C Reference Manual

Dennis M. Ritchie

Bell Telephone Laboratories
Murray Hill, New Jersey 07974

1. Introduction

C is a computerlanguagebasedon the earlierlanguageB [1]. The languagesindtheir compilersdiffer in two
major ways: C introducesthe notion of types,and definesappropriateextra syntaxand semanticsalso, C on the
PDP-11 is a true compiler, producing machine code where B produced interpretive code.

Most of the softwarefor the uNIx time-sharingsystem[2] is written in C, asis the operatingsystemitself. C is
alsoavailableon the HIs 6070computerat Murray Hill andandon the IBM System/37t Holmdel[3]. This paper
is a manualonly for the C languagétself asimplementedon the PDP-11. However,hints aregiven occasionallyin
the text of implementation-dependent features.

The uNix Programmer'dManual[4] describeghe library routinesavailableto C programsunderunix, andalso
the proceduregor compiling programsunderthatsystem. “The GcosC Library” by LeskandBarres[5] describes
routines available under that system as well as compilation procedlmey.of theseroutines particularlythe ones
havingto do with 1/0, arealso providedunderunix. Finally, “Programmingin C— A Tutorial,” by B. W. Ker-
nighan [6], is asisefulaspromisedby its title andthe author’spreviousintroductionsto allegedlyimpenetrablesub-
jects.

2. Lexical conventions

Therearesix kinds of tokens:identifiers,keywords,constantsstrings,expressioroperatorsandotherseparators.
In generablanks,tabs,newlines,andcommentsasdescribedelow areignoredexceptasthey serveto separatéo-
kens. At leastone of thesecharacterss requiredto separatetherwiseadjacentidentifiers, constantsand certain
operator-pairs.

If theinput streamhasbeenparsednto tokensup to a givencharacterthe nexttokenis takento includethe long-
est string of characters which could possibly constitute a token.

2.1 Comments
The characterg = introduce a comment, which terminates with the charaetérs

2.2 Identifiers (Names)

An identifier is a sequence @ttersanddigits; thefirst charactemustbe alphabetic. Theunderscoré " counts
asalphabetic.Upperandlower casedettersareconsideredlifferent. No morethanthefirst eightcharactersresig-
nificant, and only the first seven for external identifiers.

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

C Reference Manual - 2

int break
char continue
float if
double else
struct for
auto do
extern while
register switch
static case
goto default
return entry
sizeof

The entry keyword is not currently implemented by any compiler but is reserved for future use.

2.3 Constants
There are several kinds of constants, as follows:

2.3.1 Integer constants

An integerconstanis a sequencef digits. An integeris takento be octalif it beginswith 0, decimalotherwise.
The digits8 and9 have octal value 10 and 11 respectively.

2.3.2 Character constants

A characterconstantis 1 or 2 characterenclosedn single quotes* Within a characterconstanta single
guotemust be precededdy a back-slash\”. Certainnon-graphiccharactersand“\” itself, may be escapedc-
cording to the following table:

BS \b
NL \n
CR \r
HT \t
ddd \ddd
\ \\

Theescape'\ ddd’ consistsof the backslasHollowed by 1, 2, or 3 octal digits which aretakento specifythevalue
of the desiredcharacter.A specialcaseof this constructionis “\0” (notfollowed by a digit) which indicatesa null
character.

Characterconstantdbehaveexactlylike integers(not, in particular,like objectsof charactetype). In conformity
with the addressingstructureof the PDP-11, a characteconstaniof length 1 hasthe codefor the given charactein
the low-order byteandO in the high-orderbyte; a characteconstanof length2 hasthe codefor thefirst charactein
thelow byte andthat for the secondcharactein the high-orderbyte. Characteiconstantsvith morethanonechar-
acter are inherently machine-dependent and should be avoided.

2.3.3 Floating constants

A floating constantonsistof anintegerpart,a decimalpoint, a fractionpart,ane, andanoptionally signedinte-
gerexponent. Theintegerandfraction partsboth consistof a sequencef digits. Eithertheintegerpartor thefrac-
tion part(not both) may be missing;eitherthe decimalpoint or the e andthe exponentnot both) may be missing.
Every floating constant is taken to be double-precision.

2.4 Strings

A stringis asequencef charactersurroundedy doublequotes® " . A string hasthetype array-of-characters
(seebelow) andrefersto an areaof storageinitialized with the given characters.The compilerplacesa null byte
(\0) atthe endof eachstringsothat programswhich scanthe string canfind its end. In a string,the charactef* "
must be preceded by a “Y'in addition, the same escapes as described for character constants may be used.

C Reference Manual - 3

3. Syntax notation

In the syntaxnotationusedin this manual,syntacticcategoriesareindicatedby italic type, andliteral wordsand
charactersn got hi c. Alternativesarelisted on separatdines. An optional terminal or non-terminal symbol is in-
dicated by the subscript “opt,” so that

{ expressiop), }

would indicate an optional expression in braces.

4., VWhat’'s in a Nane?

C basegheinterpretationof anidentifier upontwo attributesof the identifier: its storageclassandits type. The
storageclassdetermineghelocationandlifetime of the storageassociatedvith anidentifier; the type determines the
meaning of the values found in the identifier's storage.

Therearefour declarablestorageclassesautomatic static,external andregister. Automaticvariablesarelocal to
eachinvocationof afunction,andarediscardedn return;staticvariablesarelocal to a function, but retaintheir val-
uesindependenthof invocationsof the function; externalvariablesareindependendf any function. Registervari-
ablesarestoredin thefastregistersof the machinejlike automaticvariablesthey arelocal to eachfunctionanddis-
appear on return.

C supportsfour fundamentalypes of objects:charactersintegers,single-, and double-precisiorfloating-point
numbers.

Charactergdeclared and hereinaftercalled,char) are chosenfrom the Asci set; they occupythe right-
most sevenbits of an 8-bit byte. It is also possibleto interpretchar s assigned,2’'s complement8-bit
numbers.

Integersi(nt) are represented in 16-bit 2's complement notation.

Single precisionfloating point (f | oat) quantitieshavemagnitudein the rangeapproximatelylo138 or 0;
their precision is 24 bits or about seven decimal digits.

Double-precisiorfloating-point(doubl e) quantitieshavethe samerangeasf | oat sanda precisionof 56
bits or about 17 decimal digits.

Besides the four fundamental types there is a conceptually irdiagsof derivedtypesconstructedrom thefun-
damental types in the following ways:
arraysof objects of most types;
functionswhich return objects of a given type;
pointersto objects of a given type;
structurescontaining objects of various types.

In general these methods of constructing objects can be applied recursively.

5. Objects and | val ues

An objectis a manipulatableegionof storage;an Ivalueis an expressiorreferringto an object. An obviousex-
ampleof anIvalue expressioris anidentifier. Thereare operatoravhich yield Ilvalues:for example,f E is an ex-
pressionof pointer type, then +E is an Ivalue expressiorreferring to the objectto which E points. The name
“Ivalue” comesfrom theassignmenéxpression'E1l = E2” in which theleft operandE1l mustbe anlvalue expres-
sion. The discussionof eachoperatorbelow indicateswhetherit expectdvalue operandsandwhetherit yields an
Ivalue.

6. Conversions

A numberof operatoranay, dependingon their operandscauseconversionof the value of an operandrom one
type to anotherThis section explains the result to be expected from such conversions.

C Reference Manual - 4

6.1 Characters and integers

A char objectmaybeusedanywhereani nt maybe. In all caseghe char is convertedo ani nt by propa-
gatingits signthroughthe upper8 bits of the resultantinteger. This is consistentvith thetwo’s complementepre-
sentationusedfor both characterandintegers. (However,the sign-propagatiorieaturedisappearsn otherimple-
mentations.)

6.2 Float and double

All floating arithmeticin C is carriedout in double-precisionwheneveraf | oat appearsn anexpressiorit is
lengthenedo doubl e by zero-paddingts fraction. Whenadoubl e mustbeconvertedo f | oat , for exampleby
an assignment, ttgoubl e is rounded before truncationftd oat length.

