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Abstract

In this paper, we present an ATLAS compiler environment used for automatic testing as
a case study to demonstrate the design of the state of the art compiler environments with
object-oriented designs and XML representations. ATLAS is a testing language which is
applied on the automatic test equipments (ATE). Currently, the programming language is
used in the fields of avionics, industry facilities, and precision transport system. In this
work, we develop the ATLAS compiler aiming to provide the control ability of the PC-
based ATEs. First, it comes with an objected-oriented representation of program trees. The
object-oriented program graph allows the flexibility for the manipulations of program trees.
Second, it employs the object serialization technology for storing and retrieving the syn-
tax trees and program graphs. The employment of object serialization techniques signifi-
cantly reduces the programming effort from traditional compiler work in retrieving binary
representations of program graphs from secondary storages. In addition, we establish the
connection between the object-oriented program graph and XML representations. With the
support of DTD and XSL files of XML environments, we can perform machine validation
on XML-based representations, transform XML representations into graph structures, and
annotate the representations for human browsing. Our software infrastructure can be used
for subsequent controls and specifications for ATEs.
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1 Introduction

ATLAS is an IEEE Standard Test Language for All Systems (IEEE, 1998, 1995).
This language is designed to describe tests in terms that are independent of any
specific test system, and has been constrained to ensure that it can be implemented
on ATE. Since the 1960’s through different phases of evolutions, it has been in
use for field maintenance of avionics for the military and for commercial airlines.
Initially a test description language, it has been automated to provide for automatic
test programs. It is a large language, and the development of compilers for it is not
a simple task.

The ATE can be applied to overhaul the failure facilities on the manufacture and
the maintenance of variant precision instruments. In the process, it substantially im-
proves the reliability of precision instruments. By using the ATE, the failed points
of the failure facilities can be precisely located. Furthermore, they can be fixed
in module level instead of replacement of entire systems. Therefore, the costs of
the maintenance can be substantially decreased. The ATLAS language is widely
used on the testing process of the ATE. Figure 1 illustrates the key components
in the ATLAS testing model. The ATLAS programs are written to provide the en-
tire test steps, the requirements of the switches and connections, the requests of
the resource, and the statistic information. The intermediate form generated in the
compiler environment is then used to generate subsequent controls to be integrated
with ATEs.

In this paper, we developed the ATLAS compiler to aim at providing the control
ability of the PC-based ATEs. To achieve this goal, we developed the compiler with
the full implementation of IEEE standard. Our work is also a joint work between
our programming language laboratory (Chang et al., 2001; Hwang et al., 1998,
2001), Tsing-Hua Univ., Taiwan, and a local industrial research institute, aerospace
division, III (Institute for Information Industry), in promoting academic compiler
technologies for industrial applications. Once the intermediate form is generated
by our compiler environment, research engineers at III then use this information
to generate controls to work with ATEs as shown in Figure 1. Our work can also
serve as a case study to demonstrate the design of the state of the art compiler envi-
ronments with object-oriented designs and XML representations. Our compiler is
implemented using object-oriented support. First, abstract syntax trees are treated
as linked objects. Linguistic constructs are defined in a class hierarchy. Object-
oriented frameworks (Chang et al., 1997; Gannon and Lee, 1992; Lee et al., 1997;
Wilson et al., 1994; Wu and Lee, 2000) for compiler infrastructures have gotten mo-
mentum recently. Our framework employs object hierarchies to represent program
graphs of ATLAS languages. It’s also the first object-oriented design for ATLAS
compiler frameworks, and we think our experiences in the ATLAS software envi-
ronments should offer software experiences and interesting engineering aspects for
this problem. Second, in our design, we employ the object serialization technology
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Fig. 1. Key components in the ATLAS testing model.

for storing and retrieving syntax trees and program graphs. The employment of
object serialization techniques significantly reduces the programming effort from
traditional compiler work. Traditionally, in retrieving binary representations of pro-
gram graphs from secondary storages, one needs to carefully pack binary number
and byte orders. This is normally an error-prone work. Our work is possible due to
our employment of object-oriented representations of compiler intermediate forms,
and our employment of emerging serialization methodologies in OO community.

Finally, we establish the connection between the object-oriented program graph
and XML representations. With the support of DTD and XSL files of XML en-
vironments, we can perform machine validation on XML-based representations,
transform XML representations into graph structures, and annotate the representa-
tions for human browsing. This connection provides great flexibilities for ATLAS
program trees to be operated under XML tools. We also report experimental results
for our system. Our work presents the first-hand software experiences for the state
of the art design and implementation of a complex application domain language
with object-oriented designs and XML representations.

The remainder of this paper is organized as follows. Section 2 gives a brief descrip-
tion of the ATLAS language. In Section 3, we present the development process of
the ATLAS compiler. Section 4 then describes the XML representations for pro-
gram graphs. Next, Section 5 gives our experimental results. Finally, Section 6
concludes this work.
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2 The ATLAS language and environment

2.1 Overview of ATLAS language

The increasing complexity of systems being developed in the 1960s placed con-
siderable demands on testing processes. A great deal of testing needs to be done,
not only in development but also as part of subsequence maintenance. The ATLAS
language arose from the perceived need to improve the precision and efficiency of
the process.

