
-

C Reference Manual

Dennis M. Ritchie
Bell Telephone Laboratories

Murray Hill, New Jersey 07974

1. Introduction

C is a computerlanguagebasedon the earlier languageB [1]. The languagesandtheir compilersdiffer in two
major ways:C introducesthe notion of types,anddefinesappropriateextrasyntaxandsemantics;also,C on the
PDP-11 is a true compiler, producing machine code where B produced interpretive code.

Most of the softwarefor the UNIX time-sharingsystem[2] is written in C, asis the operatingsystemitself. C is
alsoavailableon theHIS 6070computerat Murray Hill andandon the IBM System/370at Holmdel [3]. This paper
is a manualonly for theC languageitself asimplementedon the PDP-11. However,hintsaregivenoccasionallyin
the text of implementation-dependent features.

The UNIX Programmer’sManual[4] describesthe library routinesavailableto C programsunderUNIX , andalso
theproceduresfor compilingprogramsunderthatsystem. ‘‘The GCOSC Library’’ by LeskandBarres[5] describes
routines available under that system as well as compilation procedures.Many of theseroutines,particularlytheones
having to do with I/O, arealsoprovidedunderUNIX . Finally, ‘‘Programmingin C− A Tutorial,’’ by B. W. Ker-
nighan [6], is asusefulaspromisedby its title andtheauthor’spreviousintroductionsto allegedlyimpenetrablesub-
jects.

2. Lexical conventions

Therearesix kindsof tokens:identifiers,keywords,constants,strings,expressionoperators,andotherseparators.
In generalblanks,tabs,newlines,andcommentsasdescribedbelowareignoredexceptastheyserveto separateto-
kens. At leastoneof thesecharactersis requiredto separateotherwiseadjacentidentifiers,constants,andcertain
operator-pairs.

If theinput streamhasbeenparsedinto tokensup to a givencharacter,thenexttokenis takento includethelong-
est string of characters which could possibly constitute a token.

2.1 Comments
The characters/* introduce a comment, which terminates with the characters*/.

2.2 Identifiers (Names)
An identifier is a sequence oflettersanddigits; thefirst charactermustbealphabetic.Theunderscore‘‘ _’’ counts

asalphabetic.Upperandlower caselettersareconsidereddifferent. No morethanthefirst eightcharactersaresig-
nificant, and only the first seven for external identifiers.

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:



-

C  Reference  Manual - 2

int break
char continue
float if
double else
struct for
auto do
extern while
register switch
static case
goto default
return entry
sizeof

The entry keyword is not currently implemented by any compiler but is reserved for future use.

2.3 Constants
There are several kinds of constants, as follows:

2.3.1 Integer constants
An integerconstantis a sequenceof digits. An integeris takento beoctal if it beginswith 0, decimalotherwise.

The digits8 and9 have octal value 10 and 11 respectively.

2.3.2 Character constants
A characterconstantis 1 or 2 charactersenclosedin singlequotes‘‘ ´ ’’. Within a characterconstanta single

quotemust be precededby a back-slash‘‘\’’. Certainnon-graphiccharacters,and ‘‘\’’ itself, may be escapedac-
cording to the following table:

BS \b
NL \n
CR \r
HT \t
ddd \ddd
\ \\

Theescape‘‘\ ddd’’ consistsof thebackslashfollowed by 1, 2, or 3 octaldigits which aretakento specifythevalue
of thedesiredcharacter.A specialcaseof this constructionis ‘‘\0’’ (not followed by a digit) which indicatesa null
character.

Characterconstantsbehaveexactlylike integers(not, in particular,like objectsof charactertype). In conformity
with the addressingstructureof the PDP-11, a characterconstantof length1 hasthe codefor the given characterin
the low-order byteand0 in thehigh-orderbyte;a characterconstantof length2 hasthecodefor thefirst characterin
the low byteandthat for thesecondcharacterin thehigh-orderbyte. Characterconstantswith morethanonechar-
acter are inherently machine-dependent and should be avoided.

2.3.3 Floating constants
A floating constantconsistsof anintegerpart,a decimalpoint,a fractionpart,ane, andanoptionallysignedinte-

gerexponent.The integerandfractionpartsbothconsistof a sequenceof digits. Either the integerpartor thefrac-
tion part (not both) may bemissing;eitherthe decimalpoint or the e andthe exponent(not both) may bemissing.
Every floating constant is taken to be double-precision.

2.4 Strings
A string is a sequenceof characterssurroundedby doublequotes‘‘ " ’’. A stringhasthe typearray-of-characters

(seebelow) andrefersto an areaof storageinitialized with the given characters.The compilerplacesa null byte
( \0) at theendof eachstringsothatprogramswhich scanthestringcanfind its end. In a string,thecharacter‘‘ " ’’
must be preceded by a ‘‘\’’; in addition, the same escapes as described for character constants may be used.



-

C  Reference  Manual - 3

3. Syntax notation

In thesyntaxnotationusedin this manual,syntacticcategoriesareindicatedby italic type,andliteral wordsand
charactersin gothic. Alternativesarelistedon separatelines. An optional terminal or non-terminal symbol is in-
dicated by the subscript ‘‘opt,’’ so that

{ expressionopt }

would indicate an optional expression in braces.

4. What’s in a Name?

C basesthe interpretationof an identifier upontwo attributesof the identifier: its storageclassandits type. The
storageclassdeterminesthelocationandlifetime of thestorageassociatedwith anidentifier; the type determines the
meaning of the values found in the identifier’s storage.

Therearefour declarablestorageclasses:automatic,static,external,andregister.Automaticvariablesarelocal to
eachinvocationof a function,andarediscardedon return;staticvariablesarelocal to a function,but retaintheir val-
uesindependentlyof invocationsof the function;externalvariablesareindependentof any function. Registervari-
ablesarestoredin the fast registersof themachine;like automaticvariablestheyarelocal to eachfunctionanddis-
appear on return.

C supportsfour fundamentaltypesof objects:characters,integers,single-, and double-precisionfloating-point
numbers.

Characters(declared,andhereinaftercalled,char) arechosenfrom the ASCII set; they occupythe right-
most sevenbits of an 8-bit byte. It is also possibleto interpretchars as signed,2’s complement8-bit
numbers.

Integers (int) are represented in 16-bit 2’s complement notation.

Singleprecisionfloating point (float) quantitieshavemagnitudein the rangeapproximately10±38 or 0;
their precision is 24 bits or about seven decimal digits.

Double-precisionfloating-point(double) quantitieshavethesamerangeasfloats anda precisionof 56
bits or about 17 decimal digits.

Besides the four fundamental types there is a conceptually infiniteclassof derivedtypesconstructedfrom thefun-
damental types in the following ways:

arraysof objects of most types;

functionswhich return objects of a given type;

pointersto objects of a given type;

structurescontaining objects of various types.

In general these methods of constructing objects can be applied recursively.

5. Objects and lvalues

An objectis a manipulatableregionof storage;an lvalue is anexpressionreferringto anobject. An obviousex-
ampleof an lvalue expressionis an identifier. Thereareoperatorswhich yield lvalues:for example,if E is an ex-
pressionof pointer type, then *E is an lvalue expressionreferring to the object to which E points. The name
‘‘lvalue’’ comesfrom theassignmentexpression‘‘E1 = E2’’ in which theleft operandE1 mustbeanlvalueexpres-
sion. The discussionof eachoperatorbelow indicateswhetherit expectslvalue operandsandwhetherit yields an
lvalue.

6. Conversions

A numberof operatorsmay,dependingon their operands,causeconversionof the valueof anoperandfrom one
type to another.This section explains the result to be expected from such conversions.



-

C  Reference  Manual - 4

6.1 Characters and integers
A char objectmaybeusedanywhereanint maybe. In all casesthe char is convertedto anint by propa-

gatingits sign throughtheupper8 bits of theresultantinteger. This is consistentwith thetwo’s complementrepre-
sentationusedfor both charactersandintegers. (However,the sign-propagationfeaturedisappearsin other imple-
mentations.)

6.2 Float and double
All floating arithmeticin C is carriedout in double-precision;whenevera float appearsin an expressionit is

lengthenedto double by zero-paddingits fraction. Whenadouble mustbeconvertedto float, for exampleby
an assignment, thedouble is rounded before truncation tofloat length.

6.3 Float and double; integer and character
All ints and chars may be convertedwithout loss of significanceto float or double. Conversionof

float or double to int or char takesplacewith truncationtowards0. Erroneousresultscanbeexpectedif the
magnitude of the result exceeds 32,767 (forint) or 127 (forchar).