6.3 Float and double; integer and character

All i nt s and char s may be convertedwithout loss of significanceto f | oat or doubl e. Conversionof
fl oat ordoubl e toi nt orchar takesplacewith truncationtowards0. Erroneousgesultscanbe expectedf the
magnitude of the result exceeds 32,767 i(for) or 127 (forchar).

6.4 Pointers and integers

Integersandpointersmay be addedandcomparedin sucha casethei nt is convertedasspecifiedin the discus-
sion of the addition operator.

Two pointersto objectsof the sametype may be subtractedin this casethe resultis convertedto an integeras
specified in the discussion of the subtraction operator.

7. Expressions

The precedencef expressioroperatorss the sameasthe orderof the major subsectionsf this section(highest
precedencdirst). Thus the expressiongeferredto asthe operandsof + (87.4) are thoseexpressionglefinedin
887.1 7.3. Within eachsubsectionthe operatordhavethe sameprecedenceleft- or right-associativityis specified
in eachsubsectiorfor the operatorsliscussedherein. The precedencandassociativityof all the expressioropera-
tors is summarized in an appendix.

Otherwisethe orderof evaluationof expressionss undefined. In particularthe compilerconsiderstself free to
compute subexpressions in the order it believes most efficient, even if the subexpressions involve side effects.

7.1 Primary expressions
Primary expressions involving, —>, subscripting, and function calls group left to right.

7.1.1 identifier

An identifier is a primary expressionprovidedit hasbeensuitablydeclaredasdiscussedelow. Its typeis speci-
fied by its declaration. However,if the type of the identifier is “array of ...”, thenthe value of the identifier-
expressioris a pointerto thefirst objectin the array,andthe type of the expressions “pointer to ...”. Moreover,
an array identifier is not an lvalue expression.

Likewise, anidentifier which is declared‘function returning. ..
tion of a call, is converted to “pointer to function returning'.

, Whenusedexceptin the function-nameposi-

7.1.2 constant

A decimal,octal, characterpr floating constantis a primary expression.Its typeis i nt in thefirst threecases,
doubl e in the last.

7.1.3 string

A stringis a primary expression.Its typeis originally “array of char ”; butfollowing the samerule asin §7.1.1
for identifiers, this is modified to “pointer tohar ” and the result is a pointer to the first character in the string.

7.1.4 (expression

A parenthesizedxpressions a primary expressiorwhosetype andvalueareidenticalto thoseof the unadorned
expression.The presence of parentheses does not affect whether the expression is an Ivalue.

C Reference Manual - 5

7.1.5 primary-expression[expressior

A primary expressiorfollowed by an expressionn squarebracketss a primary expression.Theintuitive mean-
ing is thatof a subscript. Usually,the primary expression has type “pointer to.”,, the subscript expressioniisit ,
andthetype of theresultis “ ...”. Theexpression'E1[E2]” is identical (by definition)to “ ((E1)+(E2))".
All the cluesneededto understandhis notationare containedin this sectiontogetherwith the discussionsn 8§
7.1.1,7.2.1, and 7.4.1 on identifie¥rs and+ respectively; 814.3 below summarizes the implications.

7.1.6 primary-expressioff expression-ligf,)

A function call is a primary expressiorfollowed by parenthesesontaininga possiblyempty,comma-separated
list of expressionsvhich constitutethe actualargumentgo the function. The primary expressiomrmustbe of type
“function returning...”, andtheresultof thefunctioncall is of type* ...”. As indicatedbelow,a hithertounseen
identifier followed immediatelyby a left parenthesiss contextuallydeclaredo represena functionreturninganin-
teger; thus in the most common case, integer-valued functions need not be declared.

Any actualargumentf typef | oat areconvertedo doubl e beforethe call; any of type char areconverted
toi nt.

In preparingfor the call to a function,a copyis madeof eachactualparameterthus,all argument-passinimp C is
strictly by value. A function may changethe valuesof its formal parametershut thesechangesannotpossiblyaf-
fect the valuesof the actualparameters.On the otherhand,it is perfectly possibleto passa pointeron the under-
standing that the function may change the value of the object to which the pointer points.

Recursive calls to any function are permissible.

7.1.7 primary-lvalue. member-of-structure

An lvalue expressiorfollowed by a dot followed by the nameof a memberof a structureis a primary expression.
The objectreferredto by the lvalueis assumedo havethe sameform asthe structurecontainingthe structuremem-
ber. Theresultof the expressioris an lvalue appropriatelyoffset from the origin of the given lvalue whosetypeis
that of the named structure memb@&he given lvalue is not required to have any particular type.

Structures are discussed in 8§8.5.

7.1.8 primary-expressior> member-of-structure

The primary-expressiors assumedo be a pointerwhich pointsto an objectof the sameform asthe structureof
which the member-of-structures a part. Theresultis anlvalue appropriately offset from the origin of the pointed-to
structurewhosetypeis that of the namedstructuremember. The type of the primary-expressiomeednotin fact be
pointer; it is sufficient that it be a pointer, character, or integer.

Exceptfor the relaxationof the requirementhat E1 be of pointertype, the expression‘E1->MOS” is exactly
equivalent to “¢E1).MOS".

7.2 Unary operators
Expressions with unary operators group right-to-left.

7.2.1 x expression

Theunary* operatormeansindirection: the expressiomustbe a pointer,andthe resultis an Ivalue referringto
the objectto which the expressiorpoints. If the type of the expressioris “pointer to ...”, thetype of theresultis

7.2.2 & Ivalue-expression

Theresultof the unary& operatoris a pointerto the objectreferredto by the lvalue-expressionlf thetype of the
Ivalue-expression is :"..”, the type of the result is “pointer ta.”.

7.2.3 — expression

The resultis the negativeof the expressionand hasthe sametype. The type of the expressiormustbe char ,
i nt,float, ordoubl e.

C Reference Manual - 6

7.2.41 expression

Theresultof the logical negationoperator! is 1 if the value of the expressiornis 0, 0 if the valueof the expres-
sion is non-zeroThe type of the result isnt . This operator is applicable only itmt s orchar s.

7.2.5 _ expression

The~ operator yields the one’s complement of its operdrite type of thexpressiomustbei nt orchar, and
the resultis nt .

7.2.6 ++ lvalue-expression

The objectreferredto by the Ivalue expressions incremented.The valueis the new value of the Ivalue expres-
sionandthetypeis thetypeof thelvalue. If theexpressionsi nt orchar, it isincrementedy 1; if it is a pointer
to anobject,it is incrementedy thelengthof theobject. ++ is applicableonly to thesetypes. (Not, for example to
fl oat ordoubl e.)

7.2.7 — Ivalue-expression
The object referred to by the Ivalue expression is decremented analogously to the ++ operator.

7.2.8 Ivalue-expression ++

Theresultis the value of the objectreferredto by the Ivalue expression.After the resultis noted,the objectre-
ferredto by thelvalueis incrementedn the samemannerasfor the prefix ++ operator: by 1 for annt orchar, by
the length of the pointed-toobject for a pointer. The type of the resultis the sameas the type of the Ivalue-
expression.

7.2.9 Ivalue-expression—

Theresultof the expressioris the value of the objectreferredto by the the lvalue expression.After theresultis
noted, the object referred to by the Ivalue expression is decremented in a way analogous to the postfix ++ operator.

7.2.10si zeof expression

The si zeof operatoryields the size,in bytes,of its operand. Whenappliedto an array, the resultis the total
numberof bytesin thearray. Thesizeis determinedrom the declaration®f the objectsin the expression.This ex-
pressionis semanticallyan integerconstantand may be usedanywherea constantis required. Its major useis in
communication with routines like storage allocators and 1/O systems.

7.3 Multiplicative operators
The multiplicative operators, / , and%group left-to-right.

7.3.1 expression* expression

The binary » operatorindicatesmultiplication. If both operandsarei nt or char, theresultis i nt ; if oneis
i nt or char andonef | oat or doubl e, theformeris convertedo doubl e, andthe resultis doubl e; if both
aref | oat ordoubl e, the result igloubl e. No other combinations are allowed.

7.3.2 expressionl expression
The binary/ operator indicates divisioriThe same type considerations as for multiplication apply.