To respond the requests of the commercial airlines, Aeronautical Radio Incorpo-
rated (ARINC) started the development of a standard testing language. There are a
number of common test procedures to test and repair similar or identical avionics
systems on the commercial aircraft, so developing test procedures in a standardized
and unambiguous way enable their efficient reuse across airlines. The name of the
language developed under the auspices of ARINC was the Abbreviated Test Lan-
guage for Avionics Systems or ATLAS. There were a large number of commercial
companies interested in avionics testing, and they participated in developing the
ATLAS language. In 1976, standardization controls for ATLAS were transferred
from ARINC to the IEEE. At this time the name of ATLAS became the Abbreviated
Test Language for All Systems to reflect the wide-ranging nature of applications.

The ATLAS language standard was first published in 1968 and was titled ARINC
416-1. In 1988 the IEEE published ATLAS standard 716-1988, which represented
a subset of the ATLAS 416. In 1984 the IEEE also published standard 771. This
standard is a guide to the use of the ATLAS language. The up-to-date standard was
IEEE Std 716-1995.

An example of the ATLAS test program is shown in Figure 2. ATLAS program be-
gins with aBEGIN ATLAS PROGRAM statement and finishes with aTERMINATE
statement. Note that each statement is started with a line-number, and the lead-
ing ’E’ of the line-numberE500100 means that the statement is the beginning of
the main program. Similar to other programming languages, the ATLAS language
provides the declaration statements for variables (e.g. line-number000110), user-
defined data types, function and procedure definitions, calculations of expressions
(e.g. line-number500112), program flow control statements (e.g. TheIF-THEN-
ELSE statement in line-number500140), and input and output statements for trans-
ferring program data to and from an ATLAS program via consoles and/or files (e.g.
line-number500110), etc.

In addition to the common program statements, the ATLAS language provides ad-
ditional statements performing the test procedure. It includes declarations of con-
nections (e.g. line-number000130), test resource allocation (REQUIRE statement)
to establish and label test resource characteristics, theAPPLY statement generating
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000100 BEGIN, ATLAS PROGRAM ’LAB1, PART 3’ $
000110 DECLARE, VARIABLE, ’RESULTS’ IS DECIMAL$
000120 DECLARE, VARIABLE, ’A’ IS INTEGER $
000130 DECLARE, VARIABLE, ’HI-PIN’ IS ARRAY (1 THRU 2) OF CONNECTION

(J1-3, J1-4) INITIAL = CONNECTION J1-3, CONNECTION J1-4 $
E500100 APPLY, DC SIGNAL, VOLTAGE 5 V, CNX HI ’HI-PIN’(2) LO J1-11 $

500110 OUTPUT, C’WAITING FOR 30 SEC FOR INPUT POWER STABILIZATION’,C’\LF\’ $
500112 CALCULATE, ’A’ = 30 $
500115 WAIT FOR, ’A’ SEC $
500120 APPLY, AC SIGNAL, VOLTAGE 5 V, FREQ 60 HZ,

CNX HI ’HI-PIN’(1) LO J1-10 $
500130 VERIFY, (VOLTAGE INTO ’RESULTS’), AC SIGNAL,

NOM 25.2 V UL 26.7 V LL 23.7 V,
VOLTAGE RANGE 20 V TO 30 V,
CNX HI J1-22 LO EARTH $

500140 IF, GO, THEN $
500150 OUTPUT, C’UUT PASSED’ $
500160 ELSE $
500170 OUTPUT, C’UUT FAILED’ $
500180 END, IF $
500190 WAIT FOR, 10 SEC $
500200 VERIFY, (VOLTAGE INTO ’RESULTS’), AC SIGNAL,

NOM 25.2 V UL 26.7 V LL 23.7 V,
VOLTAGE RANGE 20 V TO 30 V,
CNX HI J1-22 LO EARTH $

500210 IF, GO, THEN $
500220 OUTPUT, C’UUT PASSED’ $
500230 ELSE $
500240 OUTPUT, C’UUT FAILED’ $
500250 END, IF $
500260 REMOVE, ALL $
999999 TERMINATE, ATLAS PROGRAM $

Fig. 2. An example of the ATLAS test program, note that the leading’E’ of the line-number
E500100 means that the statement is the beginning of the main program.

or receiving a signal and defining the signal path between the UUT and the device
(e.g. line-number500120), theVERIFY statement to measure and compare with the
values of UUT (e.g. line-number500130), theREMOVE statement to remove par-
ticular established connections (e.g. line-number500260 removing all established
connections), etc.

2.2 Objectives of our ATLAS environment

In the following, we give the key objectives in our design of ATLAS compiler envi-
ronments. We also give brief descriptions of our solutions to meet these objectives.

(1) To support ATLAS compiler with IEEE Std 716-1995 specification:
In this work, we develop the ATLAS compiler to aim at providing the con-

trol ability of the PC-based ATEs. To achieve this goal, we develop the com-
piler with the full implementation of IEEE standard.

(2) To provide an ATLAS environment for ATE environments:
ATLAS program graphs are needed to generate subsequent controls to be

integrated with ATEs. We need a program graph designed with good method-
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ologies to provide a systematic way for the manipulations of program trees.
In our design, we employ object hierarchies to represent program graphs of
ATLAS languages.

(3) To establish connections between our program graph representations and
XML tools:

Due to large number of keywords and command constructs in ATLAS lan-
guages, we also need viewing tools for developers to manipulate the ATLAS
program graph. In our design, we establish the connection between the object-
oriented program graph and XML representations. With the support of DTD
and XSL files of XML environments, we can perform machine validation on
XML-based representations, map XML representations into graph structures,
and annotate the program representations for human browsing. This connec-
tion allows ATLAS program trees to be operated under XML tools.