6.4 Pointers and integers
Integersandpointersmaybeaddedandcompared;in sucha casetheint is convertedasspecifiedin thediscus-

sion of the addition operator.

Two pointersto objectsof the sametype may be subtracted;in this casethe result is convertedto an integeras
specified in the discussion of the subtraction operator.

7. Expressions

Theprecedenceof expressionoperatorsis the sameasthe orderof the major subsectionsof this section(highest
precedencefirst). Thus the expressionsreferredto as the operandsof + (§7.4) are thoseexpressionsdefinedin
§§7.1_7.3. Within eachsubsection,theoperatorshavethesameprecedence.Left- or right-associativityis specified
in eachsubsectionfor theoperatorsdiscussedtherein. Theprecedenceandassociativityof all theexpressionopera-
tors is summarized in an appendix.

Otherwisethe orderof evaluationof expressionsis undefined. In particularthe compilerconsidersitself free to
compute subexpressions in the order it believes most efficient, even if the subexpressions involve side effects.

7.1 Primary expressions
Primary expressions involving. , −>, subscripting, and function calls group left to right.

7.1.1 identifier
An identifier is a primaryexpression,providedit hasbeensuitablydeclaredasdiscussedbelow. Its typeis speci-

fied by its declaration. However,if the type of the identifier is ‘‘array of . . .’’, then the value of the identifier-
expressionis a pointerto the first objectin thearray,andthe typeof theexpressionis ‘‘pointer to . . .’’. Moreover,
an array identifier is not an lvalue expression.

Likewise,an identifier which is declared‘‘function returning. . .’’, whenusedexceptin the function-nameposi-
tion of a call, is converted to ‘‘pointer to function returning .. .’’.

7.1.2 constant
A decimal,octal,character,or floating constantis a primary expression.Its type is int in the first threecases,

double in the last.

7.1.3 string
A stringis a primaryexpression.Its typeis originally ‘‘array of char’’; but following thesamerule asin §7.1.1

for identifiers, this is modified to ‘‘pointer tochar’’ and the result is a pointer to the first character in the string.

7.1.4 ( expression)
A parenthesizedexpressionis a primaryexpressionwhosetypeandvalueareidenticalto thoseof the unadorned

expression.The presence of parentheses does not affect whether the expression is an lvalue.



-

C  Reference  Manual - 5

7.1.5 primary-expression[ expression]
A primaryexpressionfollowed by anexpressionin squarebracketsis a primaryexpression.The intuitive mean-

ing is thatof a subscript.Usually,theprimaryexpression has type ‘‘pointer to .. .’’, the subscript expression isint,
andthe type of the result is ‘‘ . . . ’’. The expression‘‘E1[E2]’’ is identical(by definition) to ‘‘ * ( ( E1) + ( E2) ) ’’.
All the cluesneededto understandthis notationare containedin this sectiontogetherwith the discussionsin §§
7.1.1, 7.2.1, and 7.4.1 on identifiers,* , and+ respectively; §14.3 below summarizes the implications.

7.1.6 primary-expression( expression-listopt )

A function call is a primary expressionfollowed by parenthesescontaininga possiblyempty,comma-separated
list of expressionswhich constitutethe actualargumentsto the function. The primary expressionmustbe of type
‘‘function returning. . .’’, andtheresultof thefunctioncall is of type‘‘ . . . ’’. As indicatedbelow,a hithertounseen
identifier followed immediatelyby a left parenthesisis contextuallydeclaredto representa functionreturninganin-
teger; thus in the most common case, integer-valued functions need not be declared.

Any actualargumentsof typefloat areconvertedto double beforethecall; anyof typechar areconverted
to int.

In preparingfor thecall to a function,a copyis madeof eachactualparameter;thus,all argument-passingin C is
strictly by value. A functionmaychangethevaluesof its formal parameters,but thesechangescannotpossiblyaf-
fect the valuesof the actualparameters.On the otherhand,it is perfectlypossibleto passa pointeron the under-
standing that the function may change the value of the object to which the pointer points.

Recursive calls to any function are permissible.

7.1.7 primary-lvalue. member-of-structure
An lvalueexpressionfollowed by a dot followed by thenameof a memberof a structureis a primaryexpression.

Theobjectreferredto by thelvalueis assumedto havethesameform asthestructurecontainingthestructuremem-
ber. Theresultof theexpressionis an lvalueappropriatelyoffset from the origin of the given lvaluewhosetype is
that of the named structure member.The given lvalue is not required to have any particular type.

Structures are discussed in §8.5.

7.1.8 primary-expression−> member-of-structure
Theprimary-expressionis assumedto bea pointerwhich pointsto anobjectof thesameform asthestructureof

which themember-of-structureis a part. Theresultis anlvalueappropriately offset from the origin of the pointed-to
structurewhosetypeis thatof thenamedstructuremember.Thetypeof theprimary-expressionneednot in fact be
pointer; it is sufficient that it be a pointer, character, or integer.

Exceptfor the relaxationof the requirementthat E1 be of pointer type, the expression‘‘E1−>MOS’’ is exactly
equivalent to ‘‘(*E1).MOS’’.

7.2 Unary operators
Expressions with unary operators group right-to-left.

7.2.1 * expression
Theunary* operatormeansindirection: theexpressionmustbea pointer,andthe result is an lvalue referringto

the objectto which the expressionpoints. If the type of the expressionis ‘‘pointer to . . .’’, the typeof the resultis
‘‘ . . . ’’.

7.2.2 & lvalue-expression
Theresultof theunary& operatoris a pointerto theobjectreferredto by thelvalue-expression.If thetypeof the

lvalue-expression is ‘‘. . . ’’, the type of the result is ‘‘pointer to .. .’’.

7.2.3 − expression
The result is the negativeof the expression,andhasthe sametype. The type of the expressionmustbechar,

int, float, ordouble.



-

C  Reference  Manual - 6

7.2.4 ! expression
Theresultof the logical negationoperator! is 1 if thevalueof theexpressionis 0, 0 if the valueof the expres-

sion is non-zero.The type of the result isint. This operator is applicable only toints orchars.

7.2.5 ~ expression
The˜ operator yields the one’s complement of its operand.The type of theexpressionmustbeint or char, and

the result isint.

7.2.6 ++ lvalue-expression
Theobjectreferredto by the lvalue expressionis incremented.The valueis the new valueof the lvalue expres-

sionandthetypeis thetypeof thelvalue. If theexpressionis int or char, it is incrementedby 1; if it is a pointer
to anobject,it is incrementedby thelengthof theobject. ++ is applicableonly to thesetypes. (Not, for example,to
float or double.)

7.2.7 −− lvalue-expression
The object referred to by the lvalue expression is decremented analogously to the ++ operator.

7.2.8 lvalue-expression ++
The result is the valueof the objectreferredto by the lvalue expression.After the result is noted,the objectre-

ferredto by thelvalueis incrementedin thesamemannerasfor theprefix ++ operator: by 1 for anint or char, by
the length of the pointed-toobject for a pointer. The type of the result is the sameas the type of the lvalue-
expression.

7.2.9 lvalue-expression −−
Theresultof theexpressionis thevalueof theobjectreferredto by the the lvalueexpression.After the result is

noted, the object referred to by the lvalue expression is decremented in a way analogous to the postfix ++ operator.

7.2.10 sizeof expression
Thesizeof operatoryields the size,in bytes,of its operand.Whenappliedto an array,the result is the total

numberof bytesin thearray. Thesizeis determinedfrom thedeclarationsof theobjectsin theexpression.This ex-
pressionis semanticallyan integerconstantandmay be usedanywherea constantis required. Its major useis in
communication with routines like storage allocators and I/O systems.

7.3 Multiplicative operators
The multiplicative operators* , /, and% group left-to-right.

7.3.1 expression* expression
The binary * operatorindicatesmultiplication. If both operandsareint or char, the result is int; if one is

int or char andonefloat or double, the former is convertedto double, andthe result is double; if both
arefloat or double, the result isdouble. No other combinations are allowed.

7.3.2 expression/ expression
The binary/ operator indicates division.The same type considerations as for multiplication apply.

7.3.3 expression% expression
Thebinary% operatoryieldstheremainderfrom thedivision of thefirst expressionby thesecond.Both operands

mustbeint or char, andtheresultis int. In thecurrentimplementation,theremainderhasthesamesignasthe
dividend.

