1024 2048 4096 8192 16384 32768 65536

Figure 12. Overhead comparison for different layers. Additional data sent at different layers are presented.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0 120 240 360 480 600 720 840 960

variation(Max = 960)

i
m
p
r
o
v
e

% 9 devices

17 devices

30 devices

Figure 13. Communication patterns using normal distribution withµ= 300,σ = 0−960.

6. Related Work

The efficient support for remote Java invocation is an important topic, since RMI provides a layer of
abstraction for communications. Previous research results have included an open RMI implementation
that makes better use of the object-oriented features of Java [21], ARMI [19], and Manta [14] systems
to reduce various drawbacks in RMI and to provide new types of RMI systems with added functionality,
and a better way of implementing RMI by exploiting Myrinet hardware features to reduce latencies [17]
and provide support for a broader range of RMI applications [2].

Zucotto has provided a Java environment for the Bluetooth environment [23], and IBM provides
a Bluetooth protocol driver for the Linux operating system, called BlueDrekar [7]. In addition, the

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

18 P. C. WEI ET AL.

OpenBT project [1] from Axis is an open-source project aimed at building a Bluetooth protocol
driver for the Linux operating system. Recently, the JSR-82 specification of the Java Community
Process [10] has standardized a set of Java APIs to allow these Java-enabled devices to integrate
into a Bluetooth environment. It would be interesting to further revise ourJavaBTprotocol stack to
conform with JSR-82 specifications. Rococo Software has provided a reference implementation [16]
for the specification defined by the JSR-82 Expert Group. Our implementation with Java RMI over the
L2CAP layer also provides a performance baseline for comparisons with other designs in the future.
In addition, we provide optimization methods for RMI programs over a Bluetooth environment to
optimize the formation of scatternets. We use spectral bisection methods [18] for graph partitioning.
Spectral bisection provides accurate mathematic modeling of the problem, but it takes longer. When
execution time is important, it can be reduced using multilevel schemes.

7. Conclusions

In this paper, we have reported the issues and our research results related to the efficient support of Java
RMI over a Bluetooth environment. In our work, we first enable the support of Java RMI over Bluetooth
protocol stacks, by incorporating a set of protocol stack layers for Bluetooth developed by us, called
JavaBT, and by supporting the L2CAP layer with sockets that support the RMI socket. In addition,
we have presented a cost model for the access patterns of Java RMI communications. The cost model
was used to optimize the formation of scatternets in a Bluetooth environment associated with Java
RMI environments. Experimental results show that our scatternet-formation algorithm incorporating an
access-cost model can be used to optimize the performance of Java RMI over a Bluetooth environment.

There are several research items left for future exploration. First, the JSR-82 specification of the
Java Community Process [10] recently standardized a set of Java APIs to allow these Java-enabled
devices to be integrated into a Bluetooth environment. It would be interesting to further revise
our proposedJavaBTto conform with the JSR-82 specification. Second, implicit in our scatternet-
optimization algorithm is the assumption that all nodes can be reached by other node, and hence a
more flexible algorithm is needed. Finally, supporting distributed computations over wireless devices
with heterogeneous architectures is an important direction for future explorations.

REFERENCES

1. Axis Communications.An open source Bluetooth protocol stack for Linux.
http://java.sun.com/products/javacomm/.

2. F. Breg, S. Diwan, J. Villacis, J. Balasubramanian, E. Akman, and D. Gannon. Java RMI performance and object model
interoperability: experiments with Java/HPC++.Concurrency: Practice and Experience, 10(11–13):941–956, 1998.

3. B. Carpenter, G. Fox, S.-H. Ko, and S. Lim.mpiJava 1.2: API Specification.
http://www.npac.syr.edu/projects/pcrc/mpiJava/mpiJava.html, October 1999.

4. C. W. Chen, C. K. Chen, and J. K. Lee. Building ontology for composition and optimization of parallel JavaBean programs.
In Proceedings of IEEE I-SPAN, May 2002.

5. T. B. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT Press, 1990.
6. The Java Grande Forum MPJ benchmarks. Edinburgh Parallel Computing Centre.

http://www.epcc.ed.ac.uk/javagrande/mpj.html.
7. A Bluetooth protocol stack for Linux. IBM.

http://www.alphaworks.ibm.com/tech/bluedrekar/.