(4) To support optimizations of program graph storage:
To reduce the size of storage of program graphs in stores, we will hope to

store the program graphs in binary representations. In our design, we employ
the object serialization technology to achieve our goal for storing and retriev-
ing the syntax trees and program graphs with binary representations.

3 The development of the C/ATLAS compiler

We now give the design steps for ATLAS compiler environments. These steps in-
clude transforming EBNF grammars into Yacc-format grammars, class hierarchies
of program graphs, and object serializations of program graphs.

3.1 Lexical analyzer and grammars

In the process of compiler developments, we first get started with the lexical an-
alyzer. The component for lexical analysis takes the input program and abstracts
the tokens for the ATLAS parser. We retrieve the lexical definition from standard
ATLAS syntax and develop the scanner with Flex (Mason and Brown, 1990; Pax-
son, 1995). Due to that the ATLAS language provides extreme large number of
keywords for the nouns and modifiers to deal with all test cases, there are 900 key-
words to be extracted approximately in our implementations for the lexical analy-
sis. Figure 3 shows a typical set of syntactic structures extracted from the ATLAS
lexical analyzer.

Next, we work on the grammar for the ATLAS language. We got the ATLAS lan-
guage definition from the appendix of the ATLAS language specification. However,
the language definition is in the Extended-BNF format, we need additional effort to
automatically transform the EBNF into Yacc-like (BNF) grammars (Donnoly and
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E500000 APPLY, DC SIGNAL USING 'DCP-1', VOLTAGE 10 V, CNX HI 'HI-CONN-LIST' LO J1-9 $

fstatno

token

label
integer-number

connectionfd

statement-terminator

Fig. 3. The syntactic structures extracted from our ATLAS lexical analyzer.

Table 1
The operators and their meanings in the Extended-BNF syntax

  
Operator  Meaning 
SYNTAX-RULES Beginning of description 
FINIS End of description 
: Definition 
*  Repetition 0 or more times 
% Repetition 1 or more times 
| Alternation 
# Separation 
+ Optional chaining 
{ }  Grouping braces 
[] Optionality brackets 
; End of rule 
! Comment-indicator 

 

Stallman, 1995; Mason and Brown, 1990). We need the transformation to be done
automatically, as the ATLAS grammar is quite big and a transformation by hand
will be hard. The EBNF grammar is listed 2687 lines in the language specification.
The grammar in Yacc format after transformations from EBNF is around 6100 lines
in our implementation. Table 1 shows the operators and their meanings used in the
Extended-BNF syntax. The algorithm to convert an EBNF syntax grammar to the
Yacc grammar is given in Figure 4 as well.

An example of the grammar in an EBNF form is listed below. It gives the declara-
tion for record structures in ATLAS languages.

record-structure:
"RECORD OF"
"[" { { { record-field-identifier # fd }
"IS" type } # ";" } "]" ;

The example grammar in an EBNF format shown earlier for record declarations
are now translated into the form in Figure 5 according to our transformation algo-
rithm. In the example, the algorithm described above recognizes the original EBNF
“ record-field-identifier # fd ” as a sequence ofrecord-field-identifier s
separated byfd s when there are two or morerecord-field-identifier s, and it
transforms the grammar into “sep 006: sep 006 fd record field identifier
| record field identifier; ”. Then it finds that “{sep 006 "IS" type }” is
grouped by braces, so it creates a new nonterminal and outputs the new grammar
“group 012: sep 006 T IS type; ” to represent the group. There is another sep-
aration statement, “group 012 # ";" ”, so it can be transformed into “sep 007:
sep 007 ’;’ group 012 | group 012; ” as well. Finally, the top-level grammar
can be outputed: “record structure: T RECORDsp OF ’[’ sep 007 ’]’; ”. We
can also notice that the meta-parser converts the keywords into tokens, and change
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Algorithm. Converting an EBNF grammar to a Yacc-like grammar (BNF)

Input: An EBNF syntax grammar with the operators specified in Table 1.

Output: The corresponding Yacc grammar.

Method: The parser reads the input string in rhs from left to right, and constructs
the corresponding syntax tree from bottom to top. If the syntax tree has been built, output
the syntax tree in Yacc grammar format, otherwise, output an error indication.
The transformation rules for EBNF grammars are as follows:

repeat
caserhs0

: rhs1 rhs2:
We build a node rhs0 with the children nodes as rhs1 rhs2.

: rhs1 ‘*’:
We make a new nonterminal newnt to represent rhs0,and set newnt to rhs0,
The output grammar for rhs0 is as follows:
“new nt : newnt rhs1| ;” It indicates zero or more times of rhs1.

: rhs1 ‘%’:
We make a new nonterminal newnt to represent rhs0, and set newnt to rhs0.
The output grammar for rhs0 is as follows:
“new nt : newnt rhs1| rhs1 ;”. It indicates the repeat of one or more times of rhs1.

: rhs1 ‘|’ rhs2:
build a node rhs0 of alternation with both the children nodes of rhs1 rhs2.

: rhs1 ‘#’ rhs2:
We make a new nonterminal newnt to represent rhs0, and set newnt to rhs0.
The output grammar is as follows:
“new nt : newnt rhs2 rhs1| rhs1 ;” It represents the repeating of rhs1, but separated
by rhs2 among different appearances of rhs1.

: ‘[’ rhs1 ‘]’:
We make a new nonterminal newnt to represent rhs0,and set newnt to rhs0.
The output grammar for rhs0 is as follows:
“new nt : rhs1| ;”. It indicates the optional appearance of rhs1.