7.3.3 expressio®oexpression

Thebinary %operatotyieldsthe remaindefrom the division of thefirst expressiorby the second.Both operands
mustbei nt or char, andtheresultisi nt . In the currentimplementationthe remaindehasthe samesignasthe
dividend.

7.4 Additive operators
The additive operators and- group left-to-right.

C Reference Manual - 7

7.4.1 expressiorr expression

The result is the sum tiieexpressionsif bothoperandsrei nt or char, theresultisi nt . If botharef | oat
ordoubl e, theresultis doubl e. If one ischar ori nt and one i$ | oat ordoubl e, the former is converted to
doubl e and the result idoubl e. If ani nt orchar is addedo a pointer,theformeris convertedoy multiplying
it by the lengthof the objectto which the pointerpointsandthe resultis a pointerof the sametype asthe original
pointer. Thusif P is a pointerto anobject,the expression'P+1” is a pointerto anotherobjectof the sametype as
the first and immediately following it in storage.

No other type combinations are allowed.

7.4.2 expressior- expression

Theresultis the differenceof the operands.If bothoperandsrei nt , char, f | oat, ordoubl e, the sametype
considerationsisfor + apply. If ani nt or char is subtractedrom a pointer,the formeris convertedn the same
way as explained undef above.

If two pointersto objectsof the sametype aresubtractedthe resultis convertedby division by thelengthof the
object)to ani nt representinghe numberof objectsseparatinghe pointed-toobjects. This conversionwill in gen-
eral give unexpectedesultsunlessthe pointerspoint to objectsin the samearray, sincepointers,evento objectsof
the same type, do not necessarily differ by a multiple of the object-length.

7.5 Shift operators
The shift operators< and>> group left-to-right.

7.5.1 expressiork< expression
7.5.2 expressiorr> expression

Both operandsnustbei nt or char, andtheresultis i nt . The secondoperandshouldbe non-negative.The
valueof “E1<<E2” is E1 (interpretedasa bit patternl6 bits long) left-shiftedE2 bits; vacated bits are O-filledl'he
value of “E1>>E2" is E1 (interpreted as a two’s complement, 16-bit quatitthymeticallyright-shiftedE2 bit po-
sitions. Vacatedbits arefilled by a copy of the sign bit of E1. [Note: the useof arithmeticratherthanlogical shift
does not survive transportation between machines.]

7.6 Relational operators

Therelationaloperatorggroupleft-to-right, but this factis not very useful;*a<b<c” doesnot meanwhatit seems
to.

7.6.1 expressiork expression
7.6.2 expressiorr expression
7.6.3 expressiork= expression
7.6.4 expressiorr= expression

Theoperators< (lessthan),> (greaterthan),<= (lessthanor equalto) and>= (greaterthanor equalto) all yield 0
if the specifiedrelationis falseandl if it is true. Operandconversions exactlythe sameasfor the + operatorex-
ceptthatpointersof anykind maybe comparedtheresultin this casedepend®n therelativelocationsin storageof
the pointed-to objectdt does not seem to be very meaningful to compare pointers with integers other than 0.

7.7 Equality operators

7.7.1 expression= expression
7.7.2 expression = expression

The== (equalto) andthe! = (not equalto) operatorsaare exactlyanalogoudo the relationaloperatorexceptfor
their lower precedencdThus “a<b == c<d” is 1 whenever a<b and c<d have the same truth-value).

7.8 expressior& expression

The & operatorgroupsleft-to-right. Both operandsnustbei nt or char ; theresultis ani nt which is the bit-
wise logicaland function of the operands.

C Reference Manual - 8

7.9 expressiort expression

The” operatorgroupsleft-to-right. The operandsnustbei nt or char ; theresultis ani nt which is the bit-
wise exclusiveor function of its operands.

7.10 expression expression

The| operator groups left-to-righfThe operands must bat or char ; theresultis ani nt whichis thebit-wise
inclusiveor of its operands.

7.11 expressior&& expression

The && operatorreturnsl if both its operandsare non-zero,0 otherwise. Unlike &, && guaranteeseft-to-right
evaluation; moreover the second operand is not evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental types or be a pointer.

7.12 expression|| expression

The || operatoreturnsl if eitherof its operandss non-zeroandO otherwise. Unlike |, || guaranteegeft-to-right
evaluation; moreover, the second operand is not evaluated if the value of the first operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental types or be a pointer.

7.13 expressior? expression expression

Conditionalexpressiongroupleft-to-right. Thefirst expressions evaluatedandif it is non-zerotheresultis the
value of the secondexpressionptherwisethat of third expression.If the typesof the secondandthird operandare
the same, the result has their common type; otherwise the same conversion rulesapplforOnly oneof the sec-
ond and third expressions is evaluated.

7.14 Assignment operators

Therearea numberof assignmenbperatorsall of which groupright-to-left. All requirean Ivalue astheir left
operandandthetype of anassignmenéxpressioris thatof its left operand. The valueis the valuestoredin theleft
operand after the assignment has taken place.

7.14.1 Ivalue= expression

The valueof the expressiomeplaceghat of the objectreferredto by thelvalue. The operandsieednot havethe
sametype, but bothmustbe i nt, char, f | oat, doubl e, or pointer. If neitheroperands a pointer,the assign-
ment takes place as expected, possibly preceded by conversion of the expression on the right.

Whenbothoperandsrei nt or pointersof anykind, no conversiorevertakesplace;the value of the expression
is simply storedinto the object referred to by the Ivalu@hus it is possible to generate pointers which will cause ad-
dressing exceptions when used.

7.14.2 Ivalue=+ expression
7.14.3 Ivalue=— expression
7.14.4 Ivalue=+ expression
7.14.5 Ivalue=/ expression
7.14.6 Ivalue=% expression
7.14.7 lvalue=>> expression
7.14.8 Ivalue=<< expression
7.14.9 Ivalue=& expression
7.14.10lvalue=" expression
7.14.11lvalue=| expression
The behavior of an expressionof the form “E1 =op E2” may be inferred by taking it as equivalentto
“E1l = E1 op E2”; however,E1 is evaluatedbnly once. Moreover,expressiondike “i =+ p” in which a pointeris
added to an integer, are forbidden.

C Reference Manual - 9

7.15 expression expression

A pair of expressionseparatedy a commais evaluatedeft-to-right andthe value of the left expressionis dis-
carded. The type andvalue of the resultarethe type andvalue of the right operand. This operatorgroupsleft-to-
right. It shouldbe avoidedin situationswherecommais given a specialmeaning for examplein actualarguments
to function calls (87.1.6) and lists of initializers (810.2).

8. Declarations

Declarationsare usedwithin function definitionsto specify the interpretationwhich C givesto eachidentifier;
they do not necessarily reserve storage associated with the ideftdigarations have the form

declaration:
decl-specifiers declarator-lig} ;

The declaratordn the declarator-listcontainthe identifiers being declared. The decl-specifierconsistof at most
one type-specifier and at most one storage class specifier.

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

8.1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register

The auto, static, and regi st er declarationsalsoserveasdefinitionsin that they causean appropriate
amountof storageo bereserved.In theext er n casetheremustbe anexternaldefinition (seebelow)for the given
identifiers somewhere outside the function in which they are declared.

Thereare somesevererestrictionson r egi st er identifiers: therecanbe at most 3 registeridentifiersin any
function,andthetype of aregisteridentifier canonly be i nt, char, orpointer(not f1 oat, doubl e, struc-
ture, function, or array). Also the address-obperator & cannotbe appliedto suchidentifiers. Exceptfor thesere-
strictions(in returnfor which oneis rewardedwith faster,smallercode),registeridentifiersbehaveasif theywere
automatic. In fact implementations of C are free to treatgi st er as synonymous withaut o.

If the sc-specifier is missing from a declaration, it is generally takenaate.

8.2 Type specifiers
The type-specifiers are

type-specifier:
i nt
char
fl oat
doubl e
struct {type-decl-list}
st ruct identifier { type-decl-list }
struct identifier

Thest ruct specifieris discussedn 88.5. If the type-specifielis missingfrom a declarationjt is generallytaken
to bei nt .