7.4 Additive operators
The additive operators+ and− group left-to-right.



-

C  Reference  Manual - 7

7.4.1 expression+ expression
The result is the sum oftheexpressions.If bothoperandsareint or char, theresultis int. If botharefloat

or double, theresultis double. If one ischar or int and one isfloat or double, the former is converted to
double and the result isdouble. If anint or char is addedto a pointer,theformeris convertedby multiplying
it by the lengthof the objectto which the pointerpointsandthe result is a pointerof the sametype asthe original
pointer. Thusif P is a pointerto anobject,theexpression‘‘P+1’’ is a pointerto anotherobjectof thesametypeas
the first and immediately following it in storage.

No other type combinations are allowed.

7.4.2 expression− expression
Theresultis thedifferenceof theoperands.If bothoperandsareint, char, float, or double, thesametype

considerationsasfor + apply. If anint or char is subtractedfrom a pointer,the former is convertedin thesame
way as explained under+ above.

If two pointersto objectsof thesametypearesubtracted,theresultis converted(by division by the lengthof the
object)to anint representingthenumberof objectsseparatingthepointed-toobjects. This conversionwill in gen-
eralgive unexpectedresultsunlessthepointerspoint to objectsin thesamearray,sincepointers,evento objectsof
the same type, do not necessarily differ by a multiple of the object-length.

7.5 Shift operators
The shift operators<< and>> group left-to-right.

7.5.1 expression<< expression
7.5.2 expression>> expression

Both operandsmustbeint or char, andthe result is int. The secondoperandshouldbe non-negative.The
valueof ‘‘E1<<E2’’ is E1 (interpretedasa bit pattern16 bits long) left-shiftedE2 bits; vacated bits are 0-filled.The
value of ‘‘E1>>E2’’ is E1 (interpreted as a two’s complement, 16-bit quantity)arithmeticallyright-shiftedE2 bit po-
sitions. Vacatedbits arefilled by a copyof thesignbit of E1. [Note: theuseof arithmeticratherthanlogical shift
does not survive transportation between machines.]

7.6 Relational operators
Therelationaloperatorsgroupleft-to-right,but this fact is not very useful;‘‘a<b<c’’ doesnot meanwhat it seems

to.

7.6.1 expression< expression
7.6.2 expression> expression
7.6.3 expression<= expression
7.6.4 expression>= expression

Theoperators< (lessthan),> (greaterthan),<= (lessthanor equalto) and>= (greaterthanor equalto) all yield 0
if thespecifiedrelationis falseand1 if it is true. Operandconversionis exactlythesameasfor the+ operatorex-
ceptthatpointersof anykind maybecompared;theresultin this casedependson therelativelocationsin storageof
the pointed-to objects.It does not seem to be very meaningful to compare pointers with integers other than 0.

7.7 Equality operators
7.7.1 expression== expression
7.7.2 expression!= expression

The== (equalto) andthe!= (not equalto) operatorsareexactlyanalogousto the relationaloperatorsexceptfor
their lower precedence.(Thus ‘‘a<b == c<d’’ is 1 whenever a<b and c<d have the same truth-value).

7.8 expression& expression
The& operatorgroupsleft-to-right. Both operandsmustbeint or char; the result is anint which is the bit-

wise logicaland function of the operands.



-

C  Reference  Manual - 8

7.9 expression̂ expression
The^ operatorgroupsleft-to-right. The operandsmustbeint or char; the result is anint which is the bit-

wise exclusiveor function of its operands.

7.10 expression| expression
The | operator groups left-to-right.The operands must beint or char; theresultis anint which is thebit-wise

inclusiveor of its operands.

7.11 expression&& expression
The&& operatorreturns1 if both its operandsarenon-zero,0 otherwise. Unlike &, && guaranteesleft-to-right

evaluation; moreover the second operand is not evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental types or be a pointer.

7.12 expression|| expression
The || operatorreturns1 if eitherof its operandsis non-zero,and0 otherwise.Unlike | , || guaranteesleft-to-right

evaluation; moreover, the second operand is not evaluated if the value of the first operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental types or be a pointer.

7.13 expression? expression: expression
Conditionalexpressionsgroupleft-to-right. Thefirst expressionis evaluatedandif it is non-zero,theresultis the

valueof the secondexpression,otherwisethat of third expression.If the typesof the secondandthird operandare
the same, the result has their common type; otherwise the same conversion rules as for+ apply. Only oneof thesec-
ond and third expressions is evaluated.

7.14 Assignment operators
Therearea numberof assignmentoperators,all of which groupright-to-left. All requirean lvalue as their left

operand,andthetypeof anassignmentexpressionis thatof its left operand.Thevalueis thevaluestoredin theleft
operand after the assignment has taken place.

7.14.1 lvalue= expression
Thevalueof theexpressionreplacesthatof theobjectreferredto by the lvalue. Theoperandsneednot havethe

sametype,but bothmustbe int, char, float, double, or pointer. If neitheroperandis a pointer,theassign-
ment takes place as expected, possibly preceded by conversion of the expression on the right.

Whenbothoperandsareint or pointersof anykind, no conversionevertakesplace;thevalueof theexpression
is simply storedinto theobject referred to by the lvalue.Thus it is possible to generate pointers which will cause ad-
dressing exceptions when used.

7.14.2 lvalue=+ expression
7.14.3 lvalue=− expression
7.14.4 lvalue=* expression
7.14.5 lvalue=/ expression
7.14.6 lvalue=% expression
7.14.7 lvalue=>> expression
7.14.8 lvalue=<< expression
7.14.9 lvalue=& expression
7.14.10lvalue=^ expression
7.14.11lvalue= | expression

The behavior of an expressionof the form ‘‘E1 =op E2’’ may be inferred by taking it as equivalent to
‘‘E1 = E1 op E2’’; however,E1 is evaluatedonly once. Moreover,expressionslike ‘‘i =+ p’’ in which a pointeris
added to an integer, are forbidden.



-

C  Reference  Manual - 9

7.15 expression, expression
A pair of expressionsseparatedby a commais evaluatedleft-to-right andthe valueof the left expressionis dis-

carded. The type andvalueof the resultarethe type andvalueof the right operand.This operatorgroupsleft-to-
right. It shouldbeavoidedin situationswherecommais givena specialmeaning,for examplein actualarguments
to function calls (§7.1.6) and lists of initializers (§10.2).

8. Declarations

Declarationsareusedwithin function definitions to specify the interpretationwhich C gives to eachidentifier;
they do not necessarily reserve storage associated with the identifier.Declarations have the form

declaration:
decl-specifiers declarator-listopt ;

The declaratorsin the declarator-listcontainthe identifiersbeingdeclared.The decl-specifiersconsistof at most
one type-specifier and at most one storage class specifier.

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

8.1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register

The auto, static, and register declarationsalsoserveasdefinitions in that they causean appropriate
amountof storageto bereserved.In theextern casetheremustbeanexternaldefinition (seebelow)for thegiven
identifiers somewhere outside the function in which they are declared.

Therearesomesevererestrictionson register identifiers: therecanbe at most3 registeridentifiers in any
function,andthetypeof a registeridentifier canonly be int, char, or pointer(not float, double, struc-
ture, function,or array). Also theaddress-ofoperator & cannotbeappliedto suchidentifiers. Exceptfor thesere-
strictions(in returnfor which oneis rewardedwith faster,smallercode),registeridentifiersbehaveasif they were
automatic.In fact implementations of C are free to treatregister as synonymous withauto.

If the sc-specifier is missing from a declaration, it is generally taken to beauto.

8.2 Type specifiers
The type-specifiers are

type-specifier:
int
char
float
double
struct { type-decl-list }
struct identifier { type-decl-list }
struct identifier

Thestruct specifieris discussedin §8.5. If the type-specifieris missingfrom a declaration,it is generallytaken
to beint.



-

C  Reference  Manual - 10

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators.

declarator-list:
declarator
declarator, declarator-list

The specifiersin the declarationindicatethe type and storageclassof the objectsto which the declaratorsrefer.
Declarators have the syntax:

declarator:
identifier
* declarator
declarator( )
declarator[ constant-expressionopt ]
( declarator)

The grouping in this definition is the same as in expressions.

8.4 Meaning of declarators
Eachdeclaratoris takento beanassertionthatwhena constructionof thesameform asthedeclaratorappearsin

anexpression,it yieldsanobjectof theindicatedtype and storage class.Each declarator contains exactly one identi-
fier; it is this identifier that is declared.