: ‘{’ rhs1 ‘}’:
We make a new nonterminal newnt to represent rhs0, and set newnt to rhs0.
The output grammar for rhs0 is as follows:
“new nt : rhs1 ;”. It indicates the symbols in rhs1 are grouped (parenthesized).

: terminal:
set terminal to rhs0.

: else:
call error.

endcase
until there is no more input symbol in rhs

Fig. 4. Algorithm of converting an EBNF syntax grammar to the Yacc grammar.

record-structure:

"RECORD OF"   

"[" { { { record-field-identifier # fd }

"IS" type } # ";" } "]" ;

sep_006: sep_006 fd record_field_identifier

| record_field_identifier

;

group_012: sep_006 T_IS type

;

sep_007: sep_007 ';' group_012

| group_012

;

record_structure        : T_RECORD_sp_OF '[' sep_007 ']'

;

Fig. 5. An example for the transformation from EBNF to a Yacc-like format.

the hyphen in nonterminals to underscore to prevent Yacc from confusion.

As the original ATLAS language specification was written mainly for human-readable,
ambiguous grammars and conflicts exist. After the transformation into Yacc-like
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grammars, we further fine-tune the grammars to solve the grammar conflicts. The
usual conflict, for example, is from the leading commas in front of different lan-
guage structures, and ambiguous grammars in generating null elements. Once the
grammar conflicts are solved, a parser is implemented to generate programs into an
object-oriented intermediate forms. We will describe the object-oriented represen-
tations in the next sub-section.

3.2 The ATLAS abstract syntax tree

As the test programs were parsed by the parser, they should be translated to an
intermediate form. Hence a completely class-library for the abstract syntax tree
(AST) was designed for the intermediate form of parsed ATLAS programs. The
AST was built in the object-oriented technology; all the entities within the AST
were represented by the C++ classes. The program information is constructed in
tree and table structures and described as follows.

• Module and ModuleTable Classes
The module is the top-level element of the AST. It is also the top-level for pro-
gram structures. A module is corresponding to a program module in ATLAS
language. There is a module table in our AST to track module information in pro-
grams. Each module contains additional information forStmtTable, NodeTable,
SymbolTable, andTypeTable. They represent the statement, expression, symbol,
and type information, respectively. Figure 6 illustrates the concept of a module
table.

• Statement and StmtTable Classes
The statement class describes various statements in source programs. There are a
variety of statements including variable declaration, resource requirement, con-
nection requirement, subroutine definition, test steps, etc. TheStmtTableconsists
of statements in the same module by incorporating the control flow information
of statements.

• Node and NodeTable Classes
The node class represents expressions in ATLAS programs. It gives the detailed
information for each statement. The root of a tree is maintained in the state-
ment class. In addition, there is aNodeTableto maintain the references to all
nodes. The node class is linked by a form of binary trees. A variety of nodes are
included. They are keywords, decimal numbers, character strings, connections,
various arithmetic operations, etc. An example to represent expressions for node
classes is illustrated in Figure 7. A statement node forCalculatestatement is
given. The detailed expressions is represented by the node class. Binary tree rep-
resentations are used for linking nodes.

• Symbol and SymbolTable Classes
The SymbolTable consists of both system-predefined symbols and user-defined
symbols. The system-predefined symbols are predefined enumeration items such
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…

Module 2

Module 1

Program StmtTableStmtTable NodeTabl eNodeTabl e

SymbolTableSymbolTable TypeTableTypeTable

Fig. 6. The module table in the top level of the intermediate form.

E500010 CALCULATE, 'RESULT' = (('A' + 'B') * 'C' ) / 'VALUE' $

calculate_statement E500010 entry_pointcalculate_statement E500010 entry_point

VAR_REF

PARENTHESIS

ASSIGN_OP DIV_OP

VAR_REF

MUL_OP

PARENTHESIS

ADD_OP

VAR_REF

VAR_REF

VAR_REF

VAR_REFVAR_REF

PARENTHESISPARENTHESIS

ASSIGN_OPASSIGN_OP DIV_OPDIV_OP

VAR_REFVAR_REF

MUL_OPMUL_OP

PARENTHESISPARENTHESIS

ADD_OPADD_OP

VAR_REFVAR_REF

VAR_REFVAR_REF

VAR_REFVAR_REF

Statement

Node

Fig. 7. An example of the expression nodes in AST of ATLAS programs.

as‘TRUE’, ‘FALSE’, and‘BCD’. The user-defined symbols include program names,
procedure names, variable names, constant names, connection items, enumera-
tion items, etc. Each enumeration item has a link to the appropriate enumeration
type entry in theTypeTable. Similarly, each variable symbol has a link to point to
the appropriate type entry in theTypeTable. TheTypeTableinformation is given
next.

• Type and TypeTable Classes
There are several types inTypeTable. First, it includes the primitive types, such
as INTEGER, DECIMAL, CONNECTION, etc. Second, it includes the system-
predefined enumeration types, e.g. the system-predefined symbol‘TRUE’ is of
BOOLEAN enumeration type. Finally, it includes the derived data types, such as
ARRAY, RECORD, STRING, SUBRANGE, etc. Figure 8 illustrates the concepts
of symbol and type nodes. In this example, we declare four variables of decimal
type and a two-dimensional array of boolean type. Every variable reference in
a particular expression has a link to point to the corresponding symbol in the
SymbolTable, in which each symbol has its link to the declared type inTypeTable.
If there is a composite type, e.g. array, the type entry will be further linked to the
basic type of the composite type.
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DECLARE, VARIABLE, 'A', 'B', 'C', 'VALUE' IS DECIMAL $
DECLARE, VARIABLE, 'TEST-RESULTS' IS ARRAY (1 THRU 3, 1 THRU 4) OF BOOLEAN $
…
(('A' + 'B') * 'C' ) / 'VALUE' 