C Reference Manual - 10

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators.

declarator-list:
declarator
declarator, declarator-list

The specifiersin the declarationindicatethe type and storageclassof the objectsto which the declaratorgefer.
Declarators have the syntax:

declarator:
identifier
* declarator
declarator()
declarator[constant-expressign]
(declarator)

The grouping in this definition is the same as in expressions.

8.4 Meaning of declarators

Eachdeclaratoiis takento be an assertiorthatwhena constructionof the sameform asthe declaratorappearsn
anexpressionit yieldsanobjectof theindicatedtype and storage clasEach declarator contains exactly one identi-
fier; it is this identifier that is declared.

If anunadorneddentifier appearsasa declaratorthenit hasthetypeindicatedby the specifierheadingthe decla-
ration.

If a declarator has the form

* D

for D a declaratorthenthe containeddentifier hasthe type “pointer to ...”, where" ..." is the type which the

identifier would have had if the declarator had been simply D.
If a declarator has the form

D()

then the containedidentifier hasthe type “function returning...
would have had if the declarator had been simply D.

A declarator may have the form

, Where" ...” is the type which the identifier

D[constant-expression]
or
D[]

In the first casethe constantexpressioris an expressiorwhosevalueis determinableat compiletime, andwhose
typeis i nt. in the secondthe constantl is used. (Constantexpressionsre definedpreciselyin 815.) Sucha
declaratormakesthe containedidentifier havetype “array.” If the unadornedieclaratorD would specifya non-
arrayof type*. ..”, thenthedeclarator'D[i]” yieldsa 1-dimensionahrraywith ranki of objectsof type “...”. If

the unadorneddeclaratorD would specify an n-dimensionalarray with rank i, xi,x...xi_, thenthe declarator
“D[i.,,]" yields an (n+1) -dimensional array with rankxi,x...xi xi_ .

An arraymay be constructedrom oneof the basictypes,from a pointer,from a structure,or from anotherarray
(to generate a multi-dimensional array).

Finally, parenthesem declaratorslo not alterthe type of the containeddentifier exceptinsofarasthey alter the
binding of the components of the declarator.

Not all the possibilitiesallowedby the syntaxaboveareactuallypermitted. Therestrictionsareasfollows: func-
tionsmay not returnarrays,structuresor functions,althoughthey may returnpointersto suchthings;thereareno ar-
rays of functions,althoughtheremay be arraysof pointersto functions. Likewise a structuremay not containa
function, but it may contain a pointer to a function.

C Reference Manual - 11

As an example, the declaration

int i, «ip, f(), «fip(), (*pfi)();

declaresanintegeri, a pointerip to aninteger,a functionf returninganinteger,a functionfip returninga pointerto
an integer, and a pointpfi to a function which returns an integeklso

float fa[17], =afp[1l7];
declares an array 61 oat numbers and an array of pointerg taoat numbers.Finally,
static int x3d[3][5][7];

declaresa staticthree-dimensionarray of integers,with rank 3x5x7. In completedetail, x3d is an array of three
items:eachitemis anarrayof five arrays;eachof thelatterarraysis anarrayof sevenintegers. Any of the expres-
sions“x3d”, “x3d[i]", “x3d[i][j]", “x3d[i][jl k]" mayreasonablyappearin an expression.The first three
have type “array”, the last has typat .

8.5 Structure declarations
Recall that one of the forms for a structure specifier is

struct {type-decl-list}
Thetype-decl-lisis a sequence of type declarations for the members of the structure:

type-decl-list:
type-declaration
type-declaration type-decl-list

A type declaratioris just a declarationwhich doesnot mentiona storageclass(the storageclassmember of struc-
ture” here being understood by context).

type-declaration:
type-specifier declarator-list

Within the structure the objectsdeclaredhaveaddresseshich increaseastheir declarationsarereadleft-to-right.
Eachcomponenbf a structurebeginson anaddressindpoundaryappropriateo its type. OnthepPbr-11theonly re-
guirementis that non-characterdegin on a word boundary;therefore,there may be 1-byte, unnamedholesin a
structure, and all structures have an even length in bytes.

Another form of structure specifier is
st ruct identifier { type-decl-list }

This form is the sameasthe onejust discussedexceptthat the identifier is rememberedsthe structuretag of the
structurespecifiedby the list. A subsequendeclarationmay thenbe given usingthe structuretag but without the
list, as in the third form of structure specifier:

struct identifier

Structuretagsallow definition of self-referentialstructuresthey also permit the long part of the declarationto be
givenonceandusedseverakimes. It is howeverabsurdio declare a structure which contains an instance of itself, as
distinct from a pointer to an instance of itself.

A simple example of a structure declaration, taken from §16.2 where its use is illustrated more fully, is

struct tnode {
char tword[20];
i nt count;
struct tnode x| eft;
struct tnode =right;

}s

which contains an array of 20 characters, an integer, and two poargerslar structures.Oncethis declaratiorhas

C Reference Manual - 12

been given, the following declaration makes sense:
struct tnode s, =*sp;

which declaresto be a structure of the given sort apdo be a pointer to a structure of the given sort.

The namesof structuremembersandstructuretagsmay be the sameasordinaryvariables sincea distinctioncan
be madeby context. However,namesf tagsandmemberanustbe distinct. The samemembemamecanappealn
differentstructuresonly if thetwo membersare of the sametype andif their origin with respecto their structureis
the same; thus separate structures can share a common initial segment.

9. Statenents
Except as indicated, statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form

expression

Usually expression statements are assignments or function calls.

9.2 Compound statement
So that several statements can be used where one is expected, the compound statement is provided:

compound-statement:
{ statement-list }

statement-list:
statement
statement statement-list

9.3 Conditional statement
The two forms of the conditional statement are

i f (expression statement
i f (expression) statemenel se statement

In both caseghe expressions evaluatedandif it is non-zero the first substatemeris executed.In the secondcase
the secondsubstatemeris executedf the expressioris 0. As usualthe “else” ambiguityis resolvedby connecting
anel se with the last encountered elseléss

9.4 While statement
Thewhi | e statement has the form

whi | e (expressiorn statement

The substatemenis executedrepeatedlyso long asthe value of the expressiorremainsnon-zero. The testtakes
place before each execution of the statement.

9.5 Do statement
Thedo statement has the form

do statementhil e (expression ;

The substatemeris executedepeatedlyuntil the value of the expressiorbecomesero. The testtakesplaceafter
each execution of the statement.

C Reference Manual - 13

9.6 For statement
Thef or statement has the form

for (expression-],; expression-2 ; expression-3) statement
This statement is equivalent to

expression-1;

whi | e (expression-2 {
statement
expression-3

}

Thusthefirst expressiorspecifiesinitialization for the loop; the secondspecifiesa test,madebeforeeachiteration,
suchthattheloop is exitedwhenthe expressiorbecome; the third expressiortypically specifiesanincrementa-
tion which is performed after each iteration.

Any or all of the expressionsnay be dropped. A missingexpression-2nakestheimplied whi | e clauseequiva-
lent to “while(1)”; other missing expressions are simply dropped from the expansion above.

9.7 Switch statement

Theswi t ch statementausegontrolto betransferredo oneof severalktatementslependingon the valueof an
expression.It has the form

switch (expressior statement

The expressiomustbei nt or char. The statements typically compound. Eachstatementvithin the statement
may be labelled with case prefixes as follows:

case constant-expression

wherethe constanexpressiormustbei nt or char. No two of the caseconstantsn a switch may havethe same
value. Constant expressions are precisely defined in §15.

There may also be at most one statement prefix of the form
def aul t

When theswi t ch statement is executed, its expression is evaluated and compared with eachnstasdén anun-
definedorder. If oneof the caseconstantss equalto the valueof the expressiongontrolis passedo the statement
following the matchedcaseprefix. If no caseconstantmatcheshe expressionandif thereis adef aul t prefix,
control passeso the prefixedstatement.In theabsencef adef aul t prefix noneof the statementin the switchis
executed.

Case or default prefixes in themselves do not alter the flow of control.

