
Segmented Alignment: An Enhanced Model to Align
Data Parallel Programs of HPF

Gwan-Hwan Hwang
Department of Information and Computer Education,
National Taiwan Normal University, Taipei, Taiwan

Cheng-Wei Chen Jenq Kuen Lee
Department of Computer Science,

National Tsing-Hua University, Hsinchu, Taiwan

Roy Dz-Ching Ju
Microprocessor Research Labs,

Intel Corporation, Santa Clara, CA 95052, USA

Abstract

In this paper, we propose a new automatic data alignment model called segmented alignment. The conventional data

alignment model, such as that used in High-Performance Fortran (HPF), aligns arrays with the whole index domain. The

principle of our proposed segmented alignment is to allow alignment relations within delimited index domains. We first provide

motivating examples to illustrate how code fragments of HPF with EOSHIFT or CSHIFT operations or produced by synthesis

operations can benefit from our enhanced alignment scheme. Second, we show that this new model can be implemented in HPF-

like languages by adding WHEN and IN constructs to them. In addition, we show that the new proposed schemes for WHEN

and IN constructs can be emulated using standard HPF syntax. Finally, we address issues related to automatic data alignment

for the new proposed model, and present an algorithm to automatically align programs using our segmented alignment scheme.

Since the optimal algorithm to do this is NP-hard, a practical heuristic is also given. Our experiments were performed on

a DEC Alpha Farm with HPF environments. Our experiments confirm our theory that our proposed alignment scheme can

significantly enhance not only the performance of HPF code fragments with EOSHIFT or CSHIFT operations, but also that of

codes produced by synthesis operations.

Keywords: Automatic Array Alignment, Segmented Alignment, HPF Compilers, Distributed-Memory Machines, Compiler

Optimization, Parallelizing Compiler

1 Introduction

Fortran 90D and HPF (High-Performance Fortran) languages [19] provide distributed arrays to support a global name space on

distributed-memory architectures. In these data parallel languages, programmers can specify the placement of distributed array

data among processors, and the compiler can then take distribution information (i.e., how data are distributed among processors)

and generate the communication codes [21, 18, 5] for programs to emulate the shared memory space on distributed-memory

architectures. When the alignment and distribution are not specified by programmers, the compiler will need to find a data

placement (e.g., array alignment) - according to a given sequence of FORALL loops and array operations in data parallel

languages - such that the data communications are minimized when the programs are actually executed on distributed-memory

architectures.

The problem with conventional alignment schemes in HPF programs is that they align arrays with the whole index domain.

In this paper, we propose a new data alignment model calledsegmented alignment. The principle of our proposed model is
1G. H. Hwang’s work was supported in part by NSC-89-2218-E-260-016 and MOE research excellent project under grant no. 89-E-FA04-1-4 of Taiwan.

C. W. Chen and J. K. Lee’s work was supported in part by NSC-90-2218-E-007-042, NSC-90-2213-E-007-074, NSC-90-2213-E-007-075, MOE research
excellent project under grant no. 89-E-FA04-1-4, and MOEA research project under grant no. 91-EC-17-A-03-S1-0002 of Taiwan.

1

to allow alignment relations within delimited index domains. Here we first provide motivating examples to illustrate how

code fragments of HPF with EOSHIFT or CSHIFT operations or generated from synthesis operations [13] can benefit from

our enhanced alignment scheme. In our example, it is impossible to derive a communication-free alignment relation using

the conventional HPF alignment model, but we can derive communication-free codes with our proposed segmented alignment.

Second, we show that this new model can be supported in HPF-like languages by adding WHEN and IN constructs to them. The

proposed schemes for WHEN and IN constructs can also be emulated using standard HPF syntax. Finally, we address issues

related to automatic data alignments for the new proposed model. Related work on automatically selecting data distributions can

be found in [3, 21, 8, 17, 10, 7, 4]. We present a new algorithm to perform automatic alignment using our segmented alignment

scheme. The optimal algorithm to perform automatic alignment for this case is NP-hard, and so a practical heuristic is also

given. Our experiments were carried out on a DEC Alpha Farm with HPF environments. Our proposed alignment scheme can be

used in two reasons: (i) it can significantly enhance the performance of HPF code fragments containing EOSHIFT or CSHIFT

operations, and (ii) it is particularly useful for optimizing the codes produced by synthesis operations [13]. Experiments

performed on an eight-node DEC Alpha Farm show that the automatic alignment process using the segmented alignment

concept can significantly outperform the conventional alignment process that does not employ this mechanism.

Previously, research work has investigated automatic data alignment and distribution. Knobe, Lucas, and Steele [17] were

the first to investigate the relationships among arrays in a data parallel program in order to construct a preference graph. They

then proposed a heuristic algorithm for selections based on preference graphs. Li and Chen [21, 22] considered axis alignment

by developing a heuristic to reduce it to weighted bipartite graph matching. Kennedy et al. [16] determined data layouts

automatically in distributed-memory environments by using 0-1 integer programming [4]. Gupta et al. [11] extended the

work of Li and Chen by presenting a framework based on weighted graphs. Chatterjee, Gilbert, and Schreiber [7] presented a

framework for the automatic determination of array alignments. They developed a heuristic algorithm to solve axis, stride, and

offset alignment on their computation-directed acyclic graphs. Philippsen [24, 25] presented a heuristic algorithm for automatic

alignment of array data and processes at the time of compilation, also based on preference graphs. Our proposed alignment

model is particular useful for HPF code fragments with EOSHIFT or CSHIFT operations, or those produced by synthesis

operations [13]. The work related to array operation synthesis can be found in [6, 9, 13, 15]. Array synthesis was useful for

optimizing consecutive array operations.

The remainder of this paper is organized as follows. Section 2 provides motivating examples to explain the segmented

alignment concept this paper proposes. Section 3 then describes a cost model, and Section 4 describes the automatic alignment

scheme using our proposed segmented alignment scheme. Section 5 then describes a heuristic algorithm for the automatic

alignment process, and Section 6 gives the experimental results. Finally, Section 7 concludes the paper.

2 Motivating Examples

Consider the following Fortran 90 code fragment:

HPF Code Fragment 1
REAL A(N,N), B(N,N), C(N,N)

...
DO ITER=1, Number Iteration

!Loop 1
FORALL (I=1: N

2 ,J=1: N
2)

A(I,J)=B(J+ N
2 ,I+ N

2)+C(I+ N
2 ,J)

END FORALL
!Loop 2

2

FORALL (I=1: N
2 ,J= N

2 +1:N)
A(I,J)=-6.6+C(I+ N

2 ,J)
END FORALL

!Loop 3
FORALL (I= N

2 +1:N,J=1: N
2)

A(I,J)=B(J+ N
2 ,I- N

2)+C(I- N
2 ,J)

END FORALL
!Loop 4

FORALL (I= N
2 +1:N,J= N

2 +1:N)
A(I,J)=-6.6+C(I- N

2 ,J)
END FORALL

ENDDO
...

When the code fragment above runs on distributed-memory environments, an automatic scheme for alignment and distribu-

tion assignments can be used to find an alignment relationship to align arrays such that data communications will be minimized.

Conventionally, automatic alignment schemes [3, 21, 8, 17, 10, 7, 4] will align arrays with the whole index domain. If we use

conventional alignment methods to specify the data distribution of arrays A, B, and C inCode Fragment 1, it is impossible

to construct a communication-free code for the four parallel loops. For example, in Loops 1 and 3, A(I,J), B(J+N
2 ,I+ N

2) and

C(I+N
2 ,J) should be aligned to ensure that Loop 1 is communication free. However, to ensure that Loop 3 is communication

free, A(I,J), B(J+N2 ,I- N
2) and C(I-N2 ,J) should be aligned. Since the alignment functions can only be defined in a continuous

style, there exists an inherent conflict for the requirement that Loops 1 and 3 are communication free. To enable these types

of codes to be incorporated into an automatic alignment framework, we propose a new concept - called segmented alignment -

to solve the above dilemma. The basic principle of segmented alignment is to use alignment relations within delimited index

domains.

Before we present the details of our proposed segmented alignment scheme in HPF-like constructs, we would like to further

explain our motivating example inCode Fragment 1. Code Fragment 1is actually the target code obtained after applying a

compiler optimization called ”array operation synthesis” [13, 15] onCode Fragment 2below.