PARENTHESIS

DIV_OP

VAR_REF

MUL_OP

PARENTHESIS

ADD_OP

VAR_REF

VAR_REF

VAR_REFPARENTHESISPARENTHESIS

DIV_OPDIV_OP

VAR_REFVAR_REF

MUL_OPMUL_OP

PARENTHESISPARENTHESIS

ADD_OPADD_OP

VAR_REFVAR_REF

VAR_REFVAR_REF

VAR_REFVAR_REF

‘TEST-RESULTS’VARIABLE_NAME

‘VALUE'VARIABLE_NAME

‘C'VARIABLE_NAME

‘B'VARIABLE_NAME

‘A'VARIABLE_NAME

‘TEST-RESULTS’VARIABLE_NAME

‘VALUE'VARIABLE_NAME

‘C'VARIABLE_NAME

‘B'VARIABLE_NAME

‘A'VARIABLE_NAME

4

3

1ARRAY

BOOLEAN

RECORD

1ARRAY

ENUMERATION

DECIMAL

4

3

1ARRAY

BOOLEAN

RECORD

1ARRAY

ENUMERATION

DECIMAL

TypeTableSymbolTable

Fig. 8. An example of symbol and type information in AST.

3.3 The serialization mechanism for intermediate forms

The intermediate format with AST can be stored and read from stores. It can also
be refined after the read from the store, and then be stored again. For continuous
refinements, the AST needs to be with persistence. We employ the Microsoft Foun-
dation Class Library (MFC) and object serialization technologies. The ASTs are
saved to files in a compact binary format. All the classes describe in the previous
sub-section override theSerialize() method, they store and retrieve their own data
members within the methods. The table classes save all the entries in them. The
links between instances and the tree structures are maintained by the MFC object
serialization mechanism. The employment of object serialization techniques signif-
icantly reduce the programming effort from traditional compiler work in retrieving
binary representations of program graphs from secondary storages. Traditionally,
in retrieving binary representations of program graphs from secondary storages,
one needs to carefully pack binary number order and bytes. This is normally an
error-prone work.

To let our classes utilize the MFC mechanism for serialization, we make the classes
inherit from the CObject class and makeDECLARE SERIAL macros. For example,
the declaration of the statement class is done as follows.

class CStmt : public CObject, Dumpable {
public:

DECLARE_SERIAL(CStmt);
enum StmtType {

apply_statement,
define_complex_signal_statement,
specify_component_signal_statement,
...

};
// Construction/Destruction

CStmt();
CStmt(int lno, CString sno, StmtType var);
virtual ˜CStmt();

11



// Attributes
CString statno;
int lineno;
StmtType variant;
int id;
CNode *entry_point;
...

// Implementation
virtual void Serialize(CArchive& ar);
virtual void AddNode(CNode *node);
virtual char *GetStrStmtType();
static char *GetStrStmtType(StmtType variant);
virtual void PrintOut(FILE* fp, DumpType dumptype);
...

};

In the next step, the virtual functionSerialize() must be implemented to provide
the customized serialization functionality of the classes themselves: This is done as
follows.

void CStmt::Serialize( CArchive& ar ) {
CObject::Serialize( ar );
if (ar.IsStoring()) {

ar << (WORD) variant;
ar << id;
ar << lineno;
ar << statno;
ar << entry_point;

}
else {

WORD wTemp;
ar >> wTemp; variant = (StmtType)wTemp;
ar >> id;
ar >> lineno;
ar >> statno;
ar >> entry_point;

}
}

The function is divided into two parts, to store data and to retrieve data, respectively.
It will invoke the Serialize() function of its parent class, and then it will maintain
the data members of itself. Note that the MFC mechanism will maintain the rela-
tionships of objects, such as the points to objects. For example, the itementry point
is a pointer to aCNodeclass in the source code listed above. When it is serialized,
the MFC mechanism will maintain the graph of them. The other classes, such as
CModuleandCNode, also use the similar mechanism.

For the table classes, we have them inherit from the existing C++ templateCType-
dPtrArray in MFC. By using theCTypedPtrArraytemplate, we can specify the
container class and the element type for the table classes to employ. For example,
the declaration of theCStmtTableclass illustrates an example of such usages.

typedef CTypedPtrArray<CObArray, CStmt*> CStmtObjArray;

class CStmtTable : public CStmtObjArray, Dumpable
{
public:

virtual int Add(CStmt *stmt);
virtual void PrintOut(FILE* fp, DumpType dumptype);
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Fig. 9. The usage of XML representations in a compiler environment.

...
};

The first line of the code above defines the typeCStmtObjArrayas an instance type
of CTypedPtrArrayusingCObArray template as the container and the pointer to
CStmtas the element type. ClassCStmtTableis then derived fromCStmtObjArray
andCTypedPtrArray. Note that there is no need to implement theSerialize() func-
tion here as the function inCTypedPtrArraytemplate is equipped with such mech-
anisms. The other table classes, such asCModuleTableandCNodeTable, adopt this
similar mechanism.

4 XML representations

We now explain how we establish the connections between our program graphs
and XML toolkits. Figure 9 shows the major components of our system with XML
representations. We will give detailed descriptions for each component in each sub-
section below. Among the components, with the Document Type Definition (DTD)
(Bray et al., 2000) or XML Schema Language, we can validate the correctness and
integrality of XML intermediate representations. With the Extensible Stylesheet
Language (XSL) (Adler et al., 2000), we can transform XML intermediate files
into table or graph structures which can be browsed in browsers or other XML
toolkits.