9.8 Break statement
The statement

break ;

causegerminationof the smallestenclosingwhi | e, do, for, or swi t ch statementrontrol passego the state-
ment following the terminated statement.

9.9 Continue statement
The statement

conti nue ;

causesontrolto passto theloop-continuatiorportion of the smallestenclosingahi | e, do, orf or statementthat
is to the end of the loopgMore precisely, in each of the statements

C Reference Manual - 14

while (...) { do { for (...) {
coﬁfih:; coﬁfih:; coﬁfih:;
} } while (...); }

aconti nue is equivalent to “goto contin”.

9.10 Return statement
A function returns to its caller by means of thret ur n statement, which has one of the forms

return ;
return (expression ;

In thefirst caseno valueis returned. In the secondcase the value of the expressioris returnedto the caller of the
function. If requiredtheexpression is converted, as if by assignment, to the type of the function in which it appears.
Flowing off the end of a function is equivalent to a return with no returned value.

9.11 Goto statement
Control may be transferred unconditionally by means of the statement
got 0 expression

The expressiorshouldbe a label (§89.12,14.4) or an expressiorof type “pointer to i nt ” which evaluatedo a la-
bel. It is illegal to transferto a label not locatedin the currentfunction unlesssomeextra-languag@rovisionhas
been made to adjust the stack correctly.

9.12 Labelled statement
Any statement may be preceded by label prefixes of the form
identifier :

which serve to declare the identifier as a laihdbre details on the semantics of labels are given in §14.4 below.

9.13 Null statement
The null statement has the form

A null statements usefulto carryalabeljust beforethe“}’ of acompoundstatemenbr to supplya null bodyto a
looping statement such aki | e.

10. External definitions

A C programconsistsof a sequencef externaldefinitions. Externaldefinitionsmay be givenfor functions,for
simplevariables andfor arrays. Theyareusedbothto declareandto reservestoragefor objects. An externaldefi-
nition declaresan identifier to havestorageclassext er n anda specifiedtype. The type-specifier(§8.2) may be
empty, in which case the type is taken ta bé.

10.1 External function definitions
Function definitions have the form

function-definition:
type-specifief, function-declarator function-body

A functiondeclaratoiis similar to a declaratoffor a “function returning...” exceptthatit lists theformal parameters
of the function being defined.

function-declarator:
declarator(parameter-list,)

parameter-list:

C Reference Manual - 15

identifier
identifier, parameter-list

The function-body has the form

function-body:
type-decl-list function-statement

The purposeof the type-decl-listis to give the typesof the formal parameters.No otheridentifiers shouldbe de-
clared in this list, and formal parameters should be declared only here.

The function-statement is just a compound statement which may have declarations at the start.

function-statement:
{ declaration-list statement-list }

A simple example of a complete function definition is

int mx(a, b, c)
int a, b, c;

{ .
int m
m= (a>b)? a:b;
return(m>c? m: c) ;
}

Here"int” is thetype-specifier;'max(a, b, ¢)” is the function-declaratorfint a, b, ¢;” is the type-decl-listfor the
formal parameters; “{.. }" is the function-statement.

C convertsall fl oat actualparameterso doubl e, soformal parametersleclared | oat havetheir declara-
tion adjustedo readdoubl e. Also, sinceareferencdo anarrayin any context(in particularasan actualparame-
ter) is takento meana pointerto thefirst elementof the array,declaration®f formal parametersleclared‘array of
... areadjustedo read“pointer to ..."”. Finally, becausaeitherstructuresor functionscanbe passedo afunc-
tion, it is uselesdo declarea formal parameteto be a structureor function (pointersto structuresor functionsareof
course permitted).

A freer et ur n statemenis suppliedat the endof eachfunctiondefinition, so runningoff theendcausesontrol,
but no value, to be returned to the caller.

10.2 External data definitions
An external data definition has the form

data-definition:
extern,, type-specifigy, init-declarator-list, ;

Theoptional ext er n specifieris discussedn § 11.2. If given,theinit-declarator-lisis a comma-separatdist of
declarators each of which may be followed by an initializer for the declarator.

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:
declarator initializer,,
Each initializer represents the initial value for the corresponding object being defined (and declared).
initializer:
constant
{ constant-expression-list }

C Reference Manual - 16

constant-expression-list:
constant-expression
constant-expression constant-expression-list

Thusan initializer consistsof a constant-value@xpressionpr comma-separatelist of expressionsinside braces.
Thebraceanaybe dropped when the expression is just a plain constaetexact meaning of a constant expression
is discussed in §15The expression list is used to initialize arrays; see below.

Thetype of the identifier beingdefinedshouldbe compatiblewith the type of the initializer: a double constant
may initialize a float or double identifier; a non-floating-pointexpressiormay initialize anint , char , or
pointer.

An initializer for anarraymay containa comma-separatdist of compile-timeexpressions.The lengthof thear-
ray is takento be the maximumof the numberof expressionsn the list andthe square-bracketedonstantin the
array’s declarator. This constantmay be missing,in which casel is used. The expressionsnitialize successive
memberof thearraystartingat the origin (subscrip) of thearray. Theacceptablexpression$or anarrayof type
“array of ...” arethe sameasthosefor type“...”. As aspecialcase a singlestring may be givenastheinitializer
for an array othar s; in this case, the characters in the string are taken as the initializing values.

Structurescanbe initialized, but this operationis incompletelyimplementedand machine-dependenBasically
the structurels regardechsa sequencef wordsandthe initializers areplacedinto thosewords. Structureinitializa-
tion, usinga comma-separatdibt in bracesjs safeif all the membersf the structureareintegersor pointersbutis
otherwise ill-advised.

The initial value of any externally-defined object not explicitly initialized is guaranteed to be 0.

11. Scope rules

A completeC programneednot all be compiledat the sametime: the sourcetext of the programmay be keptin
severafiles, andprecompiledoutinesmay beloadedfrom libraries. Communicatioramongthe functionsof a pro-
gram may be carried out both through explicit calls and through manipulation of external data.

Therefore therearetwo kinds of scopeto considerfirst, what may be calledthe lexical scopeof an identifier,
whichis essentialljtheregion of a program during which it may be used without drawing “undefined identifier” di-
agnosticsand second the scopeassociatedvith externalidentifiers,which is characterizedby the rule that refer-
ences to the same external identifier are references to the same object.

11.1 Lexical scope

C is notablock-structuredanguagethis mayfairly be consideredh defect. The lexical scopeof namesdeclared
in externaldefinitions extendsfrom their definition throughthe end of the file in which they appear. The lexical
scope of names declared at the head of functions (either as formal parameters or in the declarations ls>ding the
ments constituting the function itself) is the body of the function.

It is anerrorto redeclaradentifiersalreadydeclaredn the currentcontext,unlessthe new declarationspecifies
the same type and storage class as already possessed by the identifiers.

11.2 Scope of externals

If afunctiondeclaresanidentifierto be extern , thensomewhereamongthe files or librariesconstitutingthe
completeprogramtheremustbe an externaldefinition for theidentifier. All functionsin a givenprogramwhich re-
fer to the sameexternalidentifier referto the sameobject,so caremustbe takenthatthe type andextentspecifiedin
the definition are compatible with those specified by each function which references the data.

In PDP-11 C, it is explicitly permittedfor (compatible)externaldefinitions of the sameidentifier to be presentin
severalof the separately-compilegdiecesof a completeprogram,or eventwice within the sameprogramfile, with
the important limitation that the identifier may be initialized in at most one of the definitioiagheroperatingsys-
tems,however the compilermustknow in just which file the storagefor theidentifier is allocated andin which file
theidentifier is merelybeingreferredto. In theimplementation®f C for suchsystemsthe appearancef the ex-
tern keywordbeforeanexternaldefinition indicatesthat storagefor the identifiersbeingdeclaredwill beallocated
in anotheffile. Thusin amulti-file program,anexternaldatadefinition withoutthe extern specifiermustappear
in exactlyoneof thefiles. Any otherfiles which wish to give an externaldefinition for the identifier mustinclude
the extern in the definition. The identifier can be initialized only in the file where storage is allocated.