HPF Code Fragment 2
REAL A(N,N), B(N,N), C(N,N)

...
DO I=1, Number Iteration

A=CSHIFT((TRANSPOSE(EOSHIFT(B, N
2 ,-6.6,1))+C), N

2 ,1)
ENDDO

...

Array operation synthesis is used to synthesize consecutive array operations in Fortran 90 to reduce data movements and

synchronization overheads. The synthesis scheme can cope with compositions of extensive Fortran 90 array constructs, such as

RESHAPE, SPREAD, EOSHIFT, TRANSPOSE, CSHIFT, and MERGE functions, array sections, array reduction functions,

and WHERE and ELSE-WHERE constructs.

The principle of segmented alignment is to allow alignment relations within delimited index domains. We add WHEN and

IN keywords to target codes for HPF-style languages. For example, line 3 ofCode Fragment 3aligns array element A(I,J) with

a template array TEMP1(I,J) when (I,J) is in the index domain (1:N
2 ,1:N2). Template arrays TEMP1, TEMP2, TEMP3, and

TEMP4 are used to align the array references in Loops 1-4, respectively.

HPF Code Fragment 3

3

1 REAL A(N,N), B(N,N), C(N,N)
2 !HPF$ TEMPLATE TEMP1(N2 , N

2)
3 !HPF$ ALIGN A(I,J) WITH TEMP1(I,J) WHEN (I,J) IN (1: N

2 ,1: N
2)

4 !HPF$ ALIGN B(I,J) WITH TEMP1(J- N
2 ,I- N

2) WHEN (I,J) IN (N
2 +1:N, N

2 +1:N)
5 !HPF$ ALIGN C(I,J) WITH TEMP1(I- N

2 ,J) WHEN (I,J) IN (N
2 +1:N,1: N

2)
6 !HPF$ TEMPLATE TEMP2(N2 , N

2)
7 !HPF$ ALIGN A(I,J) WITH TEMP2(I,J) WHEN (I,J) IN (1: N

2 , N
2 +1:N)

8 !HPF$ ALIGN C(I,J) WITH TEMP2(I- N
2 ,J) WHEN (I,J) IN (N

2 +1:N, N
2 +1:N)

9 !HPF$ TEMPLATE TEMP3(N2 , N
2)

10 !HPF$ ALIGN A(I,J) WITH TEMP3(I,J) WHEN (I,J) IN (N
2 +1:N,1: N

2)
11 !HPF$ ALIGN B(I,J) WITH TEMP3(J+ N

2 ,I- N
2) WHEN (I,J) IN (1: N

2 , N
2 +1:N)

12 !HPF$ ALIGN C(I,J) WITH TEMP3(I+ N
2 ,J) WHEN (I,J) IN (1: N

2 ,1: N
2)

13 !HPF$ TEMPLATE TEMP4(N2 , N
2)

14 !HPF$ ALIGN A(I,J) WITH TEMP4(I,J) WHEN (I,J) IN (N
2 +1:N, N

2 +1:N)
15 !HPF$ ALIGN C(I,J) WITH TEMP4(I+ N

2 ,J) WHEN (I,J) IN (1: N
2 , N

2 +1:N)
16 !HPF$ DISTRIBUTE TEMP1(BLOCK,BLOCK),TEMP2(BLOCK,BLOCK),TEMP3(BLOCK,BLOCK),TEMP4(BLOCK,BLOCK)

...
17 DO ITER=1, Number Iteration
18 !Loop 1
19 FORALL (I=1: N

2 ,J=1: N
2)

20 A(I,J)=B(J+ N
2 ,I+ N

2)+C(I+ N
2 ,J)

21 END FORALL
22 !Loop 2
23 FORALL (I=1: N

2 ,J= N
2 +1:N)

24 A(I,J)=-6.6+C(I+ N
2 ,J)

25 END FORALL
26 !Loop 3
27 FORALL (I= N

2 +1:N,J=1: N
2)

28 A(I,J)=B(J+ N
2 ,I- N

2)+C(I- N
2 ,J)

29 END FORALL
30 !Loop 4
31 FORALL (I= N

2 +1:N,J= N
2 +1:N)

32 A(I,J)=-6.6+C(I- N
2 ,J)

33 END FORALL
34 ENDDO

...

Lines 2-5 align A(I,J), B(J+N2 ,I+ N
2), and C(I+N

2 ,J) in index domain (I=1:N2 ,J=1:N2) of Loop 1; similarly, lines 6-8 align

A(I,J) and C(I+N
2 ,J) in index domain (I=1:N2 ,J=N

2 +1:N) of Loop 2; lines 9-12 align A(I,J), B(J+N2 ,I- N
2), and C(I-N2 ,J) in index

domain (I=N
2 + 1:N,J=1:N2) of Loop 3; and lines 13-15 align A(I,J), and C(I-N

2 ,J) in index domain (I=N2 + 1:N,J=N
2 + 1:N) of

Loop 4. Since all of the array references in Loops 1-4 (lines 18-33) are aligned, these loops are communication free.

The segmented alignment concept proposed in this work can be emulated using existing HPF codes. Throughout the paper,

we will still use the segmented alignment concept and WHEN and IN keywords to represent the target programs, as this

provides a better abstraction.Appendix Agives an emulated HPF code forCode Fragment 3by splitting arrays into subarrays.

3 Communication Cost Model

In HPF, data movements from source arrays to target arrays may involve communication between remote processors. The

amount of remote communication depends on the alignment and distribution of the source and target arrays. An often-used

communication-cost model for alignment analysis is to model the communication cost as the amount of data moved if the target

array and the source array are misaligned. However, our cost model is developed based on modeling the communication cost as

4

the amount of misaligned data multiplied by a distance function. Before we describe our cost model, we first give an auxiliary

definition below.

Definition 1 A segmentation descriptorrepresents a set, and it is recursively defined as follows:

(1) φ(/ f1(i1, i2, . . . , in), . . . , fm(i1, i2, . . . , in)/ , / l1: u1: s1, l2: u2: s2, . . ., lm: um: sm/) =

{ (i1, i2, . . . , in) | ∀ k, 1≤ k≤ n, lk ≤ fk(i1, i2, . . . , in)≤ uk and

fk(i1, i2, . . . , in) = lk +sk ∗ I , where I is a non-negative integer. }
A regular section specifier[1] has the formlk:uk:sk, where thelk, uk, andsk indicate the lower bound, upper bound, and

stride of fk(i1,i2, . . . ,in), respectively. We may omit the stride if it is equal to one. We say a segmentation descriptor issimple

if it is of the above form.

(2)If α1 andα2 are two segmentation descriptors, thenα1 ∧ α2 is also a segmentation descriptor but it is not simple:α1 ∧
α2 = {(i1,i2, . . . ,in) | (i1,i2, . . . ,in) ∈ α1 and (i1,i2, . . . ,in) ∈ α2 }.

We now have our cost model as defined below.

Definition 2 Suppose we want to move arrayB[g1(i1, . . . , ik), g2(i1, . . . , ik), . . ., gm(i1, . . . , ik)] to A[f1(i1, . . . , ik), f2(i1, . . . , ik),

. . ., fn(i1, . . . , ik)] within the index domain defined by the segmentation descriptorγ = φ(/i1, . . ., ik/, /l1 : u1 : s1, . . ., lk : uk : sk

/). That is, we want to execute the following section movement:

∀(i1, . . . , ik) ∈ γ, A[f1(i1, . . . , ik), . . . , fn(i1, . . . , ik)] = B[g1(i1, . . . , ik), . . . ,gm(i1, . . . , ik)].

We define the communication cost of the above section movement as

∑
(i1,...,ik)∈γ

D(A[f1(i1, . . . , ik), . . . , fn(i1, . . . , ik)],B[g1(i1, . . . , ik), . . . ,gm(i1, . . . , ik)])

whereD is called thedistance function.

The distance function corresponds to the cost of moving one unit of data from the source array to the target array. To

estimate the communication cost of data movement between arrays more precisely, one should consider both the alignment and

the distribution of the source and target arrays when determining the distance functionD. For simplicity, we define the distance

function inDefinition 4(below). Although the model simplifies real systems, our framework presented inSections 4.3and5 is

completely extensible with a more accurate definition of the distance functionD.