4.1 XML Representations and Document Type Definition (DTD)

In this section, we try to establish the connections between our program graphs
and XML representations. There are three dump formats in our design, the ASCII
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format, HTML format, and XML format. The prior two formats are designed for
the human-readable representations, besides, the XML format is a representation
designed for both expression to human and validation to machine.

To implement the XML format for representing program trees, we first make an
abstract class namedDumpable, and define a pure virtual functionPrintOut() as an
interface between the file writer and all kinds of elements in the program graphs:

class Dumpable {
public:

enum DumpType {
ASCII,
HTML,
XML,

};
virtual void PrintOut(FILE* fp, DumpType dumptype) = 0;

};

All the classes to dump their information then inherit from it. We have seen the
examples in the previous subsection that the classesCStmtandCStmtTableboth
inherit from it. In addition, the classes must override the virtual functionPrintOut()
to provide their own dump function.

Next, we describe how we use DTD (Document Type Definition) for our program
representations in XML format. A DTD defines a precise format for XML docu-
ment structures. It describes the elements and attributes available, where and how
many times they can occur, how elements can nest, and how elements and attributes
can fit together. It can be used to validate the correctness and integrality of XML
intermediate files. Figure 10 illustrates parts of the DTD file describing our XML
intermediate form. In Figure 10, we can see the topmost element in intermediate
form isAtlasProgram, which contains zero of moreModuleelements. Furthermore,
there are four types of collections namedStmts, Nodes, Symbols, andTypesin a
Moduleelement, each collection is composed of the same type of elements. We can
see that there are several attributes of elements. For example, theSymbolelement
has the following attributes: “ID”, “ VARIANT”, “ ATTR”, “ SCOPE”, and “TypeRef”,
The type of “ID” is “ ID #REQUIRED”. It means it’s an unique identifier of an el-
ement. Also the type of “TypeRef” is “ IDREF #IMPLIED” means it’s an optional
reference to a particular ID. When an XML intermediate file is loaded, the parser
can check whether the destination of a reference exists.

For example, the following code segment is a XML skeleton; whose hierarchical
structure and all elements and attributes are defined in the DTD file in Figure 10.

<?xml version="1.0" encoding="UTF-8"?>
<?xml:stylesheet type="text/xsl" href="atlas.xsl"?>
<!DOCTYPE AtlasProgram SYSTEM "atlas.dtd">

<AtlasProgram>
<Module>

<Stmts>
<Stmt ID="A000" LINENO="001" STATNO=" 000100" EntryPoint="N000"

VARIANT="begin_atlas_program_statement"/>
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<?xml encoding="UTF-8"?>
<!ELEMENT AtlasProgram (Module)+>

<!ELEMENT Module (Stmts,Nodes,Symbols,Types)>

<!ELEMENT Stmts (Stmt)*>

<!ELEMENT Stmt EMPTY>
<!ATTLIST Stmt ID ID #REQUIRED

LINENO CDATA #REQUIRED
STATNO CDATA #REQUIRED
EntryPoint IDREF #REQUIRED
VARIANT CDATA #REQUIRED>

<!ELEMENT Nodes (Node)*>

<!ELEMENT Node (#PCDATA)>
<!ATTLIST Node ID ID #REQUIRED

VARIANT CDATA #REQUIRED
ChildNode IDREF #IMPLIED
NextNode IDREF #IMPLIED
SymbolRef IDREF #IMPLIED
TypeRef IDREF #IMPLIED>

<!ELEMENT Symbols (Symbol)*>

<!ELEMENT Symbol (#PCDATA)>
<!ATTLIST Symbol ID ID #REQUIRED

VARIANT CDATA #REQUIRED
ATTR CDATA #IMPLIED
SCOPE CDATA #IMPLIED
TypeRef IDREF #IMPLIED>

<!ELEMENT Types (BasicType|RecordType|ArrayType|StringType|FileType|NamedType|SubrangeType)*>

<!ELEMENT BasicType (#PCDATA)>
<!ATTLIST BasicType ID ID #REQUIRED

ATTR CDATA #IMPLIED
SCOPE CDATA #IMPLIED
VARIANT CDATA #REQUIRED>

...

Fig. 10. A Sample Fragment of the DTD File.

...
<Stmt ID="A020" LINENO="052" STATNO=" 999999" EntryPoint="N159"

VARIANT="terminate_atlas_program_statement"/>
</Stmts>
<Nodes>

<Node ID="N000" VARIANT="LABEL">’LAB1,PPART2’</Node>
...
<Node ID="N173" VARIANT="VAR_REF" SymbolRef="S047"></Node>

</Nodes>
<Symbols>

<Symbol ID="S000" TypeRef="T007" VARIANT="ENUM_ITEM">FALSE</Symbol>
...
<Symbol ID="S054" TypeRef="T002" VARIANT="VARIABLE_NAME">’VALUE’</Symbol>

</Symbols>
<Types>

<BasicType ID="T000" VARIANT="INTEGER">INTEGER</BasicType>
...
<SubrangeType ID="T022" VARIANT="SUBRANGE" NEXTTYPE="T021" LB="N172" UB="N173" />

</Types>
</Module>

</AtlasProgram>
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In the XML document above, the file begins with headers specifying the stylesheet
file and DTD file. The subsequent part defines the program graph in XML format.
We can see that each element in a collection start with a tag name along with an
attribute namedID, which is defined as a type “ID” in the DTD file. It means a
unique identifier to the element. If there are references to a particular element, these
references will be embedded in an attribute of type “IDREF” in the DTD file. For
example, the attributes “SymbolRef” in a “Node” tag and “TypeRef” in a “Symbol”
are of type “IDREF”, and they express the references in AST.