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

SUPPORT AND OPTIMIZATION OF JAVA RMI OVER A BLUETOOTH ENVIRONMENT 19

8. B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.Bell System Technical Journal,
49(2):291–307, Feb., 1970.

9. U. Kremer, J. Hicks, and J. Rehg. A Compilation Framework for Power and Energy Management on Mobile Computers.
In Proceedings of the 14th International Workshop on Parallel Computing (LCPC), August 2001.

10. Bala Kumar. Java APIs for Bluetooth Wireless Technology Specification Version 1.0a, (JSR-82).
http://jcp.org/en/jsr/detail?id=082, March 2002.

11. H. W. Kuhn. Variants of the Hungarian method for the assignment problems. Naval Res Logist Quart, 3:253–258, 1956.
12. J. K. Lee and D. Gannon. Object-oriented parallel programming: experiments and results. InProceedings of

Supercomputing’91, pp. 273–282, New Mexico, November 1991.
13. J. K. Lee, I.-K. Tsaur, and S.-Y. Hwang. Parallel Array Object I/O Support on Distributed Environments.Journal of

Parallel and Distributed Computing, 40:227–241, 1997.
14. J. Maassen, R. van Nieuwport, R. Veldema, H. E. Bal, and A. Plaat. An efficient implementation of Java’s remote method

invocation. InProceedings of the 7th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
Atlanta, GA, pp. 173–182, May 1999.

15. J. A. Mathew, P. D. Coddington, and K. A. Hawick. DHPC Java benchmarks.
http://www.dhpc.adelaide.edu.au/projects/javagrande/benchmarks.

16. K. McCabe. Rococo Bluetooth Technology Licensing Kit (TLK) technical overview.
http://www.rococosoft.com/downloads/pdf/tlktechnicaloverview.pdf.

17. C. Nester, M. Philippsen, and B. Haumacher. A more efficient RMI for Java. InProceedings of ACM 1999 Java Grande
Conference, pp. 152–157, San Francisco, CA, June 1999.

18. A. Pothen, D. H. Simon, and K. P. Liou. Partitioning sparse matrices with eigenvectors of graphs. InSIAM Journal of
Matrix Analysis and Applications, 11:430–452, 1990.

19. R. Raje, J. Williams, and M. Boyles. An asynchronous remote method invocation mechanism for Java.Concurrency:
Practice and Experience, 9(11):1207–1211, 1997.

20. T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire. Distributed topology construction of Bluetooth personal area
networks. InProceedings of the IEEE INFOCOM, Vol. 3, pp. 1577–1586, Anchorage, AK, April 2001.

21. G. K. Thiruvathukal, L. S. Thomas, and A. T. Korczynski. Reflective remote method invocation.Concurrency: Practice
and Experience, 10(11–13):911–925, 1998.

22. D. B. West.Introduction to graph theory. Prentice Hall, 2001.
23. XJB 100 Bluetooth Host Stack. Zucotto Wireless Corp.

http://www.zucotto.com/.

A. JavaBT: Bluetooth Protocol Driver

We use the Java programming language to build a set of layers in a Bluetooth protocol driver. We call
our systemJavaBT. In this section we focus on the support for the HCI and L2CAP layers, as they
provide the low-level support for our implementation of Java RMI over a Bluetooth environment.

Each Bluetooth device is allocated a unique 48-bit Bluetooth device address (BDADDR), which is
derived from the IEEE 802 standard. InJavaBT, we define a class, BDADDR, to represent a Bluetooth
address. In our protocol driver, we use the BDADDR objects to indicate which Bluetooth device to
connect with.

A.1. The HCI Layer

The HCI layer provides a uniform command method for accessing the Bluetooth hardware capabilities
of the higher layers of Bluetooth protocol stack. The HCI driver sends data and commands to the
Bluetooth hardware via HCI packets. There are four types of HCI packet: the command packet, the
event packet, the ACL data packet, and the SCO data packet. The command packets carry the HCI
commands and their parameters from HCI drivers to Bluetooth hardware. The event packets are used
by the Bluetooth hardware to notify the HCI driver when the events occur. The ACL and SCO data