If anunadornedidentifier appearsasa declarator,thenit hasthetypeindicatedby thespecifierheadingthedecla-
ration.

If a declarator has the form

* D

for D a declarator,thenthe containedidentifier hasthe type ‘‘pointer to . . .’’, where‘‘ . . . ’’ is the type which the
identifier would have had if the declarator had been simply D.

If a declarator has the form

D ( )

then the containedidentifier hasthe type ‘‘function returning...’’, where‘‘ . . . ’’ is the type which the identifier
would have had if the declarator had been simply D.

A declarator may have the form

D[constant-expression]

or

D[ ]

In the first casethe constantexpressionis an expressionwhosevalueis determinableat compile time, andwhose
type is int. in the secondthe constant1 is used. (Constantexpressionsaredefinedpreciselyin §15.) Sucha
declaratormakesthe containedidentifier havetype ‘‘array.’’ If the unadorneddeclaratorD would specifya non-
arrayof type‘‘. . .’’, thenthedeclarator‘‘D[ i ]’’ yieldsa 1-dimensionalarraywith rank i of objectsof type ‘‘. . .’’. If
the unadorneddeclaratorD would specify an n -dimensionalarray with rank i1 × i2 × . . . × in, then the declarator
‘‘D[ in+1]’’ yields an (n+1) -dimensional array with ranki1 × i2 × . . . × in × in+1.

An arraymaybeconstructedfrom oneof thebasictypes,from a pointer,from a structure,or from anotherarray
(to generate a multi-dimensional array).

Finally, parenthesesin declaratorsdo not alter the typeof thecontainedidentifier exceptinsofarasthey alter the
binding of the components of the declarator.

Not all thepossibilitiesallowedby thesyntaxaboveareactuallypermitted. Therestrictionsareasfollows: func-
tionsmaynot returnarrays,structuresor functions,althoughtheymayreturnpointersto suchthings;thereareno ar-
rays of functions,althoughtheremay be arraysof pointersto functions. Likewise a structuremay not containa
function, but it may contain a pointer to a function.



-

C  Reference  Manual - 11

As an example, the declaration

int i, *ip, f( ), *fip( ), (*pfi)( );

declaresanintegeri, a pointerip to an integer,a function f returningan integer,a function fip returninga pointerto
an integer, and a pointerpfi to a function which returns an integer.Also

float fa[17], *afp[17];

declares an array offloat numbers and an array of pointers tofloat numbers.Finally,

static int x3d[3][5][7];

declaresa static three-dimensionalarrayof integers,with rank 3×5×7. In completedetail,x3d is an arrayof three
items:eachitem is anarrayof five arrays;eachof the latterarraysis anarrayof sevenintegers.Any of theexpres-
sions‘‘x3d’’, ‘‘x3d[ i ]’’, ‘‘x3d[ i ][ j ]’’, ‘‘x3d[ i ][ j ][ k ]’’ may reasonablyappearin an expression.The first three
have type ‘‘array’’, the last has typeint.

8.5 Structure declarations
Recall that one of the forms for a structure specifier is

struct { type-decl-list }

Thetype-decl-listis a sequence of type declarations for the members of the structure:

type-decl-list:
type-declaration
type-declaration type-decl-list

A typedeclarationis just a declarationwhich doesnot mentiona storageclass(thestorageclass‘‘memberof struc-
ture’’ here being understood by context).

type-declaration:
type-specifier declarator-list;

Within the structure,the objectsdeclaredhaveaddresseswhich increaseastheir declarationsarereadleft-to-right.
Eachcomponentof a structurebeginson anaddressingboundaryappropriateto its type. On thePDP-11 theonly re-
quirementis that non-charactersbegin on a word boundary;therefore,theremay be 1-byte, unnamedholes in a
structure, and all structures have an even length in bytes.

Another form of structure specifier is

struct identifier { type-decl-list }

This form is the sameasthe onejust discussed,exceptthat the identifier is rememberedasthe structuretag of the
structurespecifiedby the list. A subsequentdeclarationmay thenbe given usingthe structuretag but without the
list, as in the third form of structure specifier:

struct identifier

Structuretagsallow definition of self-referentialstructures;they alsopermit the long part of the declarationto be
givenonceandusedseveraltimes. It is howeverabsurdto declare a structure which contains an instance of itself, as
distinct from a pointer to an instance of itself.

A simple example of a structure declaration, taken from §16.2 where its use is illustrated more fully, is

struct tnode {
char tword[20];
int count;
struct tnode *left;
struct tnode *right;

};

which contains an array of 20 characters, an integer, and two pointersto similar structures.Oncethis declarationhas



-

C  Reference  Manual - 12

been given, the following declaration makes sense:

struct tnode s, *sp;

which declaress to be a structure of the given sort andsp to be a pointer to a structure of the given sort.

Thenamesof structuremembersandstructuretagsmaybethesameasordinaryvariables,sincea distinctioncan
bemadeby context. However,namesof tagsandmembersmustbedistinct. Thesamemembernamecanappearin
differentstructuresonly if the two membersareof thesametypeandif their origin with respectto their structureis
the same; thus separate structures can share a common initial segment.

9. Statements

Except as indicated, statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form

expression;

Usually expression statements are assignments or function calls.

9.2 Compound statement
So that several statements can be used where one is expected, the compound statement is provided:

compound-statement:
{ statement-list }

statement-list:
statement
statement statement-list

9.3 Conditional statement
The two forms of the conditional statement are

if ( expression) statement
if ( expression) statementelse statement

In bothcasestheexpressionis evaluatedandif it is non-zero,the first substatementis executed.In thesecondcase
thesecondsubstatementis executedif theexpressionis 0. As usualthe‘‘else’’ ambiguityis resolvedby connecting
anelse with the last encountered elselessif.

9.4 While statement
Thewhile statement has the form

while ( expression) statement

The substatementis executedrepeatedlyso long as the value of the expressionremainsnon-zero. The test takes
place before each execution of the statement.

9.5 Do statement
Thedo statement has the form

do statementwhile ( expression) ;

The substatementis executedrepeatedlyuntil the valueof the expressionbecomeszero. The test takesplaceafter
each execution of the statement.



-

C  Reference  Manual - 13

9.6 For statement
Thefor statement has the form

for ( expression-1opt ; expression-2opt ; expression-3opt ) statement

This statement is equivalent to

expression-1;
while (expression-2) {

statement
expression-3;

}

Thusthe first expressionspecifiesinitialization for the loop; thesecondspecifiesa test,madebeforeeachiteration,
suchthat the loop is exitedwhenthe expressionbecomes0; the third expressiontypically specifiesan incrementa-
tion which is performed after each iteration.

Any or all of theexpressionsmaybedropped.A missingexpression-2makesthe implied while clauseequiva-
lent to ‘‘while(1)’’; other missing expressions are simply dropped from the expansion above.

9.7 Switch statement
Theswitch statementcausescontrol to betransferredto oneof severalstatementsdependingon thevalueof an

expression.It has the form

switch ( expression) statement

Theexpressionmustbeint or char. Thestatementis typically compound.Eachstatementwithin the statement
may be labelled with case prefixes as follows:

case constant-expression:

wheretheconstantexpressionmustbeint or char. No two of thecaseconstantsin a switchmayhavethesame
value. Constant expressions are precisely defined in §15.

There may also be at most one statement prefix of the form

default :

When theswitch statement is executed, its expression is evaluated and compared with each caseconstantin anun-
definedorder. If oneof thecaseconstantsis equalto thevalueof theexpression,control is passedto thestatement
following the matchedcaseprefix. If no caseconstantmatchesthe expression,andif thereis a default prefix,
controlpassesto theprefixedstatement.In theabsenceof adefault prefix noneof thestatementsin theswitchis
executed.

Case or default prefixes in themselves do not alter the flow of control.

9.8 Break statement
The statement

break ;

causesterminationof the smallestenclosingwhile, do, for, or switch statement;control passesto the state-
ment following the terminated statement.

9.9 Continue statement
The statement

continue ;

causescontrolto passto theloop-continuationportionof thesmallestenclosingwhile, do, or for statement;that
is to the end of the loop.More precisely, in each of the statements



-

C  Reference  Manual - 14

while ( ... ) { do { for ( ... ) {
... ... ...

contin:; contin:; contin:;
} } while ( ... ); }

acontinue is equivalent to ‘‘goto contin’’.

