
2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

The Support of Design Patterns
for Streaming RPC on Embedded
Multicore Processors

Brian Kun-Yuan Hsieh
Yen-Chih Liu
Chi-Hua Lai
Jenq Kuen Lee

Department of Computer Science
National Tsing-Hua University
Hsinchu, Taiwan

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Outline

•Background & motivation

•Streaming RPC framework

•Software design patterns
•Experimental results

•Summary

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Challenges in Programming MPSoC

•Multicore processors being widely used in the handheld
multimedia devices

•Challenges in writing program raise issues in providing
programming model

• Multiple ISA

• Various inter-processor communication(IPC)

• Parallel programming

•Moreover, applications are with data
streaming in the multimedia
application domain

• Video encoding&decoding, graphic rendering...

•One important issue is to provide
streaming functionality!

SPUMPU

IPC

Mailbox VIC
Shared
Memory

SPUSPU

...

...

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Multicore Programming with RPC

•Model the communication between processors as
end-to-end service

•Communicates by invoking commands
•Simple programming model, inefficient in
modeling data streaming applications.

MPU

Linux

Streaming

middleware

pCore

Bridge

Streaming

middleware
pCore

Bridge

pCore

lf

main

rf

Streaming

middleware
pCore

Bridge

pCore

rf

SPU1

SPU2lf'

Application

Application

Remote procedure
communication

Communication protocol
External data representation

Operating systems

RPC
client

RPC
server

VIC Mailbox
Shared
memory

DMA
Architecture-supported

communication mechanism

RPC stub RPC stub

Registry

Retrieve registry

RPC

Processor 1 Processor 2

Monday, February 9, 2009

Communication Model of RPC

DSP

MPU The DSP waits for all the data
transmission finish to start processing

The DSP only waits for the necessary
data ready to start processing

DSP

MPU

Monday, February 9, 2009

Communication Model of RPC

DSP

MPU The DSP waits for all the data
transmission finish to start processing

The DSP only waits for the necessary
data ready to start processing

DSP

MPU

writing

Monday, February 9, 2009

Communication Model of RPC

DSP

MPU The DSP waits for all the data
transmission finish to start processing

The DSP only waits for the necessary
data ready to start processing

DSP

MPU

writing

reading & processing

Monday, February 9, 2009

Communication Model of RPC

DSP

MPU The DSP waits for all the data
transmission finish to start processing

The DSP only waits for the necessary
data ready to start processing

DSP

MPU

writing

reading & processing

Long
communication

latency

Monday, February 9, 2009

Communication Model of RPC

DSP

MPU The DSP waits for all the data
transmission finish to start processing

The DSP only waits for the necessary
data ready to start processing

DSP

MPU

writing

reading & processing

Long
communication

latency

writing

reading & processing

Monday, February 9, 2009

Communication Model of RPC

DSP

MPU The DSP waits for all the data
transmission finish to start processing

The DSP only waits for the necessary
data ready to start processing

DSP

MPU

Huge
communication

overhead

writing

reading & processing

Long
communication

latency

writing

reading & processing

Monday, February 9, 2009

Communication Model of RPC

DSP

MPU The DSP waits for all the data
transmission finish to start processing

The DSP only waits for the necessary
data ready to start processing

DSP

MPU

Huge
communication

overhead

writing

reading & processing

Long
communication

latency

reading & processing

reading & processing
reading & processing

writing
writing

writing

writing

reading & processing

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Communication Model of Streaming RPC

•Efficient communication mechanism for streaming
applications

•Reducing the handshaking times
•Overlapping communication and computation

MPU

DSP

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Communication Model of Streaming RPC

•Efficient communication mechanism for streaming
applications

•Reducing the handshaking times
•Overlapping communication and computation

MPU

DSP

writing

reading & processing

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Communication Model of Streaming RPC

•Efficient communication mechanism for streaming
applications

•Reducing the handshaking times
•Overlapping communication and computation

MPU

DSP

writing

reading & processing

Asynchronous invocation

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Communication Model of Streaming RPC

•Efficient communication mechanism for streaming
applications

•Reducing the handshaking times
•Overlapping communication and computation

MPU

DSP

writing

reading & processing

Asynchronous invocation

Few signal passing for internal handshaking
Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Software Framework of Streaming RPC

• Key components
• Streaming channel

• Automatically transmit data to the remote side

• Abstraction for data streaming

• Streaming buffer
• Associated to a streaming channel
• Providing data buffering

• Stream controller
• Monitoring and managing the

streaming channel

Application

Remote procedure
communication

Communication protocol
External data representation

Operating systems

RPC
client

RPC
server

VIC Mailbox
Shared
memory

DMA
Architecture-supported

communication mechanism

RPC stub

Streaming layer

Stream
controller

RPC

Streaming channel
Streaming

buffer
Streaming

buffer
Streaming

buffer

client server

stream_put

Streaming

channel
stream_get

stream_get

stream_put

Data transmission Remote procedure call

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Streaming Channel

Asynchronous Communication Model

•Asynchronous RPC to avoid call-and-wait

•Data-driven model

•The stream controller first checks if a streaming
buffer is ready
• YES: start transmitting data