4.2 The Extensible Stylesheet Language (XSL)

XSL, as a stylesheet language, supports separation of presentation and content, and
it has considerable expressive power. By using XSL, we can transform XML doc-
uments into other formats of documents. We have developed an XSL file to trans-
form the XML representations to HTML representations to demonstrate the usage.
Therefore, when Internet Explorer opens a XML intermediate file along with the
associated XSL file, the browser will annotate the XML file with HTML tags and
display it. The abundant tools for XML can be used for manipulations of program
graphs in XML representations.

In the usage of XSL to convert XML to HTML, The basic idea is converting a
variety of elements in XML representation to particular tables respectively in a
HTML file. Each row of a table contains an element along with its attributes. If the
attribute is a IDREF, it fully utilizes the hyperlink to represent all connections be-
tween nodes. Once the format in HTML format, users can easily traverse among the
statements and nodes and trace the links among symbols, types, and expressions.
Furthermore, they can return to the original referencing states by just clicking the
back button. This significantly reduces the effort to find cross-references among
nodes of program trees from traditional compiler infrastructures.

Figure 11 and Figure 12 illustrate the transformed XML intermediate file with XSL
for the source program originally shown in Figure 2. For example, statement num-
ber 500120 represents anapply statement and statement number500130 repre-
sents averify statement. These statement-level information can be looked up in
Figure 11. The detailed expression information for those statement nodes can be
further referenced by clickingN048 andN067 tags via html-based hyperlinks. In
addition, statement number00120 represents a declaration statement. The detailed
expression information can be referenced by clicking theN005 tag, and it will auto-
matically findN005 tag in the table below. It shows the beginning of the low-level
expression chains. Similarly, Figure 12 gives an example for the variable symbol
and type chains. There are mainly two tables in Figure 12. One is the symbol table
and another is the type table. For example, variable “A” and “HI-PIN” can be found
in the symbol table. Originally, variable “A” was declared in statement number
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Fig. 11. The transformed XML intermediate file with XSL.

000120 and variable “HI-PIN” was declared in statement number000130, respec-
tively, in the code of Figure 2. “A” is hyperlinked to the typeT000 in the type table
which is an integer declaration. “HI-PIN” is hyperlinked to the typeT010 in the
type table which is an array declaration of base typeT011, which is then a type of
CONNECTION. Hyperlinks are used to help trace intermediate nodes.

In our design above, each basic element in the key nodes of AST (including state-
ment node, expression node, symbol node, and type node) is first annotated with a
corresponding tag in our HTML output. In the reference site, information related
to the reference tag is again annotated the reference information. An example from
the source above is listed as follows: “<A HREF=\"#N%03d\">N%03d</A> ”. With
such annotations, hence the cross-references can be traced by HTML hyperlinks.
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Fig. 12. The symbol and type information of transformed XML representations into HTML
representations.

4.3 The XML Parsers

There are two mainstreams of XML parser application programming interfaces
(APIs) available:

• Document Object Model (DOM) (Hors et al., 2000), which is a tree-structure-
based API issued as a W3C recommendation in 1998; and

• Simple API for XML (SAX) (Megginson, 2000), which is an event-driven API
developed by the members of the XML-DEV mailing list.

We choose DOM as the API to re-construct object-oriented program representa-
tions from XML representations of program graphs. This enables a two-way trans-
formation between XML and object-oriented program graphs. The DOM model
represents an XML document as a tree whose nodes are elements, texts, and so on.
It generates the tree and hands it to an application program. DOM provides a set of
APIs to access and manipulate these nodes in the DOM tree. A DOM-based XML
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parser creates the entire structure of an XML document in memory.

A DOM document object is returned after we invoke the parser to process an XML-
based intermediate file. By using the methodgetElementById() introduced in DOM
Level 2, we can select a particular element, whose ID is given by a string as a
parameter, from a document entity. Therefore, the references to elements in the
program graph can be traced in an XML-based intermediate file.

5 Experiments & Discussions

In this section, we performed experiments on compiling applications of ATLAS
source programs to intermediate forms and stored them into files of XML and
ASCII formats, respectively. The ATLAS compiler was evaluated using a set of
ATLAS source files to test data structures, expressions, control flows, functions,
modules, and various test steps in ATLAS programs. As this is a joint project be-
tween university and industrial research institute of Taiwan, the testing examples
p2.atl, p3.atl, p4.atl, p5.atl, p8.atl, p9.atl, p10.atl, and p11.atl are laboratory exam-
ples from III (Institute for Information Industry) for testing and configurating sen-
sor devices, stimulating UUT, and failure analysis. These samples are forwarded to
us under the contract of Sekas Corp. and III, and the collaborations of III and our
institute. They are used as a preliminary test for a variety of constructs for ATLAS
programs. Among the testing samples, p2.atl gives tests for the declaration con-
structs of ATLAS programs. It includes the definition of digital configurations with
source and sensor device, the storage of arrays for stimulus words, the connection
variables and boolean logics, etc. p3.atl gives the test on a variety of constructs re-
lated to UUT. It includes the sense of UUT response, proving the UUT responses
on UUT pins, stimulating UUT with the stimulus data, etc. Next, p4.atl gives es-
sential test on the procedure routines in ATLAS programs. It includes the construct
of routine declaration and the perform command. Next, p5.atl test programs on the
construct of mixing control flows such as loops and procedure routines. p8.atl and
p9.atl then give tests on command constructs of ATLAS programs such as require,
apply, wait, measure, remove, etc. p10.atl and p11.atl give additional tests on com-
mand constructs of ATLAS programs such as identify, enable, disable, monitor, etc.
It also tests timer, events, frequency adjustments, voltage conditions, etc. In addi-
tion, a large test case on industrial ATLAS source program (d37.atl) was used to
evaluate our implementation. d37.atl was originally from NWA as a testing sample
for erratic failures and UUT components. The application is also forwarded from III
with their industrial partners. Note that d37.atl is more than 8500 LOC. It presents
a real industrial application program as our test case.