9.10 Return statement
A function returns to its caller by means of thereturn statement, which has one of the forms

return ;
return ( expression) ;

In the first caseno valueis returned. In the secondcase,the valueof the expressionis returnedto the callerof the
function. If required,theexpression is converted, as if by assignment, to the type of the function in which it appears.
Flowing off the end of a function is equivalent to a return with no returned value.

9.11 Goto statement
Control may be transferred unconditionally by means of the statement

goto expression;

Theexpressionshouldbea label (§§9.12,14.4)or anexpressionof type ‘‘pointer to int’’ which evaluatesto a la-
bel. It is illegal to transferto a label not locatedin the currentfunction unlesssomeextra-languageprovisionhas
been made to adjust the stack correctly.

9.12 Labelled statement
Any statement may be preceded by label prefixes of the form

identifier:

which serve to declare the identifier as a label.More details on the semantics of labels are given in §14.4 below.

9.13 Null statement
The null statement has the form

;

A null statementis usefulto carrya label just beforethe‘‘}’’ of a compoundstatementor to supplya null bodyto a
looping statement such aswhile.

10. External definitions

A C programconsistsof a sequenceof externaldefinitions. Externaldefinitionsmay begiven for functions,for
simplevariables,andfor arrays. Theyareusedboth to declareandto reservestoragefor objects. An externaldefi-
nition declaresan identifier to havestorageclassextern anda specifiedtype. The type-specifier(§8.2)may be
empty, in which case the type is taken to beint.

10.1 External function definitions
Function definitions have the form

function-definition:
type-specifieropt function-declarator function-body

A functiondeclaratoris similar to a declaratorfor a ‘‘function returning...’’ exceptthat it lists theformal parameters
of the function being defined.

function-declarator:
declarator( parameter-listopt )

parameter-list:



-

C  Reference  Manual - 15

identifier
identifier, parameter-list

The function-body has the form

function-body:
type-decl-list function-statement

The purposeof the type-decl-listis to give the typesof the formal parameters.No other identifiersshouldbe de-
clared in this list, and formal parameters should be declared only here.

The function-statement is just a compound statement which may have declarations at the start.

function-statement:
{ declaration-listopt statement-list }

A simple example of a complete function definition is

int max(a, b, c)
int a, b, c;
{

int m;
m = (a>b)? a:b;
return(m>c? m:c);

}

Here‘‘int’’ is the type-specifier;‘‘max(a, b, c)’’ is the function-declarator;‘‘int a, b, c;’’ is the type-decl-listfor the
formal parameters; ‘‘{ .. . }’’ is the function-statement.

C convertsall float actualparametersto double, so formal parametersdeclaredfloat havetheir declara-
tion adjustedto readdouble. Also, sincea referenceto anarrayin anycontext(in particularasanactualparame-
ter) is takento meana pointerto thefirst elementof thearray,declarationsof formal parametersdeclared‘‘array of
...’’ areadjustedto read‘‘pointer to ...’’. Finally, becauseneitherstructuresnor functionscanbepassedto a func-
tion, it is uselessto declarea formal parameterto bea structureor function(pointersto structuresor functionsareof
course permitted).

A freereturn statementis suppliedat theendof eachfunctiondefinition,sorunningoff theendcausescontrol,
but no value, to be returned to the caller.

10.2 External data definitions
An external data definition has the form

data-definition:
externopt type-specifieropt init-declarator-listopt ;

Theoptional extern specifieris discussedin § 11.2. If given,the init-declarator-listis a comma-separatedlist of
declarators each of which may be followed by an initializer for the declarator.

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:
declarator initializeropt

Each initializer represents the initial value for the corresponding object being defined (and declared).

initializer:
constant
{ constant-expression-list }



-

C  Reference  Manual - 16

constant-expression-list:
constant-expression
constant-expression, constant-expression-list

Thusan initializer consistsof a constant-valuedexpression,or comma-separatedlist of expressions,insidebraces.
Thebracesmaybe dropped when the expression is just a plain constant.The exact meaning of a constant expression
is discussed in §15.The expression list is used to initialize arrays; see below.

Thetypeof the identifier beingdefinedshouldbecompatiblewith the typeof the initializer: a double constant
may initialize a float or double identifier; a non-floating-pointexpressionmay initialize an int , char , or
pointer.

An initializer for anarraymaycontaina comma-separatedlist of compile-timeexpressions.Thelengthof thear-
ray is takento be the maximumof the numberof expressionsin the list and the square-bracketedconstantin the
array’sdeclarator.This constantmay be missing,in which case1 is used. The expressionsinitialize successive
membersof thearraystartingat theorigin (subscript0) of thearray. Theacceptableexpressionsfor anarrayof type
‘‘array of ...’’ arethesameasthosefor type ‘‘...’’. As a specialcase,a singlestringmaybegivenasthe initializer
for an array ofchar s; in this case, the characters in the string are taken as the initializing values.

Structurescanbe initialized, but this operationis incompletelyimplementedandmachine-dependent.Basically
thestructureis regardedasa sequenceof wordsandtheinitializersareplacedinto thosewords. Structureinitializa-
tion, usinga comma-separatedlist in braces,is safeif all themembersof thestructureareintegersor pointersbut is
otherwise ill-advised.

The initial value of any externally-defined object not explicitly initialized is guaranteed to be 0.

11. Scope rules

A completeC programneednot all becompiledat thesametime: thesourcetext of theprogrammaybekept in
severalfiles, andprecompiledroutinesmaybeloadedfrom libraries. Communicationamongthefunctionsof a pro-
gram may be carried out both through explicit calls and through manipulation of external data.

Therefore,therearetwo kinds of scopeto consider:first, what may be called the lexical scopeof an identifier,
which is essentiallytheregion of a program during which it may be used without drawing ‘‘undefined identifier’’ di-
agnostics;andsecond,the scopeassociatedwith externalidentifiers,which is characterizedby the rule that refer-
ences to the same external identifier are references to the same object.

11.1 Lexical scope
C is not a block-structuredlanguage;this mayfairly beconsidereda defect. The lexical scopeof namesdeclared

in externaldefinitionsextendsfrom their definition throughthe endof the file in which they appear.The lexical
scope of names declared at the head of functions (either as formal parameters or in the declarations heading thestate-
ments constituting the function itself) is the body of the function.

It is an error to redeclareidentifiersalreadydeclaredin the currentcontext,unlessthe new declarationspecifies
the same type and storage class as already possessed by the identifiers.

11.2 Scope of externals
If a function declaresan identifier to be extern , thensomewhereamongthe files or librariesconstitutingthe

completeprogramtheremustbeanexternaldefinition for theidentifier. All functionsin a givenprogramwhich re-
fer to thesameexternalidentifier referto thesameobject,socaremustbetakenthat thetypeandextentspecifiedin
the definition are compatible with those specified by each function which references the data.

In PDP-11 C, it is explicitly permittedfor (compatible)externaldefinitionsof the sameidentifier to bepresentin
severalof the separately-compiledpiecesof a completeprogram,or eventwice within the sameprogramfile, with
the important limitation that the identifier may be initialized in at most one of the definitions.In otheroperatingsys-
tems,however,thecompilermustknow in just which file thestoragefor theidentifier is allocated,andin which file
the identifier is merelybeingreferredto. In the implementationsof C for suchsystems,theappearanceof the ex-
tern keywordbeforeanexternaldefinition indicatesthatstoragefor theidentifiersbeingdeclaredwill beallocated
in anotherfile. Thusin a multi-file program,anexternaldatadefinition without the extern specifiermustappear
in exactlyoneof the files. Any otherfiles which wish to give anexternaldefinition for the identifier mustinclude
the extern in the definition.The identifier can be initialized only in the file where storage is allocated.

In PDP-11 C none of this nonsense is necessary and theextern specifier is ignored in external definitions.



-

C  Reference  Manual - 17

12. Compiler control lines

Whena line of a C programbeginswith thecharacter#, it is interpretednot by thecompileritself, but by a pre-
processorwhich is capableof replacinginstancesof given identifierswith arbitrary token-stringsandof inserting
namedfiles into thesourceprogram. In orderto causethis preprocessorto be invoked,it is necessarythat thevery
first line of theprogram begin with#. Since null lines are ignored by the preprocessor, this line need contain no oth-
er information.