In PDR-11 C none of this nonsense is necessary aneéftern specifier is ignored in external definitions.

C Reference Manual - 17

12. Conpiler control lines

Whenal line of a C programbeginswith the charactet, it is interpretednot by the compileritself, but by a pre-
processomvhich is capableof replacinginstancesof given identifierswith arbitrarytoken-stringsand of inserting
namedfiles into the sourceprogram. In orderto causethis preprocessato beinvoked,it is necessaryhatthe very
first line of the program begin with. Since null lines are ignored by the preprocessor, this line need contain no oth-
er information.

12.1 Token replacement
A compiler-control line of the form

def i ne identifier token-string

(note:no trailing semicolon)causeshe preprocessato replacesubsequeninstancef the identifier with the given
string of tokens(exceptwithin compilercontrollines). The replacementoken-stringhascommentsemovedfrom
it, and it is surrounded with blank&lo rescanning of the replacement stringtiempted.This facility is mostvalu-
able for definition of “manifest constants”, as in

define tabsize 100

i r.1t. tabl e[t absi ze] ;

12.2 File inclusion

LargeC programsftencontainmanyexternaldatadefinitions. Sincethelexical scopeof externaldefinitionsex-
tendsto the end of the programfile, it is good practiceto put all the externaldefinitionsfor dataat the startof the
programfile, so thatthe functionsdefinedwithin the file neednot repeattediousand error-pronedeclarationgor
eachexternalidentifier they use. It is alsousefulto put a heavily usedstructuredefinition at the startand useits
structuretag to declarethe aut o pointersto the structureusedwithin functions. To further exploit this technique
when a large C program consists of several files, a compiler control line of the form

i ncl ude "filename'

results in the replacement of that line by the entire contents of tfiéefil@me

13. Inplicit declarations

It is notalwaysnecessaryo specifyboth the storageclassandthe type of identifiersin a declaration. Sometimes
the storageclassis suppliedby the context:in externaldefinitions,andin declarationof formal parameterand
structure memberdn a declaration inside a function, if a storage class but no type is tiiedtentifier is assumed
to bei nt ; if a type but no storage class is indicated, the identifier is assumedub dbe An exception to the latter
rule is madefor functions,sinceaut o functionsare meaninglesgC beingincapableof compiling codeinto the
stack). If the type of an identifier is “function returning ...”, it is implicitly declared toebe er n.

In an expressionan identifier followed by (andnot currently declareds contextuallydeclaredto be “function
returningi nt .

Undefinedidentifiers not followed by (are assumedo be labelswhich will be definedlater in the function.
(Sincea labelis not an Ivalue, this accountdor the “Lvalue required” error messagesometimesoticedwhenan
undeclared identifier is usedNaturally, appearance of an identifier as a label declares it as such.

For somepurposest is bestto considerformal parametergasbelongingto their own storageclass. In practice,C
treatsparameterssif they wereautomatic(exceptthat, asmentionedabove formal parametearraysandf | oat s
are treated specially).

14. Types revisited
This section summarizes the operations which can be performed on objects of certain types.

C Reference Manual - 18

14.1 Structures

Thereareonly two thingsthatcanbe donewith a structure:pick out oneof its membergby meansof the . or
—> operators)pr takeits addresgby unary&). Otheroperationssuchasassigningfrom or to it or passingt asa
parameterdrawan errormessageln the future, it is expectedhattheseoperationsput not necessarilyothers,will
be allowed.

14.2 Functions

Thereareonly two thingsthat canbe donewith a function: call it, or takeits address.If the nameof a function
appearsn anexpressiomot in the function-namepositionof a call, a pointerto the functionis generated.Thus,to
pass one function to another, one might say

int f();
a(f);
Then the definition off might read

g(funcp)
int («funcp) ();
{

(+funcp) ();
} .

Notice thaff was declared explicitly in the calling routine since its first appearance was not folloWed by

14.3 Arrays, pointers, and subscripting

Everytime anidentifier of arraytype appearsn anexpressionit is convertednto a pointerto thefirst memberof
thearray. Becausef this conversionarraysarenotlvalues. By definition, the subscriptoperator [] is interpreted
in such a way that “E1[E2]” is identicab “ = ((E1)+(E2))”. Becausef the conversiorruleswhich applyto +, if
Elis anarrayandE2 aninteger,then E1[E2] refersto the E2-thmemberof E1. Therefore despiteits asymmetric
appearance, subscripting is a commutative operation.

A consistentrule is followed in the caseof multi-dimensionalarrays. If E is an n-dimensionalarray of rank
i xjx...xk, then E appearingn an expressionis convertedto a pointerto an (n-1)-dimensionalarray with rank
j %...xk. If thex operatorgitherexplicitly or implicitly asaresultof subscriptingjs appliedto this pointer,there-
sult is the pointed-tont-1)-dimensional array, which itself is immediately converted into a pointer.

For example, consider
int x[3][5];

Herex is a 3x5 arrayof integers. Whenx appearsn anexpressionit is convertedo a pointerto (thefirst of three)
5-memberedhrraysof integers. In the expressiori’x[i]”, whichis equivalentto = (x+i)”, X is first convertedo a
pointerasdescribedtheni is convertedto the type of x, which involves multiplying i by the lengththe objectto
which the pointer points, namely5 integerobjects. The resultsareaddedandindirectionappliedto yield an array
(of 5 integers)which in turn is convertedto a pointerto the first of the integers. If thereis anothersubscriptthe
same argument applies again; this time the result is an integer.

It follows from all this that arrays in C are stored row-wlastsubscriptvariesfastestiandthatthefirst subscript
in the declaratiorhelpsdeterminethe amountof storageconsumedy an arraybut playsno otherpartin subscript
calculations.

14.4 Labels

Labels do not have a type of their own; they are treated as having type “airraty”of Labelvariablesshouldbe
declared‘pointer to i nt ’; beforeexecutionof agot o referringto the variable,a label (or anexpressiorderiving
from a label) should be assigned to the variable.

Label variables are a bad idea in generalsthiet ch statement makes them almost always unnecessary.

C Reference Manual - 19

15. Constant expressions

In severalplacesC requiresexpressionsvhich evaluateto a constantafter case, asarraybounds,andin ini-
tializers. In thefirst two casesthe expressiorcaninvolve only integerconstantscharacteconstantsand si zeof
expressions, possibly connected by the binary operators

+ -« % & | T << >>

or by the unary operators

-~

Parentheses can be used for grouping, but not for function calls.

A bit morelatitudeis permittedfor initializers; besidesonstanexpressiongasdiscussedbove,onecanalsoap-
ply theunary& operatorto externalscalarsandto externalarrays subscripted with a constant expressidre unary
& canalsobe appliedimplicitly by appearancef unsubscriptedxternalarrays. The rule hereis that initializers
must evaluate either to a constant or to the address of an external identifier plus or minus a constant.

16. Exanpl es.
Theseexamplesareintendedto illustrate sometypical C constructionsaswell asa serviceablestyle of writing C
programs.

16.1 Inner product
This function returns the inner product of its array arguments.

doubl e inner (vl, v2, n)
double v1[], v2[1;

{
doubl e sum;
int i;
sum = 0.0;
for (i=0; i<n; i++)
sum =+ v1[i] = v2[i];
return(sum) ;
}

The following versionis somewhamoreefficient, but perhaps little lessclear. It usesthe factsthat parametear-
rays are really pointers, and that all parameters are passed by value.

doubl e inner (vl, v2, n)
doubl e *xv1, xv2;

{
doubl e sum;
sum = 0.0;
while(n—)
sum =+ *v1++ * *v2++;
return(sum) ;
}

Thedeclarationgor the parameterarereally exactlythe sameasin thelastexample. In thefirst casearraydeclara-
tions“ [1" weregivento emphasizehatthe parametersvould be referredto asarrays;in the secondpointerdec-
larations were given because the indirection operator and ++ were used.

16.2 Tree and character processing

Hereis acompleteC program(courtesyof R. Haight) which readsa document@andproducesnalphabetizedist
of wordsfound thereintogetherwith the numberof occurrence®f eachword. The methodkeepsa binary tree of
words suchthat the left descendantree for eachword hasall the words lexicographicallysmallerthan the given
word, and the right descendant has all the larger w@dth the insertion and the printing routine are recursive.