Before we give our distance function, we will first introduce the auxiliary definition for a concept called reference location.

HPF provides compiler directives that programmers use to specify the data layout of arrays . For two-level mapping, arrays are

aligned to an auxiliary Cartesian grid called a template [19], which can be used as an abstract alignment target that may then be

distributed onto the parallel machine. Even if the programmer does not specify a global template array, a simple transformation

can be used to derive a global template array in a program. The general form of the alignment relation in HPF is

!HPF$ ALIGN A(i1, i2, . . . , ip) with T(f1(i1, i2, . . . , ip), f2(i1, i2, . . . , ip), . . . , fq(i1, i2, . . . , ip))
where fk(i1, i2, . . . , ip), k = 1, . . . ,q, is either a ”∗” (broadcasting to the whole dimension) orC0∗ ir +C1, where1≤ r ≤ p, and

C0 andC1 are integers.

For the segmented alignment, we extend the original alignment compiler directive of HPF by adding WHEN and IN key-

words to specify the alignment relation in a delimited index domain: arrayA(i1, . . . , ip) will be aligned toT(f k
1(i1, . . . , ip),

. . . , f k
q(i1, . . . , ip)) only if (i1, . . . , ip) ∈ (Rk

1, . . . ,R
k
p). The ordinary alignment compiler directive of HPF can be treated as a

special case of the segmented alignment defined in the paper, i.e., the alignment relation definition is valid in the whole index

domain of the specified array:

5

!HPF$ ALIGN A(i1, . . . , ip) with T(f 1
1 (i1, . . . , ip), . . . , f 1

q (i1, . . . , ip)) WHEN (i1, . . . , ip) IN (R1
1, . . . ,R

1
p)

!HPF$ ALIGN A(i1, . . . , ip) with T(f 2
1 (i1, . . . , ip), . . . , f 2

q (i1, . . . , ip)) WHEN (i1, . . . , ip) IN (R2
1, . . . ,R

2
p)

. . .
!HPF$ ALIGN A(i1, . . . , ip) with T(f n

1 (i1, . . . , ip), . . . , f n
q (i1, . . . , ip)) WHEN (i1, . . . , ip) IN (Rn

1, . . . ,R
n
p)

whereRj
i is a regular section specifier defined in [1].

If array A is aligned with a template T in the preceding manner, then we use the following definition to describe each

reference of array A:

Definition 3 Assume array A is aligned with template T according to the above segmented alignment relation. Areference

location of A(g1(i1, i2, . . . , ip), . . ., gp(i1, i2, . . . , ip)) with respect to template T is then

T(fk1(g1(i1,i2, . . . ,ip),g2(i1,i2, . . . ,ip), . . . ,gp(i1,i2, . . . ,ip)),
fk2(g1(i1,i2, . . . ,ip),g2(i1,i2, . . . ,ip), . . . ,gp(i1,i2, . . . ,ip)),
· · · ,
fkq(g1(i1,i2, . . . ,ip),g2(i1,i2, . . . ,ip), . . . ,gp(i1,i2, . . . ,ip)))

if (i1, i2, . . . , ip) ∈ φ(/g1(i1, . . . ,ip), . . ., gp(i1, . . . , ip)/, /Rk
1, . . . ,R

k
p/).

For example, arrays A and B are aligned with template T according to the following relationships:

!HPF$ ALIGN A(i,j) WITH T(2∗ i−5, ∗, 3∗ j) WHEN (i,j) in (1:1000,1:1000)

!HPF$ ALIGN B(i,j) WITH T(i +3, ∗, 2∗ j) WHEN (i,j) in (1:1000,1:1000)

The reference location of A(2∗ i,2∗ j) with respect to template T is T(2∗ (2∗ i)−5,∗,3∗ (2∗ j))=T(4∗ i−5,∗,6∗ j) if (i, j) ∈
φ(/2∗ i,2∗ j/,/1:1000,1:1000/). Similarly, the reference location of B(4∗ i−8,3∗ j) with respect to template T is T((4∗ i−8)+

3,∗,2∗ (3∗ j))=T(4∗ i−5,∗,6∗ j) if (i, j) ∈ φ(/4∗ i−8,3∗ j/,/1:1000,1:1000/). The reference locations of A(2∗ i,2∗ j) and B(4∗
i−8,3∗ j) with respect to template T are identical if(i, j) ∈ φ(/2∗ i,2∗ j/,/1:1000,1:1000/)∩ φ(/4∗ i−8,3∗ j/,/1:1000,1:1000/).

If two array references are with the same reference location with respect to the same template array, then the two references

are located in the same processor. We now have our distance function defined below.

Definition 4 D is the distance function defined as follows:

D(A(f1(i1, . . . , ik),. . ., fn(i1, . . . , ik)),B(g1(i1, . . . , ik),. . .,gm(i1, . . . , ik)))=1 if the reference locations ofA(f1(i1, . . . , ik), . . ., fn(i1, . . . , ik)) and

B(g1(i1, . . . , ik), . . ., gm(i1, . . . , ik)) are not identical with respect to the same template1; D(A(f1(i1, . . . , ik), . . ., fn(i1, . . . , ik)) , B(g1(i1, . . . , ik),

. . ., gm(i1, . . . , ik)))=0 otherwise.

4 Automatic Segmented Alignments for Loops

In this section, we address the issues associated with automatic data alignments for our proposed model, the segmented align-

ment model. The related work in solving the automatic data alignment problem can be seen in [3, 21, 8, 17, 10, 7, 4]. Conven-

tional data alignment models align arrays with the whole index domain. Here we present new algorithms to enable automated

alignment problem using our segmented alignment scheme.
1The calculation of the reference locations of arrays A and B should properly choose the valid alignment relations according to the referred index domains

of these arrays.

6

4.1 Segmented Alignment of Communication-Free Codes for Parallel Loops

To explain the techniques for generating communication-free codes for a sequence of FORALL loops with segmented align-

ments, we first provide examples of single-statement parallel loops. Let us considerCode Fragment 4below.

HPF Code Fragment 4
...

FORALL (I = L : U : S)
A1(α1∗ I +β1) = F (A2(α2∗ I +β2),A3(α3∗ I +β3), . . . ,An(αn∗ I +βn))

END FORALL

FORALL (I = L′ : U ′ : S′)
B1(α′1∗ I +β′1) = F (B2(α′2∗ I +β′2),B3(α′3∗ I +β′3), . . . ,Bm(α′m∗ I +β′m))

END FORALL
...

Assume that arraysA1, A2, . . ., An, B1, B2, . . ., Bm, are different arrays2. Based on the owner-computes rule, if thereference

locationsof arraysA1, A2, . . ., An are all the same, there will be no remote access (i.e., communication) required in the

first parallel loop. Similarly, if thereference locationsof arraysB1, B2, . . ., Bm are all the same, there will be no remote access

(communication) required in the second parallel loop. The defined ranges of the index domain can be easily derived according to

the array subscript and loop index range. From the first loop inCode Fragment 4, we can see that the referenced section of array

Ak is Ak(αk∗L+βk : αk∗U +βk : αk∗S). Similarly, the referenced section of arrayBk is Bk(α′k∗L′+β′k : α′k∗U ′+β′k : α′k∗S′).

The segmented alignment involves defining an alignment relation in a specified array section. Therefore, we can use segmented

alignment to specify the data layout of these arrays as follows.