12.1 Token replacement
A compiler-control line of the form

# define identifier token-string

(note:no trailing semicolon)causesthepreprocessorto replacesubsequentinstancesof the identifier with thegiven
string of tokens(exceptwithin compilercontrol lines). The replacementtoken-stringhascommentsremovedfrom
it, and it is surrounded with blanks.No rescanning of the replacement string isattempted.This facility is mostvalu-
able for definition of ‘‘manifest constants’’, as in

# define tabsize 100
...
int table[tabsize];

12.2 File inclusion
LargeC programsoftencontainmanyexternaldatadefinitions. Sincethelexical scopeof externaldefinitionsex-

tendsto the endof the programfile, it is goodpracticeto put all the externaldefinitionsfor dataat the startof the
programfile, so that the functionsdefinedwithin the file neednot repeattediousanderror-pronedeclarationsfor
eachexternalidentifier they use. It is alsouseful to put a heavily usedstructuredefinition at the startanduseits
structuretag to declaretheauto pointersto the structureusedwithin functions. To further exploit this technique
when a large C program consists of several files, a compiler control line of the form

# include "filename"

results in the replacement of that line by the entire contents of the filefilename.

13. Implicit declarations

It is not alwaysnecessaryto specifyboth thestorageclassandthetypeof identifiersin a declaration.Sometimes
the storageclassis suppliedby the context: in externaldefinitions,and in declarationsof formal parametersand
structure members.In a declaration inside a function, if a storage class but no type is given,theidentifier is assumed
to beint; if a type but no storage class is indicated, the identifier is assumed to beauto. An exception to the latter
rule is madefor functions,sinceauto functionsare meaningless(C being incapableof compiling codeinto the
stack). If the type of an identifier is ‘‘function returning ...’’, it is implicitly declared to beextern.

In anexpression,an identifier followed by ( andnot currentlydeclaredis contextuallydeclaredto be ‘‘function
returningint’’.

Undefinedidentifiers not followed by ( are assumedto be labelswhich will be definedlater in the function.
(Sincea label is not an lvalue, this accountsfor the ‘‘Lvalue required’’ error messagesometimesnoticedwhenan
undeclared identifier is used.)Naturally, appearance of an identifier as a label declares it as such.

For somepurposesit is bestto considerformal parametersasbelongingto their own storageclass. In practice,C
treatsparametersasif they wereautomatic(exceptthat,asmentionedabove,formal parameterarraysandfloats
are treated specially).

14. Types revisited

This section summarizes the operations which can be performed on objects of certain types.



-

C  Reference  Manual - 18

14.1 Structures
Thereareonly two thingsthatcanbedonewith a structure:pick out oneof its members(by meansof the . or

−> operators);or takeits address(by unary&). Otheroperations,suchasassigningfrom or to it or passingit asa
parameter,drawanerrormessage.In the future,it is expectedthat theseoperations,but not necessarilyothers,will
be allowed.

14.2 Functions
Thereareonly two thingsthat canbedonewith a function: call it, or takeits address.If the nameof a function

appearsin anexpressionnot in the function-namepositionof a call, a pointerto the function is generated.Thus,to
pass one function to another, one might say

int f( );
...
g(f);

Then the definition ofg might read

g(funcp)
int (*funcp)( );
{

...
(*funcp)( );
...

}

Notice thatf was declared explicitly in the calling routine since its first appearance was not followed by( .

14.3 Arrays, pointers, and subscripting
Everytime anidentifier of arraytypeappearsin anexpression,it is convertedinto a pointerto thefirst memberof

thearray. Becauseof this conversion,arraysarenot lvalues. By definition, thesubscriptoperator [] is interpreted
in such a way that ‘‘E1[E2]’’ is identicalto ‘‘ * ( ( E1)+ (E2) )’’. Becauseof theconversionruleswhich applyto +, if
E1 is anarrayandE2 an integer,thenE1[E2] refersto the E2-thmemberof E1. Therefore,despiteits asymmetric
appearance, subscripting is a commutative operation.

A consistentrule is followed in the caseof multi-dimensionalarrays. If E is an n -dimensionalarray of rank
i × j × . . . ×k, then E appearingin an expressionis convertedto a pointer to an (n−1)-dimensionalarraywith rank
j × . . . ×k. If the* operator,eitherexplicitly or implicitly asa resultof subscripting,is appliedto this pointer,there-
sult is the pointed-to (n−1)-dimensional array, which itself is immediately converted into a pointer.

For example, consider

int x[3][5];

Herex is a 3×5 arrayof integers.Whenx appearsin anexpression,it is convertedto a pointerto (the first of three)
5-memberedarraysof integers. In theexpression‘‘x[ i ]’’, which is equivalentto ‘‘ * (x+i)’’, x is first convertedto a
pointerasdescribed;then i is convertedto the type of x, which involvesmultiplying i by the length the object to
which the pointerpoints,namely5 integerobjects. The resultsareaddedandindirectionappliedto yield an array
(of 5 integers)which in turn is convertedto a pointer to the first of the integers. If thereis anothersubscriptthe
same argument applies again; this time the result is an integer.

It follows from all this that arrays in C are stored row-wise(lastsubscriptvariesfastest)andthatthefirst subscript
in the declarationhelpsdeterminethe amountof storageconsumedby anarraybut playsno otherpart in subscript
calculations.

14.4 Labels
Labels do not have a type of their own; they are treated as having type ‘‘array ofint’’. Labelvariablesshouldbe

declared‘‘pointer to int’’; beforeexecutionof a goto referringto thevariable,a label (or anexpressionderiving
from a label) should be assigned to the variable.

Label variables are a bad idea in general; theswitch statement makes them almost always unnecessary.



-

C  Reference  Manual - 19

15. Constant expressions

In severalplacesC requiresexpressionswhich evaluateto a constant:after case, asarraybounds,andin ini-
tializers. In thefirst two cases,theexpressioncaninvolve only integerconstants,characterconstants,and sizeof
expressions, possibly connected by the binary operators

+ − * / % & | ˆ << >>

or by the unary operators

− ˜
Parentheses can be used for grouping, but not for function calls.

A bit morelatitudeis permittedfor initializers;besidesconstantexpressionsasdiscussedabove,onecanalsoap-
ply theunary& operatorto externalscalars,andto externalarrays subscripted with a constant expression.The unary
& canalsobe appliedimplicitly by appearanceof unsubscriptedexternalarrays. The rule hereis that initializers
must evaluate either to a constant or to the address of an external identifier plus or minus a constant.

16. Examples.

Theseexamplesareintendedto illustratesometypical C constructionsaswell asa serviceablestyleof writing C
programs.

16.1 Inner product
This function returns the inner product of its array arguments.

double inner(v1, v2, n)
double v1[ ], v2[ ];
{

double sum;
int i;
sum = 0.0;
for (i=0; i<n; i++)

sum =+ v1[i] * v2[i];
return(sum);

}

Thefollowing versionis somewhatmoreefficient, but perhapsa little lessclear. It usesthe factsthatparameterar-
rays are really pointers, and that all parameters are passed by value.

double inner(v1, v2, n)
double *v1, *v2;
{

double sum;
sum = 0.0;
while(n−−)

sum =+ *v1++ * *v2++;
return(sum);

}

Thedeclarationsfor theparametersarereally exactlythesameasin thelastexample.In thefirst casearraydeclara-
tions ‘‘ [ ] ’’ weregivento emphasizethat theparameterswould bereferredto asarrays;in thesecond,pointerdec-
larations were given because the indirection operator and ++ were used.

16.2 Tree and character processing
Hereis a completeC program( courtesyof R. Haight) which readsa documentandproducesanalphabetizedlist

of wordsfound thereintogetherwith the numberof occurrencesof eachword. The methodkeepsa binary treeof
wordssuchthat the left descendanttree for eachword hasall the words lexicographicallysmallerthan the given
word, and the right descendant has all the larger words.Both the insertion and the printing routine are recursive.

The programcalls the library routinesgetchar to pick up charactersand exit to terminateexecution. Printf is



-

C  Reference  Manual - 20

called to print the results according to a format string.A version ofprintf is given below( §16.3) .

Becauseall theexternaldefinitionsfor dataaregivenat thetop,no extern declarationsarenecessarywithin the
functions. To staywithin the rules,a type declarationis given for eachnon-integerfunction whenthe function is
used before it is defined.However, since all such functions return pointerswhich aresimply assignedto otherpoint-
ers,no actualharmwould resultfrom leavingout thedeclarations;thesupposedlyint functionvalueswould beas-
signed without error or complaint.