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

20 P. C. WEI ET AL.

����������	�

�����
�������������	�

����������	�

�����
�����������������	�

����������	�

�����
�����������������	�

����������	�

�����
�	�	��������	��

����������	�

�����
�	�	�����	�������
����	 ���

����������	�

�����
�	�	�����	����
��	��

���
!"�	�	

����������	�

�����
�	�	�����	���#�!�	���$��
!"�	�	������	�

����������	�

�����
�	�	���%

����������	�

�����
�	�	�����	����
 �
��	��

���
!"�	�	

����������	�

�����
�������
!!�������	�

����������	�

�����
��
!!��� ��������
��

����������	�

�����
��
!!��� �����	 	�

����������	�

�����
��
!!��� �����	���&�$$	���
'	

����������	�

�����
��
!!��� �����	���&������

����������	�

�����
��
!!��� �%

Figure 14. The class hierarchies for handling HCI packets.

packets are used to carry the ACL and SCO data, respectively. Figure 14 shows class hierarchies for
handling HCI packets inJavaBT.

When the transport base layer receives the incoming data, it transports the byte streams to the
transport layer. The transport layer reassembles the incoming byte streams, and converts them into
an HCI packet, after which it identifies the message type for dispatching them to the handler. When
a program sends out HCI commands using the HCI command controller or sends out ACL and SCO
data packets, the HCI layer casts the outgoing packet object into the HCIPacket object and sends it to
the transport layer. The transport layer converts the HCI packets into a byte stream and transports it
out through the transport base layer. The data flow in the HCI layer is shown in Figure 15. Finally, we
define aHCITransportLayerclass to support the replaceable physical bus in the HCI layer. To create
a customHCITransportLayerobject, we create a class extended fromHCITransportBaseLayerand
implement theinit andsendDatamethods. Theinit method is invoked while the transport layer starts
up, and thesendDatamethod is invoked by the transport layer when it wants to send a packet to the
Bluetooth hardware.

A.2. The L2CAP Layer

The L2CAP layer provides connection-oriented and connection-less data services to upper-layer
protocols with a protocol-multiplexing capability. The L2CAP can transmit and receive L2CAP data
packets up to 64 kilobytes in length. The L2CAP is based around the concept of “channels”. Each
L2CAP channel is referred to by a CID, which is a 16-bit number: CID 0x0001 is used by the signaling

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

SUPPORT AND OPTIMIZATION OF JAVA RMI OVER A BLUETOOTH ENVIRONMENT 21

���������	
����

��������	�
���	
����	

����	�
���	
����	

�������	

 � � �
�� �
 � ��
�
 �
 � ��
�

������ � �
� ��

	����	

	
����

� ����� �
��

����� �

��

� ����
��
�

 � � �
��

	
����

�
 � ��
�

	
����

�
 � ��
�

	
����

��� � �

���
�
�	 ��� ��� �
����
�
�	 ��� �� � �
����
�
�	

� � ���

	
����

�
 � ��
�

	
����

�
 � ��
�

	
����

	
����

� ����
��
�

� ����� ���
� � ����� ���
�

��
� � �� � ��

�
� ���� �	
������ � ����

�� �� ������ �	
������ � ������ �� ������ �� ����
��
�

Figure 15. Data flow in an HCI layer.

���������		
�

�������

���

����������������		
�

�������

���������		
�

Figure 16. Overview of L2CAP layers inJavaBT.

channel, CID 0x0002 is used by the connection-less reception channel, CIDs 0x0003-0x003F are
reserved for future use, and CIDs 0x0040-0xFFFF are available.

Figure 16 shows our design of the L2CAP layers. In this figure, the L2CAP service class provides
the ability to send the L2CAP signaling commands and the protocol-multiplexing functionality
of the L2CAP layer. The signaling commands for the L2CAP layer, such as L2CAConnectReq,
L2CA DataWrite, and L2CADataRead, are packed into theL2CAPCommandPacketobject and sent
to the command channel. When the L2CAP service receives a connection or disconnection request, the
L2CAP event occurs. We use anL2CAPEventIndicationInterfaceinterface to listen for these L2CAP
events.

When we connect to a remote Bluetooth device through the L2CAP service, the L2CAP server
creates an L2CAP channel and returns an object representing this channel. Each such object has a
unique L2CAP CID. We can send or receive data by calling the methods of the L2CAP channel class.
The data are sent or received by the L2CAP service through a channel between the HCI and L2CAP
layers. This channel is called the L2CAP-to-HCI channel, and it merges the communications that come
from different L2CAP services and send them to a single HCI channel.

Concurrency Computat.: Pract. Exper.00;00:1–21
Prepared usingcpeauth.cls