HPF Code Fragment 5
!HPF$ TEMPLATE TEMP(X1:X2)

!HPF$ ALIGN A1(I) WITH TEMP(LCM(α1,α2,...,αn)
α1

∗ I) WHEN (I) IN (α1∗L+β1 : α1∗U +β1 : α1∗S)

!HPF$ ALIGN A2(I) WITH TEMP(LCM(α1,...,αn)
α2

∗ I +β1∗ LCM(α1,...,αn)
α1

−β2∗ LCM(α1,...,αn)
α2

) WHEN (I) IN

(α2∗L+β2 : α2∗U +β2 : α2∗S)
· · ·

!HPF$ ALIGN An(I) WITH TEMP(LCM(α1,...,αn)
αn

∗ I +β1∗ LCM(α1,...,αn)
α1

−βn∗ LCM(α1,...,αn)
αn

) WHEN (I) IN

(αn∗L+βn : αn∗U +βn : αn∗S)

!HPF$ ALIGN B1(I) WITH TEMP(
LCM(α′1,...,α′n)

α′1
∗ I) WHEN (I) IN (α′1∗L′+β′1 : α′1∗U ′+β′1 : α′1∗S′)

!HPF$ ALIGN B2(I) WITH TEMP(
LCM(α′1,...,α

′
n)

α′2
∗ I +β′1∗

LCM(α′1,...,α
′
n)

α′1
−β′2∗

LCM(α′1,...,α′n)
α′2

) WHEN (I) IN

(α′2∗L′+β′2 : α′2∗U ′+β′2 : α′2∗S′)
· · ·

!HPF$ ALIGN Bm(I) WITH TEMP(
LCM(α′1,...,α′n)

α′n
∗ I +β′1∗

LCM(α′1,...,α′m)
α′1

−β′m∗ LCM(α′1,...,α′m)
α′m

) WHEN (I) IN

(α′m∗L+β′m : α′m∗U ′+β′m : α′m∗S′)
...

FORALL (I = L : U : S)
A1(α1∗ I +β1) = F (A2(α2∗ I +β2),A3(α3∗ I +β3), . . . ,An(αn∗ I +βn))

END FORALL
FORALL (I = L′ : U ′ : S′)

B1(α′1∗ I +β′1) = F (B2(α′2∗ I +β′2),B3(α′3∗ I +β′3), . . . ,Bm(α′m∗ I +β′m))
END FORALL

2If a pair of them are the same, it may not be possible to generate communication-free code for this code fragment. We will discuss this case inSection 4.2.

7

...

Note that all thereference locationsof arraysA1, A2, . . ., An with respect to the template array TEMP are all the same. This

ensures that the first parallel loop is communication free. The similar situation also holds for the second parallel loop. We give

one more example below to demonstrate the way to produce communication-free codes with our segmented alignment.

Example 1 Consider theCode Fragment 6below. The segmented alignment compiler directives in lines 1-4 ensure that the loop comprising
lines 5-7 is communication free.

HPF Code Fragment 6
1 !HPF$ TEMPLATE TEMP(N)
2 !HPF$ ALIGN A(I) WITH TEMP(5 ∗I) WHEN (I) IN (605:3005:18)
3 !HPF$ ALIGN B(I) WITH TEMP(6 ∗I+61) WHEN (I) IN (494:2494:15)
4 !HPF$ ALIGN C(I) WITH TEMP(10 ∗I-175) WHEN (I) IN (320:1520:9)

...
5 FORALL (I=100:500:3)
6 A(6 ∗I+5)=B(5 ∗I-6)/C(3 ∗I+20)
7 END FORALL

...

4.2 Array Reference Conflicts and Communication-Free Constraints

We first describe the concept of reference conflicts, which are used later for our automatic alignment schemes. There are two

types of reference conflicts: intra-loop and inter-loop. Both types will result in communications. In the following we give the

definition of reference conflicts. We useCode Fragment 5as an example code to illustrate the principle.

Definition 5 We say that anintra-loop reference conflictoccurs in the first parallel loop ofCode Fragment 5if the following

conditions hold:

(1) There exist two arraysAi andA j , 1≤ i ≤ n and1≤ j ≤ n, whereAi andA j are the the same array.

(2) The intersection of reference sections ofAi andA j in this loop is not an empty set, which means(αi ∗L+ βi :

αi ∗U + βi : αi ∗S) ∩ (α j ∗L+ β j : α j ∗U + β j : α j ∗S) 6= /0. SinceAi andA j are the same array, such conditions

may hold.

(3) According to the segmented alignment relation defined inCode Fragment 5, the reference locations ofAi(αi ∗
I +βi) andA j(α j ∗ I +β j) with respect toTEMP are different.

Definition 6 An inter-loop reference conflictoccurs in the first and second parallel loops ofCode Fragment 5if the following

conditions hold:

(1) There exist two arraysAi andB j , 1≤ i ≤ n and1≤ j ≤m, whereAi andB j are the the same array.

(2) The intersection of reference sections ofAi andB j in this loop is not an empty set, which means(αi ∗L+ βi :

αi ∗U +βi : αi ∗S) ∩ (α′j ∗L′+β′j : α′j ∗U ′+β′j : α′j ∗S′) 6= /0. SinceAi andB j are the same array, such conditions

may hold as well.

(3) According to the segmented alignment relation defined inCode Fragment 5, the reference locations ofAi(αi ∗
I +βi) andB j(α′j ∗ I +β′j) with respect toTEMP are different.

8

We give an example below to illustrate reference conflicts.

Example 2 Consider theCode Fragment 7below. Array A is referenced three times in the loop body. The index variableI is in the range
(I=1:100:1). Thus, the reference section of A(3∗I+50) is A(53:350:3), the reference section of A(2∗I+50) is A(52:250:2), and the reference
section of A(I+500) is A(501:600:1). Since (53:350:3)∩ (52:250:2) is not the empty set, it is impossible to find an alignment relation such
that A(3∗I+50) and A(2∗I+50) have the samereference locationif I=1:100:1. That is, there is an intra-loop reference conflict for A(3∗I+50)
and A(2∗I+50), which means that the compiler can not generate communication-free code for this loop.

HPF Code Fragment 7
...

FORALL (I=1:100:1)
A(3 ∗I+50)=A(2 ∗I+50)/A(I+500)

END FORALL
...

For a sequence of FORALL loops there are two constraints for the generation of communication-free code. Suppose we

have N FORALL loopsP1, P2, . . ., andPN. The first constraint is that there should be no intra-loop conflict of array references

in P1, P2, . . ., andPN; the second is that there should be no inter-loop reference conflict in each pair ofP1, P2, . . ., andPN. For

each array used in these FORALL loops, the intersection of index domains defined by segmented alignment for each FORALL

loop (P1, P2, . . ., andPN) should be the empty set. For example, inCode Fragment 3there is no conflict of array references

for the four FORALL loops (loops 1-4). This satisfies the first requirement. For the second requirement, we take array A as an

example. The index domains defined for the four FORALL loops of array A are (1:N
2 ,1:N2), (1:N2 ,N

2 +1:N), (N
2 +1:N,1:N2), and

(N
2 +1:N,N

2 +1:N). Their intersection is the empty set. Thus, there exists a communication-free code for those FORALL loops

in Code Fragment 1.

Once the target FORALL loops satisfy the two requirements for communication-free operation, we can apply the scheme

presented in Section 4.1 toP1, P2, . . ., andPN. This will produce segmented alignment statements related to each name

array in the target FORALL loops, whilst ensuring that the execution ofP1, P2, . . ., andPN will not result in remote data

communications.

4.3 Optimal Solution

In this section, we describe methods to automatically align arrays with segmented alignment schemes. We first present the

segmented alignment graph which is used to calculate the communication cost for evaluating a sequence of FORALL loops.

Given a sequence of FORALL loopsF , assume thatF comprises N FORALL loopsP1, P2, . . ., andPN, and that there are M

arrays,A1, A2, · · ·, andAM, in F . The segmented alignment graph ofF is a union of all the expression trees ofP1, P2, . . .,

andPN, with each expression tree labeled with the corresponding index domain of its FORALL loop. Basically, a segmented

alignment graph is a forest consisting of one or multiple expression trees that are labeled with index domains. Thus, the

union of several segmented alignment graphs is still a segmented alignment graph. The communication cost for evaluating a

segmented alignment graph depends on the segmented alignment relation defined for each name array in the graph. Assume

that we encode the specific segmented alignment relation as p, which represents a specific segmented alignment relation ofA1,

A2, · · ·, andAM. Let the segmented alignment graph ofF beG . Then the communication cost for evaluatingF according to

the segmented alignment relation specified byπ is as follows:

∑
(r,l)∈E

∑
(i1,···,ip)∈I

Dπ(r, l)

whereE ={ (r, l) | r andl represent each pair of parent and child nodes inG}; andI is the segmentation descriptor ofr andl .

The distance functionDπ is defined according toπ.