# define nwords 100 / * number of different words * /
# define wsize 20 / * max chars per word * /
struct tnode { / * the basic structure * /

char tword [ wsize ] ;
int count ;
struct tnode * left ;
struct tnode * right ;

} ;

struct tnode space [ nwords ] ; / * the words themselves * /
int nnodes nwords ; / * number of remaining slots * /
struct tnode *spacep space ; / * next available slot * /
struct tnode * freep ; / * free list * /
/ *

* The main routine reads words until end-of-file ( ´\0´ returned from "getchar" )

* "tree" is called to sort each word into the tree.

* /
main ( )
{

struct tnode * top, * tree ( ) ;
char c, word [ wsize ] ;
int i ;

i = top = 0 ;
while ( c=getchar ( ) )

if ( ´a´<=c && c<=´z´ || ´A´<=c && c <=´Z´ ) {
if ( i<wsize −1 )

word [ i ++ ] = c ;
} else

if ( i ) {
word [ i ++ ] = ´\0´ ;
top = tree ( top, word ) ;
i = 0 ;

}
tprint ( top ) ;

}
/ *

* The central routine. If the subtree pointer is null, allocate a new node for it.

* If the new word and the node´s word are the same, increase the node´s count.

* Otherwise, recursively sort the word into the left or right subtree according

* as the argument word is less or greater than the node´s word.

* /
struct tnode * tree ( p, word )
struct tnode *p ;
char word [ ] ;
{

struct tnode *alloc ( ) ;
int cond ;

/ * Is pointer null? * /
if ( p==0 ) {

p = alloc ( ) ;



-

C  Reference  Manual - 21

copy ( word, p −>tword ) ;
p−>count = 1 ;
p−>right = p −>left = 0 ;
return ( p ) ;

}
/ * Is word repeated? */
if ( ( cond=compar ( p−>tword, word ) ) == 0 ) {

p−>count ++ ;
return ( p ) ;

}
/ * Sort into left or right */
if ( cond<0 )

p−>left = tree ( p−>left, word ) ;
else

p−>right = tree ( p−>right, word ) ;
return ( p ) ;

}
/ *

* Print the tree by printing the left subtree, the given node, and the right subtree.

*/
tprint ( p )
struct tnode *p ;
{

while ( p ) {
tprint ( p−>left ) ;
printf ( "%d: %s\n", p −>count, p −>tword ) ;
p = p −>right ;

}
}
/ *

* String comparison: return number ( >, =, < ) 0

* according as s1 ( >, =, < ) s2.

*/
compar ( s1, s2 )
char *s1, *s2 ;
{

int c1, c2 ;

while ( ( c1 = *s1 ++ ) == ( c2 = *s2 ++ ) )
if ( c1 ==´\0´ )

return ( 0 ) ;
return ( c2 −c1 ) ;

}
/ *

* String copy: copy s1 into s2 until the null

* character appears.

*/
copy ( s1, s2 )
char *s1, *s2 ;
{

while ( *s2 ++ = *s1 ++ ) ;
}
/ *

* Node allocation: return pointer to a free node.

* Bomb out when all are gone. Just for fun, there

* is a mechanism for using nodes that have been

* freed, even though no one here calls "free."

*/
struct tnode *alloc ( )



-

C  Reference  Manual - 22

{
struct tnode *t ;

if ( freep ) {
t = freep ;
freep = freep −>left ;
return ( t ) ;

}
if ( −−nnodes < 0 ) {

printf ( "Out of space\n" ) ;
exit ( ) ;

}
return ( spacep ++ ) ;

}
/ *

* The uncalled routine which puts a node on the free list.

*/
free ( p )
struct tnode *p ;
{

p−>left = freep ;
freep = p ;

}

To illustrate a slightly different technique of handling the same problem, we will repeat fragments of this example
with the tree nodes treated explicitly as members of an array. The fundamental change is to deal with the subscript
of the array member under discussion, instead of a pointer to it. The struct declaration becomes

struct tnode {
char tword [ wsize ] ;
int count;
int left;
int right;

};

and alloc becomes

alloc ( )
{

int t;

t = −−nnodes;
if ( t<=0 ) {

printf ( "Out of space\n" ) ;
exit ( ) ;

}
return ( t ) ;

}

The free stuff has disappeared because if we deal with exclusively with subscripts some sort of map has to be kept,
which is too much trouble.

Now the treeroutine returns a subscript also, and it becomes:

tree ( p, word )
char word [ ] ;
{

int cond;

if ( p==0 ) {
p = alloc ( ) ;
copy ( word, space [ p ] .tword ) ;



-

C  Reference  Manual - 23

space [ p ] .count = 1;
space [ p ] .right = space [ p ] .left = 0;
return ( p ) ;

}
if ( ( cond=compar ( space [ p ] .tword, word ) ) == 0 ) {

space [ p ] .count ++;
return ( p ) ;

}
if ( cond<0 )

space [ p ] .left = tree ( space [ p ] .left, word ) ;
else

space [ p ] .right = tree ( space [ p ] .right, word ) ;
return ( p ) ;

}

Theotherroutinesarechangedsimilarly. It mustbepointedout that this versionis noticeablylessefficient thanthe
first becauseof the multiplicationswhich must be doneto computean offset in spacecorrespondingto the sub-
scripts.

The observation that subscripts( like ‘‘a [ i ] ’’ ) are less efficient than pointer indirection( like ‘‘ *ap’’ ) holdstrue
independentlyof whetheror not structuresareinvolved. Thereareof coursemanysituationswheresubscriptsare
indispensable, and others where the loss in efficiency is worth a gain in clarity.

16.3 Formatted output
Hereis a simplified versionof theprintf routine,which is availablein theC library. It acceptsa string ( character

array) asfirst argument,andprintssubsequentargumentsaccording to specifications contained in this format string.
Most charactersin thestringaresimply copiedto theoutput;two-charactersequencesbeginningwith ‘‘%’’ specify
that the next argument should be printed in a style as follows:

%d decimal number
%o octal number
%c ASCII character, or 2 characters if upper character is not null
%s string ( null-terminated array of characters)
%f floating-point number

The actualparametersfor eachfunction call are laid out contiguouslyin increasingstoragelocations;therefore,a
function with a variablenumberof argumentsmay takethe addressof ( say) its first argument,andaccessthe re-
mainingargumentsby useof subscripting( regardingthe argumentsasan array) or by indirectioncombinedwith
pointer incrementation.

If in sucha situationtheargumentshavemixedtypes,or if in generalonewishesto insist thatanlvalueshouldbe
treatedashavinga given type, then struct declarationslike thoseillustratedbelow will beuseful. It shouldbe
evident, though, that such techniques are implementation dependent.

Printf dependsaswell on the fact that char andfloat argumentsarewidenedrespectivelyto int anddou-
ble , so thereareeffectively only two sizesof argumentsto dealwith. Printf calls the library routinesputchar to
write out single characters andftoa to dispose of floating-point numbers.

printf ( fmt, args )
char fmt [ ] ;
{

char *s ;
struct { char ** charpp ; };
struct { double *doublep ; };
int *ap, x, c ;

ap = &args ; / * argument pointer * /
for ( ; ; ) {

while ( ( c = * fmt ++ ) != ´%´ ) {
if ( c == ´\0´ )

return ;



-

C  Reference  Manual - 24

putchar ( c ) ;
}
switch ( c = *fmt ++ ) {
/ * decimal */
case ´d ´:

x = *ap++ ;
if ( x < 0 ) {

x = −x ;
if ( x<0 ) { / * is − infinity */

printf ( " −32768" ) ;
continue ;

}
putchar ( ´ −´ ) ;

}
printd ( x ) ;
continue ;

/ * octal */
case ´o´:

printo ( *ap++ ) ;
continue ;

/ * float, double */
case ´f ´:

/ * let ftoa do the real work */
ftoa ( *ap.doublep ++ ) ;
continue ;

/ * character */
case ´c´:

putchar ( *ap++ ) ;
continue ;

/ * string */
case ´s´:

s = *ap.charpp ++ ;
while ( c = *s++ )

putchar ( c ) ;
continue ;

}
putchar ( c ) ;

}
}
/ *

* Print n in decimal ; n must be non-negative

*/
printd ( n )
{

int a ;
if ( a=n/10 )

printd ( a ) ;
putchar ( n%10 + ´0´ ) ;

}
/ *

* Print n in octal, with exactly 1 leading 0

*/
printo ( n )
{

if ( n )
printo ( ( n>>3 ) &017777 ) ;

putchar ( ( n&07 ) +´0´ ) ;
}



-

C  Reference  Manual - 25

REFERENCES

1.     Johnson,S.C., andKernighan,B. W. ‘‘The ProgrammingLanguageB.’’ Comp.Sci.Tech.Rep.#8.,Bell Lab-
oratories, 1972.

2.     Ritchie,D. M., andThompson,K. L. ‘‘The UNIX Time-sharingSystem.’’ C. ACM 7, 17, July, 1974,pp.
365-375.

3.     Peterson,T. G., andLesk,M. E. ‘‘A User’sGuideto the C Languageon the IBM 370.’’ InternalMemoran-
dum, Bell Laboratories, 1974.