• NO: suspends the sender/receiver until the streaming buffer is
ready

Sender

Receiver

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Streaming Channel

Asynchronous Communication Model

•Asynchronous RPC to avoid call-and-wait

•Data-driven model

•The stream controller first checks if a streaming
buffer is ready
• YES: start transmitting data

• NO: suspends the sender/receiver until the streaming buffer is
ready

Sender

Receiver

writing

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Streaming Channel

Asynchronous Communication Model

•Asynchronous RPC to avoid call-and-wait

•Data-driven model

•The stream controller first checks if a streaming
buffer is ready
• YES: start transmitting data

• NO: suspends the sender/receiver until the streaming buffer is
ready

Sender

Receiver

writing

reading & processing

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Streaming Channel

Asynchronous Communication Model

•Asynchronous RPC to avoid call-and-wait

•Data-driven model

•The stream controller first checks if a streaming
buffer is ready
• YES: start transmitting data

• NO: suspends the sender/receiver until the streaming buffer is
ready

Sender

Receiver

Sender

reading & processing

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Streaming Channel

Asynchronous Communication Model

•Asynchronous RPC to avoid call-and-wait

•Data-driven model

•The stream controller first checks if a streaming
buffer is ready
• YES: start transmitting data

• NO: suspends the sender/receiver until the streaming buffer is
ready

Sender

Receiver

Sender

reading & processing

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Streaming Channel

Asynchronous Communication Model

•Asynchronous RPC to avoid call-and-wait

•Data-driven model

•The stream controller first checks if a streaming
buffer is ready
• YES: start transmitting data

• NO: suspends the sender/receiver until the streaming buffer is
ready

Sender

Receiver reading & processing

Wake Up!

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Application Interfaces

•An RPC is associated with streaming
channels

•The client and server can send/get data
to/from the channel

•Streaming operations
• stream_get

• stream_put

• stream_push

• stream_pop

• stream_create

• stream_rpc
Server

Client

Streaming Channel

stream_put

stream_putstream_get

stream_get

/* Streaming RPC client */
void MP3_decoder(){
 stream_rpc(_imdct_, _transmitter_);
}
void _transmitter_(){
 STREAM_ID id = 4;
 /* Initializing streaming channel */
 stream_create(id);
 /* Pushing data to streaming channel */
 stream_put(id, DATA);
 stream_push(id);
 ...
}
...
/* Streaming RPC server */
void _imdct_(){
 STREAM_ID id = 4;
 /* Initializing streaming channel */
 stream_create(id);
 /* Aggregating data from streaming
 channel */
 stream_get(id, DATA);
 stream_pop(id);
 ...
}
...

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Basic Software Components

•An application is composed of three basic
structural components
• Source: retrieves data and dispatch it to the remote process

• Pipe: serves as a computational unit

• Sink: aggregates data for integration

Multicore processors

streaming
channel

streaming
channel

Inter-processor communication mechanism

pCore Bridge

Scource Pipe Sink

Streaming RPCStreaming RPC

RPCData streaming

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Example: MP3 Decoder

P1

P2

P3

P4

P5

s1

I1

I2

I3

Huffman decoding

and scale factor

decoding

Requantize

Joint stereo

decoding

Reordering

Alias reduction

IMDCT

Overlap

Frequency

inversion

Synthesize via

polyphase filter bank

P1

P2

P3

P4

P5

I1

I2

I3

S1

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Example: MP3 Decoder

P1

P2

P3

P4

P5

s1

I1

I2

I3

Huffman decoding

and scale factor

decoding

Requantize

Joint stereo

decoding

Reordering

Alias reduction

IMDCT

Overlap

Frequency

inversion

Synthesize via

polyphase filter bank

P1

P2

P3

P4

P5

I1

I2

I3

S1

Data parallelism exists
 partitioned to SPUs

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Example: MP3 Decoder

P1

P2

P3

P4

P5

s1

I1

I2

I3

Huffman decoding

and scale factor

decoding

Requantize

Joint stereo

decoding

Reordering

Alias reduction

IMDCT

Overlap

Frequency

inversion

Synthesize via

polyphase filter bank

P1

P2

P3

P4

P5

I1

I2

I3

S1

Data parallelism exists
 partitioned to SPUs

...

P1

P2

P3

P4

P5

s1

I1

I2

I3

I1

I2

I3

I1

I2

I3

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Example: MP3 Decoder

P1

P2

P3

P4

P5

s1

I1

I2

I3

Huffman decoding

and scale factor

decoding

Requantize

Joint stereo

decoding

Reordering

Alias reduction

IMDCT

Overlap

Frequency

inversion

Synthesize via

polyphase filter bank

P1

P2

P3

P4

P5

I1

I2

I3

S1

Data parallelism exists
 partitioned to SPUs

...