9

+

B(i-N/2,j) C(j,i)

A(i,j)

(/i,j/,/N/2+1:N,1:N/)

+

B(i+N/2,j) C(i,j)

A(i,j)

(/i,j/,/1:N/2,1:N/)

Figure 1: An example of Segmented Alignment Graph.

Example 3 AssumeF is asCode Fragment 8below.

HPF Code Fragment 8
FORALL (I=1: N

2 ,J=1: N)
A(I,J)=B[I+ N

2 ,J]+C[I,J]
END FORALL
FORALL (I= N

2 +1:N,J=1:N)
A(I,J)=B[I- N

2 ,J]-C[J,I]
END FORALL

The segmented alignment graph of the above data-access function is shown inFigure 1. For specific segmented alignment relations of arrays

A, B, andC, the communication cost for evaluatingF is ∑(i, j)∈φ(/i, j/,/1:N/2,1:N/) D(A(i, j), B(i+N/2, j)) + ∑(i, j)∈φ(/i, j/,/1:N/2,1:N/) D(A(i, j),C(i, j))

+ ∑(i, j)∈φ(/i, j/,/N/2+1:N,1:N/) D(A(i, j),B(i−N/2, j)) + ∑(i, j)∈φ(/i, j/,/N/2+1:N,1:N/) D(A(i, j),C(j, i)). Note that the segmented alignment

relations of arraysA, B, andC are represented by the distance functionD.

AssumeA encodes all the sets of possible segmented alignment relations of the arrays inF . Then the optimal solution is

Ω = MINπ∈A(∑
(r,l)∈E

∑
(i1,···,ip)∈I

Dπ(r, l))

Comparing the segmented alignment and the alignment of HPF, it is obvious that the alignment of HPF is only a special

case of the segmented alignment. Since the complexity of the automatic alignment problem for the HPF program is NP-

complete [21, 28], we conclude that the automatic segmented alignment problem is NP-hard. Moreover, the number of all

possible alignments of the temporary arrays is potentially very large. The alignment function can be decomposed into three

constituents: axis, stride, and offset. Although there are only a finite number of possible axis alignments, there is potentially

an infinite space of strides and offsets [7]. Also, for considering segmented alignment, an array may have different alignment

functions for each data element within it. This makes obtaining the optimal solution computationally prohibitive except for

small problems. Theoretically, every possible alignment needs to be tested, but practically it is acceptable to test only those

alignments or distributions appearing in a parse tree. Or, to simplify it further, one can try only those related to source or target

arrays.

5 Heuristic Algorithm

As mentioned earlier, if a sequence of FORALL loops satisfies the two communication-free requirements (i.e., the absence

of intra- or inter-loop reference conflicts), we can easily derive an appropriate segmented alignment relation in polynomial

10

time for the arrays in those loops to obtain communication-free execution. However,Section 4.3states that if a sequence of

FORALL loops cannot satisfy the two communication-free requirements, the optimal algorithm for deriving the segmented

alignment relation of the arrays that enables execution with minimal communication cost is NP-hard. Therefore, we present

a practical and efficient heuristic algorithm in this section to guide the process of code generation. The heuristic algorithm is

given below.

Algorithm 1 A heuristic algorithm to choose the segmented alignment relations for arrays in a sequence of FORALL

loops.

Input: A sequence of FORALL loops

Begin

Step 1.Construct the segmented alignment graphs of the target FORALL loops. Assume thatG is the derived segmented

alignment graph.

Step 2. Detect the reference conflicts3 in G . For each reference conflict which exists in two leaf nodes, a conflict edge is

added to link these nodes. Designate the resulting graph asG ′.

Step 3. Label all the leaf nodes inG ′ as ”marked,” except those leaf nodes which have a reference conflict relation to the

root node. Designate the resulting graph asG ′′.

Step 4.Consider the conflict edges inG ′′. For each strongly connected component which is linked by these conflict edges,

choose the node that has the largest segmentation descriptor4. Let this node in the strongly connected component remain labeled

as ”marked,” and label the others as ”unmarked.”

Step 5.Use the scheme presented inSection 4.1to define the segmented alignment relation for the root node and leaf nodes

which are labeled ”marked.”

End

According to the owner-computes rule of HPF, communication will be required between the unmarked nodes and their

corresponding root nodes. This also explains why we want to choose a node with the largest segmentation descriptor in Step

4. That is, we prefer aligning array references with larger index domains to array references with smaller index domain if two

array references conflict with each other. We use the following example to illustrate the above scheme.

Example 4 See the following code fragment:

HPF Code Fragment 9
REAL A(N,N), B(N,N), C(N,N), D(N,N), E(N,N), F(N,N)

...
F=TRANSPOSE(B+C+D+E)/(D*E)
A=CSHIFT(EOSHIFT(F,N/10,-7.7,2),N/5,1)

...

We will demonstrate our alignment scheme after the above codes are optimized by so-called array operation synthesis. A

straightforward compilation for these consecutive array functions or array expressions may translate each array operation into

a (parallel) nested loop, and use a temporary array to pass intermediate results to subsequent array functions. The synthesis

of multiple consecutive array functions or array expressions can transform several data-access functions into an equivalent

composite reference pattern. Thus, the synthesis can improve performance by reducing the movement of redundant data,
3Reference conflict is defined inSection 4.2. If there is no reference conflict inG , then we can apply the scheme presented inSection 4.2to obtain

communication-free code.
4If there are several nodes that have the same maximal size of segmentation descriptor, arbitrarily choose one of them.

11

+

B(j+N/10,i+N/5)

/

C(j+N/10,i+N/5)

D(j+N/10,i+N/5)

E(j+N/10,i+N/5) D(i+N/5,j+N/10)

+

+

A(i,j)

: Marked node

: Unmarked node
: Conflict-edge

A(i,j)

-7.7

+

B(j+N/10,i-4N/5)

/

C(j+N/10,i-4N/5)

D(j+N/10,i-4N/5)

E(j+N/10,i-4N/5) D(i-4N/5,j+N/10)

+

+

A(i,j)

(/i,j/,/ 1:4N/5,1:9N/10 /) (/i,j/,/ 1:4N/5,9N/10+1:N /) (/i,j/,/ 4N/5+1:N,1:9N/10 /) (/i,j/,/ 4N/5+1:N,9N/10+1:N /)

E(i+N/5,j+N/10)

*

A(i,j)

-7.7

D(i-4N/5,j+N/10)

*

Figure 2: A segmented alignment graph of FORALL loops.

temporary storage usage, and parallel-loop synchronization overhead. Applying array operation synthesis developed in [13, 15,

14], we have the synthesized codes as follows:

REAL A(N,N), B(N,N), C(N,N), D(N,N), E(N,N), F(N,N)
.
.
.

!Loop 1
FORALL (i=1: 4N

5 ,j=1: 9N
10)

A(i, j) = (B(j + N
10 , i + N

5)+C(j + N
10 , i + N

5)+D(j + N
10 , i + N

5)+E(j + N
10 , i + N

5))/(D(i + N
5 , j + N

10)∗E(i + N
5 , j + N

10))
END FORALL

!Loop 2
FORALL (i=1: 4N

5 ,j= 9N
10 +1:N)

A(i,j)=-7.7
END FORALL

!Loop 3
FORALL (i= 4N

5 +1 : N,j=1: 9N
10)

A(i, j) = (B(j + N
10 , i− 4N

5)+C(j + N
10 , i− 4N

5)+D(j + N
10 , i− 4N

5)+E(j + N
10 , i− 4N

5))/(D(i− 4N
5 , j + N

10)∗E(i− 4N
5 , j + N

10))
END FORALL

!Loop 4
FORALL (i= 4N

5 +1 : N,j= 9N
10 +1 : N)

A(i,j)=-7.7
END FORALL

The segmented alignment graph of the above code after applying array operation synthesis is shown inFigure 2. We use

the scheme we presented inSection 4.1to define the segmented alignment relation for the root node and leaf nodes labeled as

”marked.” The conflict edges are also illustrated inFigure 2. After employing our heuristic alignment algorithm, we have the

following codes:

REAL A(N,N), B(N,N), C(N,N), D(N,N), E(N,N), F(N,N)
!HPF$ TEMPLATE TEMP1(N,N)
!HPF$ ALIGN A(I,J) WITH TEMP1(I,J) WHEN (I,J) IN (1: 4N

5 ,1: 9N
10)

!HPF$ ALIGN B(I,J),C(I,J),D(I,J),E(I,J) WITH TEMP1(J- N
5 ,I- N

10) WHEN (I,J) IN (N
10 +1:N, N

5 +1:N)
!HPF$ TEMPLATE TEMP2(N,N)
!HPF$ ALIGN A(I,J) WITH TEMP2(I,J) WHEN (I,J) IN (4N

5 +1: N,1: 9N
10)

!HPF$ ALIGN B(I,J),C(I,J),D(I,J),E(I,J) WITH TEMP1(J+ 4N
5 ,I- N

10) WHEN (I,J) IN (N
10 +1:N,1: N

5)

12

!HPF$ DISTRIBUTE TEMP1(BLOCK,BLOCK),TEMP2(BLOCK,BLOCK)
.
.
.