The programcalls the library routinesgetcharto pick up charactersand exit to terminateexecution. Printf is

C Reference Manual - 20

called to print the results according to a format stridgzersion ofprintf is given below(§16.3).

Becausall the externaldefinitionsfor dataaregivenatthetop, noextern declarationsarenecessarwithin the
functions. To staywithin the rules, a type declarationis given for eachnon-integerfunction whenthe function is
used before it is defineddowever, since all such functions return pointensch aresimply assignedo otherpoint-
ers,no actualharmwould resultfrom leavingout the declarationsthe supposedlynt functionvalueswould be as-
signed without error or complaint.

define nwords 100 / = number of different words */
define wsize 20 / = max chars per word */
struct tnode { / = the basic structure */
chartword [wsize] ;
int count ;
struct tnode *left
struct tnode xright ;
b
struct tnode space [nwords] ; / = the words themselves */
int nnodes nwords ; / = number of remaining slots */
struct tnode x*spacep space / = next available slot */
struct tnode *freep ; [+ free list */
| *
*» The main routine reads words until end-of-file ("\O” returned from "getchar"
= "tree" is called to sort each word into the tree.
*/
main ()
struct tnode *top, xtree () ;
char ¢, word [wsize] ;
inti
i=top=0 ;
while (c=getchar ())
if (’a'<=c&&c<="7 | ‘A'<=c&&c<="7) {

if (i<wsize -1)
word [i ++] =c ;

} else
it (i) |
word [i ++] ="\0" ;
top = tre (top, word) ;
iz0
tprint (top) ;
}
| %
* The central routine. If the subtree pointer is null, allocate a new node for it.
= If the new word and the node’s word are the same, increase the node’s count.
» Otherwise, recursively sort the word into the left or right subtree according
* as the argument word is less or greater than the node’s word.
*/
struct tnode *tree (p,word)
struct tnode *P;
charword [];
{
struct tnode xalloc () ;
intcond ;
[= s pointer null? */
it (p==0) {

p = alloc ();

C Reference Manual - 21

copy (word, p —>tword) ;
p—>count=1 ;
p—>right=p —>left=0 ;

return (p);
/ = Is word repeated? */
if ((cond=compar (p—>tword,word)) == 0) {
p—>count ++;
return (p);
/ = Sort into left or right */
if (cond<O0)
p—>left = tree (p—>left, word) ;
else
p—>right = tree (p—>right, word)
return (p);

}

| *
* Print the tree by printing the left subtree, the given node, and the right subtree.
*/

tprint (p)
struct tnode *P;
while (p) {
tprint (p—>left) ;
printt ("%d: %s\n",p -—>count,p —>tword) ;
p=p ->right ;
}
| *
* String comparison: return number (>=<)0
* according as sl (>=<) s2
*/

compar (s1,s2)
char =*sl, xs2;

{

int cl, c2 ;

while ((cl= #sl++) == (c2= =*S2++))

if (cl==\0")
return (0) ;

return (c2-cl) ;
}
| *

* String copy: copy sl into s2 until the null
* character appears.
*/

copy (sl,s2)

char =xsl, xs2;

while ((*S2++ = *sl++) ;

~

b T

Node allocation: return pointer to a free node.

Bomb out when all are gone. Just for fun, there
is a mechanism for using nodes that have been

freed, even though no one here calls "free."

*

*/
struct tnode xalloc ()

C Reference Manual - 22

{
struct tnode *t
if (freep) {
t = freep ;
freep = freep —>left ;
return (t);
}
if (-—nnodes<0) {
printf ("Out of space\n”) ;
exit ();
return (spacep ++) ;
}
| %
» The uncalled routine which puts a node on the free list.
*/
free (p)
struct tnode *P;
{
p—>left = freep ;
freep=p
}

To illustrate a dlightly different technique of handling the same problem, we will repeat fragments of this example
with the tree nodes treated explicitly as members of an array. The fundamental change is to deal with the subscript
of the array member under discussion, instead of a pointer toit. Thestruct declaration becomes

struct tnode {
chartword [wsize] ;

int count;
int left;
int right;
3
and alloc becomes
alloc ()
intt;
t= -—-nnodes;
if (t<=0) {
printf ("Out of space\n”) ;
exit () ;
return (t);
}

The free stuff has disappeared because if we deal with exclusively with subscripts some sort of map has to be kept,
which istoo much trouble.

Now the treeroutine returns a subscript also, and it becomes:

tree (p,word)
charword [];

int cond;

it (p==0) {
p = alloc ();
copy (word, space [p] .tword) ;

C Reference Manual - 23

space [p] .count=1;
space [p] .right = space [p] left=0;
return (p);

if ((cond=compar (space [p] .tword, word)) =0) {
space [p] .count ++;
return (p) ;

}
if (cond<O0)

space [p] .left =tree (space [p] .left, word)
else

space [p] .right =tree (space [p] .right, word) ;
return (p) ;

}

Theotherroutinesarechangedsimilarly. It mustbe pointedout thatthis versionis noticeablylessefficient thanthe
first becauseof the multiplicationswhich must be doneto computean offsetin spacecorrespondingo the sub-
scripts.

The observation that subscrigibke “a[i]”) are less efficient than pointer indirecti¢like *“ *ap™) holdstrue
independentlyof whetheror not structuresareinvolved. Thereare of coursemany situationswheresubscriptsare
indispensable, and others where the loss in efficiency is worth a gain in clarity.

16.3 Formatted output

Hereis a simplified versionof the printf routine,which is availablein the C library. It acceptsa string (character
array) asfirst argumentandprints subsequerdrgumentsccording to specifications contained in this format string.
Most charactersn the string aresimply copiedto the output; two-charactesequencebeginningwith “%” specify
that the next argument should be printed in a style as follows:

%d decimal number

%0 octal number

%c Ascll character, or 2 characters if upper character is not null
%s string (null-terminated array of charactérs

%f floating-point number

The actualparameterdor eachfunction call arelaid out contiguouslyin increasingstoragelocations;therefore,a
functionwith a variablenumberof argumentsnay takethe addresof (say) its first argumentandaccesshe re-
mainingargumentsy useof subscripting(regardingthe argumentsasanarray) or by indirectioncombinedwith
pointer incrementation.

If in suchasituationthe argumentdiavemixedtypes,or if in generalonewishesto insistthatanlvalue shouldbe
treatedashavinga giventype,then struct declarationdike thoseillustratedbelow will be useful. It shouldbe
evident, though, that such techniques are implementation dependent.

Printf dependsaswell onthefactthat char andfloat argumentarewidenedrespectivelytoint anddou-
ble , sothereareeffectively only two sizesof argumentgo dealwith. Printf callsthe library routinesputcharto
write out single characters aftdato dispose of floating-point numbers.

printf (fmt, args)

charfmt [];

{
char =*s;
struct { char = charpp ; };
struct { double xdoublep ;};
int *ap, x, c ;

ap = &args ; / = argument pointer */
for (;;){
while ((c= *fmt++) 1="%) {
if (¢ =="70")
return ;

C Reference Manual - 24

putchar (c) ;

switch (c= sfmt ++) {
/= decimal «/
case ‘d
X= *ap++;
if (x<0) {
X= =X
if (x<0) { /= is - infinity
printf (" -32768") ;
continue

}
putchar (" -");

printd (x) ;
continue

/= octal */

case 0":
printo (*ap++) ;
continue ;

/ = float, double */

case f °
/ = let ftoa do the real work */
ftoa (xap.doublep ++) ;
continue ;

/ = character */

case ‘c’;
putchar (*ap++) ;
continue

[+ string */

case ’'s’:
s = =ap.charpp ++;
while (c= xs++)

putchar (c) ;

continue

}
putchar (c) ;

}
}
| %
= Print n in decimal ; h must be non-negative
*/
printd (n)
{ |
inta ;
if (a=n/10)
printd (a);
putchar (n%10+°0") ;
}
| %
= Print n in octal, with exactly 1 leading 0
*/
printo (n)

if (n)
printo ((n>>3) &017777) ;
putchar ((n&07) +'0") ;

C Reference Manual - 25

REFERENCES

Johnsors. C.,andKernighanB. W. “The Programmind-anguageB.” Comp.Sci. Tech.Rep.#8.,Bell Lab-
oratories, 1972.