4.     Thompson, K. L., and Ritchie, D. M.UNIX Programmer’s Manual.Bell Laboratories, 1973.

5.     Lesk, M. E., and Barres, B. A.‘‘The GCOSC Library.’’ Internal memorandum, Bell Laboratories, 1974.

6.     Kernighan,B. W. ‘‘Programmingin C− A Tutorial.’’ Unpublishedinternalmemorandum,Bell Laboratories,
1974.



-

C  Reference  Manual - 26

APPENDIX 1

Syntax Summary

1. Expressions.

expression:
primary
* expression
& expression
− expression
! expression

˜ expression
++ lvalue
−− lvalue
lvalue++
lvalue−−
sizeof expression
expression binop expression
expression? expression: expression
lvalue asgnop expression
expression, expression

primary:
identifier
constant
string
( expression)
primary( expression-listopt )
primary[ expression]
lvalue. identifier
primary � > identifier

lvalue:
identifier
primary[ expression]
lvalue. identifier
primary � > identifier
* expression
( lvalue )

The primary-expression operators

() [] . � >

have highest priority and group left-to-right.The unary operators

& − ! ~ ++ −− sizeof

havepriority below the primary operatorsbut higher thanany binary operator,andgroupright-to-left. Bi-
nary operators and the conditional operator all group left-to-right, and have priority decreasing as indicated:

binop:
* / %
+ −
>> <<
< > <= >=
== !=
&



-

C  Reference  Manual - 27

^
|
&&
||
? :

Assignment operators all have the same priority, and all group right-to-left.

asgnop:
= =+ =− =* =/ =% =>> =<< =& =^ =|

The comma operator has the lowest priority, and groups left-to-right.

2. Declarations.

declaration:
decl-specifiers declarator-listopt ;

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

sc-specifier:
auto
static
extern
register

type-specifier:
int
char
float
double
struct { type-decl-list }
struct identifier { type-decl-list }
struct identifier

declarator-list:
declarator
declarator, declarator-list

declarator:
identifier
* declarator
declarator( )
declarator[ constant-expressionopt ]
( declarator)

type-decl-list:
type-declaration
type-declaration type-decl-list

type-declaration:
type-specifier declarator-list;

3. Statements.

statement:
expression;
{ statement-list }



-

C  Reference  Manual - 28

if ( expression) statement
if ( expression) statementelse statement
while ( expression) statement
for ( expressionopt ; expressionopt ; expressionopt ) statement
switch ( expression) statement
case constant-expression: statement
default : statement
break ;
continue ;
return ;
return ( expression) ;
goto expression;
identifier: statement
;

statement-list:
statement
statement statement-list

4. External definitions.

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
type-specifieropt function-declarator function-body

function-declarator:
declarator( parameter-listopt )

parameter-list:
identifier
identifier, parameter-list

function-body:
type-decl-list function-statement

function-statement:
{ declaration-listopt statement-list }

data-definition:
externopt type-specifieropt init-declarator-listopt ;

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:
declarator initializeropt

initializer:
constant
{ constant-expression-list }



-

C  Reference  Manual - 29

constant-expression-list:
constant-expression
constant-expression, constant-expression-list

constant-expression:
expression

5. Preprocessor

# define identifier token-string

# include "filename"



-

C  Reference  Manual - 30

APPENDIX 2
Implementation Peculiarities

This Appendixbriefly summarizesthedifferencesbetweentheimplementationsof C on thePDP-11 underUNIX and
on theHIS 6070underGCOS; it includessomeknownbugsin eachimplementation.Eachentry is keyedby anindi-
cator as follows:

h hard to fix
g GCOSversion should probably be changed
u UNIX version should probably be changed
d Inherent difference likely to remain

This list was prepared by M. E. Lesk, S. C. Johnson, E. N. Pinson, and the author.

A. Bugs or differences from C language specifications

hg A.1) GCOSdoes not do type conversions in ‘‘?:’’.
hg A.2) GCOShasa bugin int andreal comparisons;thenumbersarecomparedby subtraction,and

the difference must not overflow.
g A.3) Whenx is afloat, the construction ‘‘test ? −x : x’’ is illegal onGCOS.
hg A.4) ‘‘p1−>p2 =+ 2’’ causes a compiler error, where p1 and p2 are pointers.
u A.5) On UNIX , theexpressionin areturn statementis not convertedto thetypeof thefunction,as

promised.
hug A.6) entry statement is not implemented at all.

B. Implementation differences

d B.1)                Sizes of character constants differ;UNIX : 2, GCOS: 4.
d B.2)                Table sizes in compilers differ.
d B.3)                chars andints have different sizes;chars are8 bits on UNIX , 9 on GCOS; wordsare16 bits

on UNIX and36 on GCOS. Therearecorrespondingdifferencesin representationsof floats
anddoubles.

d B.4)                Character arrays stored left to right in a word inGCOS, right to left inUNIX .
g B.5)                Passing of floats and doubles differs;UNIX passes on stack,GCOSpassespointer(hiddento nor-

mal user).
g B.6)                Structures and strings are aligned on a word boundary inUNIX , not aligned inGCOS.
g B.7)                GCOSpreprocessor supports #rename, #escape;UNIX has only #define, #include.
u B.8)                Preprocessor is not invoked onUNIX unless first character of file is ‘‘#’’.
u B.9)                Theexternaldefinition ‘‘static int . . .’’ is legal on GCOS, but getsa diagnosticon UNIX . (On

GCOS it meansan identifier global to the routinesin the file but invisible to routinescompiled
separately.)

g B.10)              A compound statement onGCOSmust contain one ‘‘;’’ but onUNIX may be empty.
g B.11)              OnGCOScasedistinctionsin identifiersandkeywordsareignored;on UNIX caseis significant

everywhere, with keywords in lower case.

C. Syntax Differences

g C.1)                UNIX allows broaderclassesof initialization; on GCOSan initializer mustbea constant,name,
or string. Similarly, GCOS is muchstickieraboutwantingbracesaroundinitializersandin par-
ticular they must be present for array initialization.

g C.2)                ‘‘int extern’’ illegal onGCOS; must have ‘‘extern int’’ (storage class before type).
g C.3)                Externals onGCOSmust have a type (not defaulted toint).
u C.4)                GCOSallows initialization of internalstatic (same syntax as for external definitions).
g C.5)                integer−>... is not allowed onGCOS.
g C.6)                Some operators on pointers are illegal onGCOS(<, >).



-

C  Reference  Manual - 31

g C.7)                register storage class means something onUNIX , but is not accepted onGCOS.
g C.8)                Scope holes: ‘‘int x; f( ) {int x;}’’ is illegal on UNIX but defines two variables onGCOS.
g C.9)                Whenfunctionnamesareusedasargumentson UNIX , either‘‘fname’’ or ‘‘&fname’’ may be

usedto get a pointerto the function;on GCOS ‘‘&fname’’ generatesa doubly-indirectpointer.
(Note that both are wrong since the ‘‘&’’ is supposed to be supplied for free.)

D. Operating System Dependencies

d D.1) GCOSallocatesexternalscalarsby SYMREF; UNIX allocatesexternalscalarsaslabelledcom-
mon; asa result theremay be manyuninitializedexternaldefinitionsof the samevariableon
UNIX but only one onGCOS.

d D.2) Externalnamesdiffer in allowablelength and characterset; on UNIX , 7 charactersand both
cases; onGCOS6 characters and only one case.

E. Semantic Differences

hg E.1) ‘‘int i, *p; p=i; i=p;’’ does nothing onUNIX , does something onGCOS(destroys right half of i) .
d E.2) ‘‘>>’’ means arithmetic shift onUNIX , logical onGCOS.
d E.3) When achar is converted to integer,theresultis alwayspositiveon GCOSbut canbenegative

on UNIX .
d E.4) Arguments of subroutines are evaluated left-to-right onGCOS, right-to-left onUNIX .