!Loop 1
FORALL (i=1: 4N

5 ,j=1: 9N
10)

A(i, j) = (B(j + N
10 , i + N

5)+C(j + N
10 , i + N

5)+D(j + N
10 , i + N

5)+E(j + N
10 , i + N

5))/(D(i + N
5 , j + N

10)∗E(i + N
5 , j + N

10))
END FORALL

!Loop 2
FORALL (i=1: 4N

5 ,j= 9N
10 +1:N)

A(i,j)=-7.7
END FORALL

!Loop 3
FORALL (i= 4N

5 +1 : N,j=1: 9N
10)

A(i, j) = (B(j + N
10 , i− 4N

5)+C(j + N
10 , i− 4N

5)+D(j + N
10 , i− 4N

5)+E(j + N
10 , i− 4N

5))/(D(i− 4N
5 , j + N

10)∗E(i− 4N
5 , j + N

10))
END FORALL

!Loop 4
FORALL (i= 4N

5 +1 : N,j= 9N
10 +1 : N)

A(i,j)=-7.7
END FORALL

The communication cost for executing Loop 1 of the above code is∑(i, j)∈φ(/i, j/,/1:4N/5,1:9N/10/) D(A(i, j),D(i + N/5, j +

N/10)+D(A(i, j),E(i +N/5, j +N/10) = 4N
5 ∗ 9N

10 = 18N2

25 , and the communication cost for executing the loop 3 of the above

code is∑(i, j)∈φ(/i, j/,/4N/5+1:N,1:9N/10/) D(A(i, j),D(i−N/5, j +N/10)+D(A(i, j),E(i−N/5, j +N/10) = N
5 ∗ 9N

10 = 9N2

50 . Thus,

the total communication cost is18N2

25 + 9N2

50 = 9N2

10 .

The previous algorithm done in [14] shows that the unmarked nodes will need remote communication based on the owner-

computes rule of HPF. Note that this was an algorithm for handling performance anomaly with array operation synthesis on

distributed-memory parallel environments. However, if several unmarked nodes are in the same subtree, we may further reduce

the communication, since we can derive the reference locations for all these nodes. We can then traverse the graph to find the

maximal subtrees that satisfy the following three criteria: (i) the number of their leaf nodes is greater than 1, (ii) all their leaf

nodes are unmarked, and (iii) all their leaf nodes have the same reference location with respect to the same template array. Once

the subtree is identified, we use a separate parallel loop to execute its corresponding subexpression and rollback a temporary

array to save the intermediate results of the computation of the subtree. Finally, the newly generated temporary array is aligned

with any one of the arrays in the found subtree. The generated temporary array is then inserted into the original expression tree

to pass the intermediate results.

6 Experiments

In this section, we report experiments and performance results to show the effectiveness of segmented alignments. Our input

programs are written in Fortran 90, and they become HPF programs after optimizations with automatic alignments. Our testbed

is a computing farm comprising eight Alpha 3000/900 workstations connected by FDDI (ring) networks, and running the DEC

HPF compiler [12]. Because segmented alignment is not supported in the conventional HPF compiler, we split arrays into

subarrays and use HPF compiler directives to specify the alignment relation for these subarrays.Appendix Agives an example

of such an emulation.

We first give experimental results for the motivating example inCode Fragments 1and2 to demonstrate the performance of

programs when the communication-free requirements are met with array operation synthesis and segmented alignments. Below

we listed the same code as inSection 2, except that we also experiment with differentShift Size(seeTable 1).

REAL A(N,N), B(N,N), C(N,N)
...

DO I=1, Number Iteration

13

Shift Size=128 Shift Size=64
p=1 p=2 p=4 p=8 p=1 p=2 p=4 p=8

Code A 0.38 3.10 2.72 2.67 0.46 2.46 2.01 2.12
Code B 0.33 0.16 0.12 0.066 0.42 0.21 0.12 0.064

Shift Size=32 Shift Size=16
p=1 p=2 p=4 p=8 p=1 p=2 p=4 p=8

Code A 0.52 2.36 1.88 1.83 0.57 2.37 1.85 1.80
Code B 0.42 0.21 0.12 0.062 0.31 0.19 0.13 0.062

Shift Size=8 Shift Size=4
p=1 p=2 p=4 p=8 p=1 p=2 p=4 p=8

Code A 0.59 2.48 1.98 1.98 0.63 2.53 2.19 1.99
Code B 0.32 0.17 0.13 0.064 0.48 0.18 0.13 0.062

Table 1: The performance of theCode Fragment 1with synthesis and with/without segmented alignments

A=CSHIFT((TRANSPOSE(EOSHIFT(B,Shift Size,-6.6,1))+C),Shift Size,1)
ENDDO

...

Code A is the performance result obtained by executingCode Fragment 1and performing conventional data alignments with

the whole index domain of an array;Section 2shows that communications occur in this case. Code B is generated according to

Code Fragment 3, and it is communication free. The size of the data grid in our test case was 256 (i.e., N=256). The execution

times were measured by running the program fragments 100 times. The experimental results show that Code B was much more

scalable than code A regardless of the shift strides used. The use of segmented alignment makes the synthesized code more

scalable in parallel environments than codes produced by conventional automatic alignments. Without our proposed segmented

alignment, communication-free execution would not be possible in this case when using the conventional HPF data alignment

model to align arrays with the whole index domain.

Table 2provides more examples to explicitly compare the performance with or without our segmented alignment scheme,

which further demonstrates the reductions in communication costs that our method produces.Appendix Bgives the source

codes of these code fragments. The first test suite is theCode Fragment 9used earlier in this paper. We experimented with

two versions of the code. The first version used array synthesis [13, 15] and conventional alignment to align the arrays with the

whole index domain. The second version integrated array operation synthesis with our proposed segmented alignment scheme

using our heuristic algorithm. With our proposed segmented alignment scheme, the parallel algorithm is more scalable and runs

much better on the eight processors constituting our farm. The second code fragment is the example in Chatterjee et al. [25]

modified by adding CSHIFT and EOSHIFT array primitives, since Chatterjee et al. [7] could not handle cases including those

two array functions, which need segmented alignment to obtain communication-free codes. Comparison of the two versions

of our code illustrates the aggregate benefits of the integration of segmented alignment scheme presented in this paper and the

array operation synthesis scheme we invented previously [15]. Finally, we performed experiments on the third test suite in

Table 2, which comes from page 1242 of Numerical Recipes in Fortran 90 [26] and involves two FFTs. The variables were as

follows. We set n to 256*256, and h1, h2, fft1, and fft2 were arrays of complex numbers. In addition, h1(2:n2) was aligned

with fft1(2:n2) and fft1(n:n2:-1), and h2(2:n2) was aligned with fft2(2:n2) and fft2(n:n2:-1). The program was executed with

or without our proposed segmented alignment - with our proposed segmented alignment and automatic alignment, the program

is more scalable than the one without it.

