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Challenges in Programming MPSoC

•Multicore processors being widely used in the handheld 
multimedia devices

•Challenges in writing program raise issues in providing 
programming model 

• Multiple ISA

• Various inter-processor communication(IPC)

• Parallel programming

•Moreover, applications are with data 
streaming in the multimedia 
application domain

• Video encoding&decoding, graphic rendering...

•One important issue is to provide 
streaming functionality!

SPUMPU

IPC

Mailbox VIC
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Memory

SPUSPU

...

...
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Multicore Programming with RPC

•Model the communication between processors as 
end-to-end service

•Communicates by invoking commands
•Simple programming model, inefficient in 
modeling data streaming applications.
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Communication Model of RPC

DSP

MPU The DSP waits for all the data 
transmission finish to start processing

The DSP only waits for the necessary 
data ready to start processing
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Communication Model of Streaming RPC

•Efficient communication mechanism for streaming 
applications

•Reducing the handshaking times
•Overlapping communication and computation

MPU

DSP
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Communication Model of Streaming RPC

•Efficient communication mechanism for streaming 
applications

•Reducing the handshaking times
•Overlapping communication and computation

MPU
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Software Framework of Streaming RPC

• Key components
• Streaming channel

• Automatically transmit data to the remote side 

• Abstraction for data streaming

• Streaming buffer 
• Associated to a streaming channel
• Providing data buffering

• Stream controller
• Monitoring and managing the

streaming channel

Application
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Streaming Channel

Asynchronous Communication Model

•Asynchronous RPC to avoid call-and-wait

•Data-driven model

•The stream controller first checks if a streaming 
buffer is ready
• YES: start transmitting data

• NO: suspends the sender/receiver until the streaming buffer is 
ready

Sender

Receiver
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Application Interfaces

•An RPC is associated with  streaming 
channels

•The client and server can send/get data 
to/from the channel

•Streaming operations
• stream_get

• stream_put

• stream_push

• stream_pop

• stream_create

• stream_rpc
Server

Client

Streaming Channel

stream_put

stream_putstream_get

stream_get

/* Streaming RPC client */
void MP3_decoder(){
 stream_rpc(_imdct_, _transmitter_);
}
void _transmitter_(){
 STREAM_ID id = 4;
 /* Initializing streaming channel */
 stream_create(id); 
 /* Pushing data to streaming channel */
 stream_put(id, DATA);
 stream_push(id);
 ...
}
...
/* Streaming RPC server */
void _imdct_(){
 STREAM_ID id = 4;
 /* Initializing streaming channel */
 stream_create(id);
 /* Aggregating data from streaming 
  channel */ 
 stream_get(id, DATA);
 stream_pop(id);
 ...
}
...
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Basic Software Components

•An application is composed of three basic 
structural components
• Source: retrieves data and dispatch it to the remote process

• Pipe: serves as a computational unit

• Sink: aggregates data for integration

Multicore processors

streaming 
channel

streaming 
channel

Inter-processor communication mechanism

pCore Bridge 

Scource Pipe Sink

Streaming RPCStreaming RPC

RPCData streaming
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Example: MP3 Decoder
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Sample Code of MP3 Decoder

 RPC client

P1

P2

P3

P4

P5 I1

I2

I3s1

Streaming RPC

RPC server

transmitter

Streaming 

channel

Streaming 

channel

_imdct_

/* Streaming RPC client */
void MP3_decoder(){
 stream_rpc(_imdct_, _transmitter_);
}

void _transmitter_(){
 STREAM_ID id = 4;
 /* Initializing streaming channel */
 stream_create(id); 
 /* Pushing data to streaming channel 
*/
 stream_put(id, DATA);
 stream_push(id);
 ...
}

/* Streaming RPC server */
void _imdct_(){
 STREAM_ID id = 4;
 /* Initializing streaming channel 
*/
 stream_create(id);
 /* Aggregating data from 
streaming 
  channel */ 
 stream_get(id, DATA);
 stream_pop(id);
 ...
}
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•Streaming rate: amount of streaming data accessed by 
the sender/receiver per unit of time

•Difference in I/O latency, processing speed, and 
computation workloads result in asymmetry in 
streaming rate between processors

•Result in frequent suspension and waking up!
• Increasing amount of implicit internal RPC handshaking times
• Ex. when δA > δT,  the receiver is suspended frequently

Streaming Rate (δ)

P1 P2

P3P0

s.c. s.c.

P1' P2's.c. s.c.

!A

s.c. : streaming channel !T: streaming rate of transmitter !A: streaming rate of aggregator

!A

!A

!A

!T

!T

!T

!T
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Setting Threshold Number

•To avoid frequent suspension and waking up!

•Assigning a threshold value to a streaming 
channel
• The stream controller only wakes up the sender/receiver when a 

streaming channel satisfies the threshold criterion

• ex. threshold value = 4

Streaming Channel

Sender

Receiver

writing
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Effects of Setting Threshold Number

•How to decide the threshold number for a channel 
to reduce the internal handshaking times? 

•Optimal solution for reducing handshaking times 
is ∞ !!
• Memory is limited and valuable in embedded system

• A response time requirement for multimedia applications

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0  20  40  60  80  100  120  140

In
te

rn
al

 h
an

d
sh

ak
in

g
 t

im
es

, 
lo

g
(2

)

Threshold number

Monday, February 9, 2009



2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

•To meet the response time constraint of the application

•Time of the first element (∆bytes, in bandwidth B)to be 
processed after waiting for the sender to transmitting n 
stream elements must be less than the timing constraint

Analytic Model for Deciding Threshold n

Response time constrain

Overhead of triggering the 
remote process

Time required for transferring n 
streaming elements

Time required for receiver to process 
the first stream element

thus,

Time required for receiver to 
get the first stream element
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Experiment Platform

PAC Evaluation Board:
• Parallel Architecture Core (PAC), Developed by STC, ITRI, Taiwan
• ARM9 (300MHz )
• PAC DSP (250 MHz,5-way issued VLIW)

• 64 KB data memory
• 32 KB instruction cache

•Linux 2.6.17
• pCore Bridge(*) communication module

OMAP 5912 OSK :
• Developed by TI
• ARM9 (192 MHz )
• TMS320 C55x
• Linux 2.6.17
• pCore Bridge(*) communication module

* Hsieh, K., Lin, Y., Huang, C., and Lee, J. 2008. Enhancing Microkernel Performance on VLIW DSP Processors via Multiset Context Switch. J. Signal Process. Syst.
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Experiment Setup

•Three applications: JPEG, MP3, and H.264 decoders to 
demonstrate the performance improvement

•Three application kernels: IDCT, IMDCT, IQ/IT to show 
the characteristics of streaming RPC

•Effects of threshold value to response time and 
performance are also evaluated

Monday, February 9, 2009
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Performance Improvement on PAC
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Performance Improvement and Corresponding 
Internal Handshaking Times: MP3 
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Effect of Threshold to Response Time

•With timing constraint 12,500 micro-seconds
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Summary

•We presented a stream programming model for 
embedded dual-core processors

•Attempt to provide an abstraction for modeling 
data streaming applications
• Communication and computation overlapping

• Reducing communication overhead

• Software patterns 

•Improve the performance applications 
•A methodology of analytic model for reducing 
internal handshaking times
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Thank You!
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