Table 2 summarizes the experiments. The experiments are done on a 450 MHz
Pentium II PC with 128 MB of RAM under Windows NT 4.0. The software is im-
plemented by the Microsoft Visual C++ 6.0 compiler. Table 2 includes the compiler
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Table 2
The experiment results

Filename File size
(bytes)

Number of
lines

Number of
statements

Number of
nodes

Compile time
(seconds)

File size
(bytes)

Process time
(seconds)

File size
(bytes)

Process time
(seconds)

File size
(bytes)

Process time
(seconds)

File size
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ASCII rep. of ASTXML rep. of ASTSource file Serialization of AST HTML rep. of AST

time and the file sizes with respect to the source files, serialization of AST (abstract
syntax tree) format, ASCII dump of AST files, HTML representation of AST files,
and XML representation of AST files. There are totally five categories in Table 2.
It includes the source file information, the information on the serialization of AST
files, the information on the XML representation of AST forms, the information
on the HTML representation of AST forms, and information on the ASCII rep-
resentation of AST forms. The time listed in the second category is the compiler
time to transform programs into object-oriented program graphs (AST) and then
perform serialization of program graphs. The process time listed in category 3, 4,
and 5 are only the process time to transform AST format (object-oriented program
graphs) into the XML represntation, HTML representation, and ASCII representa-
tion of AST, respectively. A conventional representation for AST is the format with
an ASCII representation. As we employ the serialization technique with object-
oriented technologies to serialize objects into binary format automatically, the size
of the representation can be reduced significantly. For example, with d37.atl appli-
cation (one of the biggest application in our experiment), the ASCII representation
is 2.47 times larger than our serialization representation. Our employment of seri-
alization technologies helps reduce the size of intermediate representations. Next,
we look at the size of the source files and the size of our AST representations.
Our AST representation consists of statement, expression, symbol, and type infor-
mation of the source programs. The serialization representation of our AST form
grows slowly in proportions to the source files. Finally, with the XML represen-
tations of AST file, one can use XML toolkits to view the program graphs. Here
we also give reference number for the size of program graphs in each format. The
actual store of the program graph is in the serialization of object-oriented graphs,
as it’s the smallest one. All the other formats can be converted to each other in our
system depending on the developer’s requirements. For example, we can transform
XML representations to HTML representations for browsing cross references.

Next, we discuss the benefit of our design in addition to the experiments shown
above for the reduction of program graph in storages. As described earlier, our sys-
tem is designed with object-oriented representations for program graphs. Object-
oriented representation of program graph provides a systematic way for the ma-
nipulations of program trees. System software writers can use this object-oriented
representation to generate subsequent controls to be integrated with ATEs. Next,
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we establish the connection between the object-oriented program graph and XML
representations. With the support of DTD and XSL files of XML environments, we
can perform machine validation on XML-based representations, transform XML
representations into graph structures, and annotate the representations for human
browsing. This connection provides great flexibilities for ATLAS program trees to
be operated under XML tools. As described earlier, due to large number of key-
words and command constructs in ATLAS languages, we need good software de-
sign to make it easy to traverse program graphs and for consequent software de-
velopments with ATE environments. Our design with XML representations make
it easy for developers dealing with program graphs to be able to view and connect
program graphs and ATLAS command constructs with XML viewing tools. Our
work presents the first-hand software experiences for the state of the art design and
implementation of a complex application domain language with object-oriented
designs and XML representations.

The ATLAS program environment is now shiped to III (Institute for Information
Industry, a local industrial research institute), aerospace division, under university
and industrial joint project contracts. Regarding to the constraints of our sysem,
as we support IEEE standard compliant ATLAS-716-1995 parser, our system does
not cover vendor extensions for ATLAS languages beyond IEEE standard com-
pliant ATLAS-716-1995. The efforts for research and development in our site for
the compiler environments include two researchers for working one year. The com-
piler infrastructure was then used by research engineers at III to generate controls to
work with ATEs. The integrated platform was then used for test applications where
long-term maintainability and reliability of UUTs (unit under test) was required.
Our system system gives the essential components for ATLAS programming envi-
ronments.

6 Conclusions

ATLAS has proven to be of substantial values in the automatic test specifications on
ATEs. We think our implementation of IEEE standard compliant ATLAS-716-1995
parser can bring valuable experimental experiences for the ATE vendors. On top of
current architecture and implementation, support for ATLAS-2000 (IEEE SCC-20,
1997) could be easily done. Our compiler is also done with the employment of
advanced software techniques including object-oriented representations, serializa-
tions of objects, and the XML representation for AST information for employing
abundant XML toolkits with compiler environments. Our software infrastructure
can be used for subsequent controls and specifications for ATEs. We think our work
gives the first-hand software experiences for modern compiler systems on complex
application domain-specific languages.
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