14

p=1 p=2 p=4 p=8
The 1st suite after synthesis and segmented alignment 2.19 1.23 0.63 0.32
The 1st suite after synthesis, but without segmented alignment1.88 3.38 2.61 2.06
The 2nd suite without synthesis and segmented alignment 6.01 13.3 8.41 5.03
The 2nd suite after synthesis and segmented alignment 3.34 6.01 3.578 1.89
The 3rd suite with segmented alignment 1.21 1.89 0.68 0.38
The 3rd suite without segmented alignment 1.01 1.93 1.42 0.81

Table 2: Experimental results with codes using our heuristic algorithms

7 Conclusion

In this paper, we have proposed a new array alignment concept that we call segmented alignment. Our strategy for solving

the alignment problem in data parallel programs uses a two-step scheme. In the first step, we test if it is possible to obtain a

communication-free code with segmented alignment. If a communication-free code can be obtained in this way, the output code

is the optimal solution. If we cannot obtain a communication free code in the first step, we use our new methods in the second

step. Due to the optimal problem being NP-hard, we have developed a practical heuristic algorithm for compilers to incorporate

segmented alignment into an automatic alignment framework. Experiments performed on an eight-node DEC Alpha Farm have

shown that an automated alignment process using the segmented alignment concept can significantly outperform conventional

alignment models.

References

[1] J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener.Fortran 90 Handbook complete ANSI/ISO

reference. Intertext Publications McGraw-Hill Book Company, 1992.

[2] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers Principles, Techniques, and Tools. Addison-Wesley Publishing Com-

pany, 1986.

[3] J. M. Anderson and M. S. Lam. Global optimizations for parallelism and locality on scalable parallel machines. InPro-

ceedings of the ACM SIGPLAN’93 Conference on Programming Language Design and Implementation, pp. 112-125,

June 1993.

[4] R. Bixby, K. Kennedy, and U. Kremer. Automatic Data Layour Using 0-1 Intefer Programming. InProceedings of the

International Conference on Parallel Architectures and Compilation Techniques, Montreal, Canada, August 1994.

[5] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, and M. Y. Wu. Compiling Fortran 90D/HPF for Distributed

Memory MIMD Computers.Journal of parallel and Distributed Computing, 21, 1 (April 1994), 15-26.

[6] T. A. Budd. An APL Compiler for a Vector Processor.ACM Transactions on Programming Languages and Systems, V6,

No 3, pp. 297–313, July 1984.

[7] S. Chatterjee, J. R. Gilbert, R. Schreiber, and S.-H. Teng. Automatic Array Alignment in Data-Parallel Programs. InPro-

ceedings of the Twentieth Annual SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston,

SC, January 1993, pp. 16-28.

15

[8] J. R. Gilbert and R. Schreiber. Optimal expression evaluation for data parallel architectures.Journal of Parallel and

Distributed Computing, Vol.13, pp. 58-64, Sept. 1991.

[9] L. J. Guibas and D. K. Wyatt. Compilation and Delayed Evaluation in APL. InProceeding of the Fifth Annual ACM Symp.

on Principles of Programming Languages, pp. 1-8, 1978.

[10] M. Gupta and P. Banerjee. Demonstration of automatic data partitioning techniques for parallelizing compilers on multi-

computers.IEEE Transactions on Parallel and Distributed Systems, Vol. 3, pp. 179-193, Mar. 1992.

[11] M. Gupta, and P. Banerjee. PARADIGM: A compiler for automatic data distribution on multicomputers. InACM Inter-

national Conference on Supercomputing, Tokyo, July 1993.

[12] J. Harriset al.Compiling High Performance Fortran for Distributed-memory Systems.Digital Technical Journal, Volume

7, Number 3.

[13] G. H. Hwang, J. K. Lee, and D. C. Ju. An Array Operation Synthesis Scheme to Optimize Fortran 90 Programs. In

Proceedings of ACM SIGPLAN Conference on Principles and Practice of Parallel Programming, pp. 112-122, July 1995.

Also, ACM SIGPLAN NOTICES, Volumn 30, Number 8, Auguest 1995.

[14] G. H. Hwang, J. K. Lee, and D. C. Ju. Array Operation Synthesis to Optimize HPF Programs. InProceedings of the 1996

International Conference on Parallel Processing, Volumn 3, pp. 1-8, August 1996.

[15] G. H. Hwang, J. K. Lee, and D. C. Ju. A Function-Composition Approach to Synthesize Fortran 90 Array Operations.

Journal of Parallel and Distributed Computing, 54, pp.1-47, 1998.

[16] K. Kennedy and U. Kremer. Automatic data layout for distribution-memory machines.ACM Transactions on Parallel

Languages and Systems, 20(4):869–916, July 1998.

[17] K. Knob, J. D. Lukas, and G. L. Steele. Data optimization: allocation of arrays to reduce communication on SIMD

Machines.Journal of parallel and Distributed Computing, Vol.2, pp. 102-118, Feb. 1990.

[18] C. Koelbel. Compile-time generation of regular communications patterns. InProceedings of Supercomputing’91, pages

101–110, 1991.

[19] C. Koelbel, D. Loveman, R. Schreiber, G. Steele and M. Zosel.The High Performance Fortran Handbook, MIT-press,

Cambridge, 1994.

[20] J. K. Lee and D. Gannon. Object-Oriented Parallel Programming: Experiments and Results. InProceedings of Supercom-

puting ’91, New Mexico, November, 1991.

[21] J. Li and M. Chen. The data alignment phase in compiling programs for distributed-memory machines.Journal of parallel

and Distributed Computing, Vol. 13, pp. 213-221, Oct. 1991.

[22] J. Li and M. Chen. Compiling Communication-Efficient Programs for Massively Parallel Machines.IEEE Tran. On Par-

allel and Distributed Systems, Vol. 2, No. 3, July 1991.

[23] A. Mohamer, G. Fox, G. Laszewski, M. Parashar, T. Haupt, K. Mills, Y. Lu, N. Lin, and N. Yeh. Applications Benchmark

Set for Fortran-D and High Performance Fortran. Technical Report SCCS327, NPAC, Syracuse University.

16

[24] M. Philippsen and M. U. Mock. Data and process alignment in Modula-2*.Automatic Parallelization: New Approaches,

pages 177–191. Verlag Vieweg, 1994.

[25] M. Philippsen. Automatic alignment of array data and process to reduce communication time on DMPPs. InProceedings

of the Fifth ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming, pages 112–122. Santa Barbara,

California, USA, July 1995. ACM Press.

[26] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.Numerical Recipes in Fortran90: The Art of Parallel

Scientific Computer, Volume 2 of Fortran Numerical Recipes, Second Edition, Cambridge University Press, 1996

[27] J. R. Rice and J. Jing. Problems to Test Parallel and Vector Languages. Purdue University Technical Report CSD-TR-1016,

1990.

[28] T. J. Sheffler, R. Schreiber, J. R. Gilbert, and S. Chatterjee. Aligning Parallel Arrays to Reduce Communication. In

Proceedings of Frontiers ’95, McLean, VA, February 1995, pp. 324-331.

[29] H. Zima, and B. Chapman. Compiling for distributed-memory systems. InProceeding IEEE, 81, 2 (Feb.1993), 264-287.

A Implementation of Segmented Alignments

Instead of having to reconstruct a compiler specifically for the segmented alignment directives, we can split an array into several

subarrays according to the disjointed index domains resulting from array operation synthesis. We then specify those subarrays

with suitable alignment relationships to produce communication-free code. Consider the following code fragment:

HPF Code Fragment 10
1 REAL A(N,N), B(N,N), C(N,N)
2 REAL A1(1: N

2 ,1: N
2),A2(1: N

2 , N
2 +1:N), A3(N

2 +1:N,1: N
2), A4(N

2 +1:N, N
2 +1:N)

3 REAL B1(N
2 +1:N, N

2 +1:N),B3(N
2 +1:N,1: N

2)
4 REAL C1(N

2 +1:N,1: N
2),C2(N

2 +1:N, N
2 +1:N),C3(1: N

2 ,1: N
2), C4(1: N

2 , N
2 +1:N)

5 !HPF$ TEMPLATE TEMP1(N2 , N
2)

6 !HPF$ ALIGN A1(I,J) WITH TEMP1(I,J)
7 !HPF$ ALIGN B1(I,J) WITH TEMP1(J- N

2 ,I- N
2)

8 !HPF$ ALIGN C1(I,J) WITH TEMP1(I- N
2 ,J)

9 !HPF$ TEMPLATE TEMP2(N2 , N
2)