Ritchie,D. M., and ThompsonK. L. “The uNix Time-sharingSystem.” C. ACM 7, 17, July, 1974, pp.
365-375.

PetersorT. G.,andLesk,M. E. “A User’'sGuideto the C Languageon the IBM 370.” InternalMemoran-
dum, Bell Laboratories, 1974.

Thompson, K. L., and Ritchie, D. Mnix Programmer’s Manual Bell Laboratories, 1973.
Lesk, M. E., and Barres, B. AThe ccosC Library.” Internal memorandum, Bell Laboratories, 1974.

KernighanB. W. “Programmingin C— A Tutorial.” UnpublishednternalmemorandumBell Laboratories,
1974.

C Reference Manual - 26

APPENDIX 1
Syntax Summary

1. Expressions.

expression:
primary
* expression
& expression
— expression
I expression
~ expression
++ lvalue
——lvalue
Ivalue++
Ivalue——
si zeof expression
expression binop expression
expressior? expression expression
Ivalue asgnop expression
expression expression

primary:
identifier
constant
string
(expression
primary (expression-li%)
primary[expressiorn
Ivalue. identifier
primary > identifier
Ivalue:
identifier
primary[expressior
Ivalue. identifier
primary > identifier
* expression
(Ivalue)

The primary-expression operators
O [l . >
have highest priority and group left-to-righthe unary operators
& - ' _ ++ — sizeof

havepriority below the primary operatorsbut higherthanany binary operator,and groupright-to-left. Bi-
nary operators and the conditional operator all group left-to-right, and have priority decreasing as indicated:

binop:
* / %
+ -_—
>> <<
< > <= >=

C Reference Manual - 27

AN

I
&&

?
Assignment operators all have the same priority, and all group right-to-left.

asgnop:
= =+ == =x =/ =0 =>> =< =& =N :l

The comma operator has the lowest priority, and groups left-to-right.

2. Declarations.

declaration:
decl-specifiers declarator-ligf ;

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

sc-specifier:
auto
static
extern
register

type-specifier:
int
char
float
double
struct { type-decl-list }
struct identifier { type-decl-list }
struct identifier

declarator-list:
declarator
declarator, declarator-list

declarator:
identifier
* declarator
declarator()
declarator[constant-expressign]
(declarator)

type-decl-list:
type-declaration
type-declaration type-decl-list

type-declaration:
type-specifier declarator-list

3. Statements.

statement:
expression
{ statement-list }

C Reference Manual - 28

i f (expression statement

if (expression statementel se statement
whi | e (expression statement

for (expressiop,; expressiop,; expressiop,) statement
swi tch (expression statement

case constant-expression statement
default : statement

break ;

conti nue ;

return ;

return (expression ;

got o expression

identifier: statement

statement-list:
statement
statement statement-list

4. External definitions.

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
type-specifief, function-declarator function-body

function-declarator:
declarator(parameter-lis,)

parameter-list:
identifier
identifier, parameter-list

function-body:
type-decl-list function-statement

function-statement:
{ declaration-list, statement-list }

data-definition:

ext er n , type-specifief, init-declarator-list, , ;

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:
declarator initializelg)pt

initializer:
constant
{ constant-expression-list }

C Reference Manual - 29

constant-expression-list:
constant-expression
constant-expression constant-expression-list

constant-expression:
expression

5. Preprocessor
defi ne identifier token-string

i ncl ude "filename"'

C Reference Manual - 30

APPENDIX 2
Implementation Peculiarities

This Appendixbriefly summarizeshe differencesbetweerthe implementation®f C on the PDP-11 underunix and
ontheHis 6070underccos it includessomeknown bugsin eachimplementation.Eachentryis keyedby anindi-

cator as follows:

o cCcQ

hard to fix

Gcosversion should probably be changed
UNIX version should probably be changed
Inherent difference likely to remain

This list was prepared by M. E. Lesk, S. C. Johnson, E. N. Pinson, and the author.

A. Bugs or differences from C language specifications

hg
hg
g
hg
u

hug

A.1)
A.2)

A.3)
A.4)
A.5)

A.6)

Gcosdoes not do type conversions in “?:".

Gcoshasabugin i nt andr eal comparisonsthe numbersarecomparedy subtractionand
the difference must not overflow.

Whenxis af | oat , the construction “test 2x : X" is illegal onGcos

“pl—>p2 =+ 2" causes a compiler error, where pl and p2 are pointers.

OnuNIx, theexpressionn ar et ur n statementis not convertedo the type of thefunction,as
promised.

ent ry statement is not implemented at all.

B. Implementation differences

d
d
d

(o]

CcC cQQ

«Q

B.1)
B.2)
B.3)

B.4)
B.5)

B.6)
B.7)
B.8)
B.9)

B.10)
B.11)

Sizes of character constants ditfiers: 2, Gcos 4.

Table sizes in compilers differ.
char s andi nt s have different sizesghar s are8 bits on UNIX, 9 on Gcos wordsare16 bits
on UNIX and36 on gcos Therearecorrespondinglifferencesn representationsf f| oat s
anddoubl es.

Character arrays stored left to right in a woedt@s right to left inuNix.

Passing of floats and doubles diffaws; passes on stackcospassepointer(hiddento nor-
mal user).

Structures and strings are aligned on a word boundamxjmot aligned irccos
GCOSpreprocessor supports #rename, #eseapr;has only #define, #include.

Preprocessor is not invokedsarx unless first character of file is “#”.

Thexternaldefinition “static int ...” is legalon Gcos but getsa diagnosticon uNix. (On
GCosit meansan identifier globalto the routinesin thefile butinvisible to routinescompiled
separately.)

A compound statementa@rosmust contain one “;” but olwNIX may be empty.

Omscoscasedistinctionsin identifiersandkeywordsareignored;on UNIX caseis significant
everywhere, with keywords in lower case.

C. Syntax Differences

g

QO Cce

C.1)

C.2)
C.3)
C.4)
C.5)
C.6)

UNIX allows broaderclassesf initialization; on Gcosaninitializer mustbe a constanthame,
or string. Similarly, Gcosis muchstickieraboutwantingbracesaroundinitializersandin par-
ticular they must be present for array initialization.
“int extern” illegal oCcos must have “extern int” (storage class before type).
Externals aacosmust have a type (not defaulted tot).
Gcosallows initialization of internast at i ¢ (same syntax as for external definitions).
integep... is not allowed oBCOS
Some operators on pointers are illegabars(<, >).

g C.7)
g C.8)
g C.9)
D

d D.1)
d D.2)

C Reference Manual - 31

regi st er storage class means somethinguarx, but is not accepted @tos
Scope holes: “int x{ j {int x;}" is illegal on uNIX but defines two variables @tos
Whefunction namesare usedasargumenton UNIX, either“fname” or “&fname” may be
usedto geta pointerto the function; on Gcos"&fname” generates doubly-indirectpointer.
(Note that both are wrong since the “&” is supposed to be supplied for free.)

. Operating System Dependencies

Gcosallocatesexternalscalarsby SYMREF; uNix allocatesexternalscalarsaslabelledcom-
mon; asa resulttheremay be many uninitialized externaldefinitions of the samevariableon
UNIX but only one orscos

Externalnamesdiffer in allowablelength and characterset; on uNIX, 7 charactersand both
cases; oieCcos6 characters and only one case.

E. Semantic Differences

hg E.1)
d E.2)
d E.3)
d E.4)

“int i, *p; p=i; i=p;” does nothing onuNix, does something aacos(destroys right half of i) .
“>>" means arithmetic shift orwNiX, logical ongcos

When achar is converted to integetheresultis alwayspositiveon Gcosbut canbe negative
ONUNIX.

Arguments of subroutines are evaluated left-to-right©os right-to-left onunix.