10 !HPF$ ALIGN A2(I,J) WITH TEMP2(I,J)
11 !HPF$ ALIGN C2(I,J) WITH TEMP2(I- N

2 ,J)
12 !HPF$ TEMPLATE TEMP3(N2 , N

2)
13 !HPF$ ALIGN A3(I,J) WITH TEMP3(I,J)
14 !HPF$ ALIGN B3(I,J) WITH TEMP3(J+ N

2 ,I- N
2)

15 !HPF$ ALIGN C3(I,J) WITH TEMP3(I+ N
2 ,J)

16 !HPF$ TEMPLATE TEMP4(N2 , N
2)

17 !HPF$ ALIGN A4(I,J) WITH TEMP4(I,J)
18 !HPF$ ALIGN C4(I,J) WITH TEMP4(I+ N

2 ,J)
19 !HPF$ DISTRIBUTE TEMP1(BLOCK,BLOCK),TEMP2(BLOCK,BLOCK),TEMP3(BLOCK,BLOCK),TEMP4(BLOCK,BLOCK)

...
20 !Data Realignment before computation bound parallel loops
21 A1(1: N

2 ,1: N
2)=A(1: N

2 ,1: N
2)

22 A2(1: N
2 , N

2 +1:N=A(1: N
2 , N

2 +1:N)
23 A3(N

2 +1:N,1: N
2)=A(N

2 +1:N,1: N
2)

24 A4(N
2 +1:N, N

2 +1:N=A(N
2 +1:N, N

2 +1:N)
25 B1(N

2 +1:N, N
2 +1:N)=B(N

2 +1:N, N
2 +1:N)

17

26 B3(N
2 +1:N,1: N

2)=B(N
2 +1:N,1: N

2)
27 C1(N

2 +1:N,1: N
2)=C(N

2 +1:N,1: N
2)

28 C2(N
2 +1:N, N

2 +1:N)=C(N
2 +1:N, N

2 +1:N)
29 C3(1: N

2 ,1: N
2 =C(1: N

2 ,1: N
2)

30 C4(1: N
2 , N

2 +1:N)=C(1: N
2 , N

2 +1:N)
31 DO ITER=1, Number Iteration
32 !Loop 1
33 FORALL (I=1: N

2 ,J=1: N
2)

34 A1(I,J)=B1(J+ N
2 ,I+ N

2)+C1(I+ N
2 ,J)

35 END FORALL
36 !Loop 2
37 FORALL (I=1: N

2 ,J= N
2 +1:N)

38 A2(I,J)=-6.6+C2(I+ N
2 ,J)

39 END FORALL
40 !Loop 3
41 FORALL (I= N

2 +1:N,J=1: N
2)

42 A3(I,J)=B3(J+ N
2 ,I- N

2)+C3(I- N
2 ,J)

43 END FORALL
44 !Loop 4
45 FORALL (I= N

2 +1:N,J= N
2 +1:N)

46 A4(I,J)=-6.6+C4(I- N
2 ,J)

47 END FORALL
48 ENDDO
49 !Data Realignment after computation bound parallel loops
50 A(1: N

2 ,1: N
2)=A1(1: N

2 ,1: N
2)

51 A(1: N
2 , N

2 +1:N=A2(1: N
2 , N

2 +1:N)
52 A(N

2 +1:N,1: N
2)=A3(N

2 +1:N,1: N
2)

53 A(N
2 +1:N, N

2 +1:N=A4(N
2 +1:N, N

2 +1:N)
54 B(N

2 +1:N, N
2 +1:N)=B1(N

2 +1:N, N
2 +1:N)

55 B(N
2 +1:N,1: N

2)=B3(N
2 +1:N,1: N

2)
56 C(N

2 +1:N,1: N
2)=C1(N

2 +1:N,1: N
2)

57 C(N
2 +1:N, N

2 +1:N)=C2(N
2 +1:N, N

2 +1:N)
58 C(1: N

2 ,1: N
2)=C3(1: N

2 ,1: N
2)

59 C(1: N
2 , N

2 +1:N)=C4(1: N
2 , N

2 +1:N)
...

As in Code Fragment 3, array A is separated into A1, A2, A3, and A4; array B is separated into B1 and B3; and array

C is separated into C1, C2, C3 and C4. Template arrays TEMP1, TEMP2, TEMP3, and TEMP4 are used to align the array

references in Loops 1-4, respectively. Lines 5-8 align A(I,J), B(J+N
2 ,I+ N

2), and C(I+N
2 ,J) in index domain (I=1:N2 ,J=1:N2) of

Loop 1; lines 9-11 align A(I,J) and C(I+N2 ,J) in index domain (I=1:N2 ,J=N
2 +1:N) of Loop 2; lines 12-15 align A(I,J), B(J+N2 ,I-

N
2), and C(I-N2 ,J) in index domain (I=N2 + 1:N,J=1:N2) of Loop 3; lines 16-18 align A(I,J), and C(I-N

2 ,J) in index domain

(I= N
2 + 1:N,J=N

2 + 1:N) of Loop 4. Since all the array references in Loops 1-4 (lines 31-48) are all aligned, these loops are

communication free. Lines 20-30, and 49-59 realign the split subarrays with the original array.

B Code Fragments for Experiments

1. PARAMETER (N=256,N_ITER=100)
INTEGER ITER
REAL A(N,N),B(N,N),C(N,N),D(N,N),E(N,N),F(N,N),G(N,N),H(N,N)

DO ITER=1,N_ITER

18

F=TRANSPOSE(B+C+D+E)/(D*E)
A=CSHIFT(EOSHIFT(F,N/10,-7.7,2),N/5,1)
H=TRANSPOSE(G)

ENDDO

STOP
END

2. PARAMETER (N=256,N_ITER=100)
INTEGER ITER
REAL P(N,N),B(N,N),C(N,N),D(N,N),E(N,N),K(N,N),M(N,N)
REAL N(N,N),F(N,N),G(N,N),H(N,N),A(N,N),R(N,N)
REAL T1(N,N),T2(N,N),T3(N,N),T4(N,N),T5(N,N),T6(N,N),T7(N,N)

DO ITER=1,N_ITER
T1=EOSHIFT(P,16,-SIN(.375),1)
T2=B+C
T3=D+E
T4=TRANSPOSE(T2)+TRANSPOSE(T3)
K=TRANSPOSE(M)+N
T5=D*E
T6=T5+F
G=T4/T6
T7=TRANSPOSE(T1)+C
H=CSHIFT(T7,16,1)
A=ESHIFT(G,26,-COS(.375),1)
R=CSHIFT(A,50,1)

ENDDO

STOP
END

3. In the page 1242 of Numerical Recipe in Fortran 90
SUBROUTINE twofft(data1, data2, fft1,fft2)
USE nrtype; USE nrutil, ONLY : assert, assert_eq
USE nr, ONLY: four1
IMPLICIT NONE
REAL (SP), DIMENSION(:), INTENT(IN) :: data1, data2
COMPLEX(SPC), DIMENSION(:), INTENT(OUT) :: fft1, fft2
INTEGER(I4B) :: n, n2
COMPLEX (SPC), PARAMETER :: C1=(0.5_sp, 0.0_sp), C2=(0.0_sp, -0.5_sp)
COMPLEX, DIMENSION(size(data1)/2+1) :: h1, h2
n=assert_eq(size(data1),size(data2),size(fft1),size(fft2),’twofft’)
call assert(iand(n,n-1)==0,’n must be a power of 2 in twofft’)
fft1=cmplx(data1,data2, kind=spc)
call four1(fft1,1)
fft2(1)=cmplx(aimag(fft1(1)),0.0_sp, kind=spc)
fft1(1)=cmplx(aimag(fft1(1)),0.0_sp, kind=spc)
n2=n/2+1
h1(2:n2)=C1*(fft1(2:n2)+conjg(fft1(n:n2:-1)))
h2(2:n2)=C2*(fft1(2:n2)-conjg(fft1(n:n2:-1)))
fft1(2:n2)=h1(2:n2)
fft1(n:n2:-1)=conjg(h1(2:n2))
fft2(2:n2)=h2(2:n2)
fft2(n:n2:-1)=conjg(h2(2:n2))
END SUBROUTINE twofft

19