P1

P2

P3

P4

P5

s1

I1

I2

I3

I1

I2

I3

I1

I2

I3

source

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Example: MP3 Decoder

P1

P2

P3

P4

P5

s1

I1

I2

I3

Huffman decoding

and scale factor

decoding

Requantize

Joint stereo

decoding

Reordering

Alias reduction

IMDCT

Overlap

Frequency

inversion

Synthesize via

polyphase filter bank

P1

P2

P3

P4

P5

I1

I2

I3

S1

Data parallelism exists
 partitioned to SPUs

...

P1

P2

P3

P4

P5

s1

I1

I2

I3

I1

I2

I3

I1

I2

I3

source

sink

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Example: MP3 Decoder

P1

P2

P3

P4

P5

s1

I1

I2

I3

Huffman decoding

and scale factor

decoding

Requantize

Joint stereo

decoding

Reordering

Alias reduction

IMDCT

Overlap

Frequency

inversion

Synthesize via

polyphase filter bank

P1

P2

P3

P4

P5

I1

I2

I3

S1

Data parallelism exists
 partitioned to SPUs

...

P1

P2

P3

P4

P5

s1

I1

I2

I3

I1

I2

I3

I1

I2

I3

pipe

source

sink

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Sample Code of MP3 Decoder

 RPC client

P1

P2

P3

P4

P5 I1

I2

I3s1

Streaming RPC

RPC server

transmitter

Streaming

channel

Streaming

channel

imdct

/* Streaming RPC client */
void MP3_decoder(){
 stream_rpc(_imdct_, _transmitter_);
}

void _transmitter_(){
 STREAM_ID id = 4;
 /* Initializing streaming channel */
 stream_create(id);
 /* Pushing data to streaming channel
*/
 stream_put(id, DATA);
 stream_push(id);
 ...
}

/* Streaming RPC server */
void _imdct_(){
 STREAM_ID id = 4;
 /* Initializing streaming channel
*/
 stream_create(id);
 /* Aggregating data from
streaming
 channel */
 stream_get(id, DATA);
 stream_pop(id);
 ...
}

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

•Streaming rate: amount of streaming data accessed by
the sender/receiver per unit of time

•Difference in I/O latency, processing speed, and
computation workloads result in asymmetry in
streaming rate between processors

•Result in frequent suspension and waking up!
• Increasing amount of implicit internal RPC handshaking times
• Ex. when δA > δT, the receiver is suspended frequently

Streaming Rate (δ)

P1 P2

P3P0

s.c. s.c.

P1' P2's.c. s.c.

!A

s.c. : streaming channel !T: streaming rate of transmitter !A: streaming rate of aggregator

!A

!A

!A

!T

!T

!T

!T

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Setting Threshold Number

•To avoid frequent suspension and waking up!

•Assigning a threshold value to a streaming
channel
• The stream controller only wakes up the sender/receiver when a

streaming channel satisfies the threshold criterion

• ex. threshold value = 4

Streaming Channel

Sender

Receiver

writing

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Setting Threshold Number

•To avoid frequent suspension and waking up!

•Assigning a threshold value to a streaming
channel
• The stream controller only wakes up the sender/receiver when a

streaming channel satisfies the threshold criterion

• ex. threshold value = 4

Streaming Channel

Sender

Receiver

writing

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Setting Threshold Number

•To avoid frequent suspension and waking up!

•Assigning a threshold value to a streaming
channel
• The stream controller only wakes up the sender/receiver when a

streaming channel satisfies the threshold criterion

• ex. threshold value = 4

Streaming Channel

Sender

Receiver

Sender

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Setting Threshold Number

•To avoid frequent suspension and waking up!

•Assigning a threshold value to a streaming
channel
• The stream controller only wakes up the sender/receiver when a

streaming channel satisfies the threshold criterion

• ex. threshold value = 4

Streaming Channel

Sender

Receiver

Sender

reading & processing

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Setting Threshold Number

•To avoid frequent suspension and waking up!

•Assigning a threshold value to a streaming
channel
• The stream controller only wakes up the sender/receiver when a

streaming channel satisfies the threshold criterion

• ex. threshold value = 4

Streaming Channel

Sender

Receiver

Sender

reading & processing

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Setting Threshold Number

•To avoid frequent suspension and waking up!

•Assigning a threshold value to a streaming
channel
• The stream controller only wakes up the sender/receiver when a

streaming channel satisfies the threshold criterion

• ex. threshold value = 4

Streaming Channel

Sender

Receiver

writing

reading & processing

Wake Up!

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Effects of Setting Threshold Number

•How to decide the threshold number for a channel
to reduce the internal handshaking times?

•Optimal solution for reducing handshaking times
is ∞ !!
• Memory is limited and valuable in embedded system

• A response time requirement for multimedia applications

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 20 40 60 80 100 120 140

In
te

rn
al

 h
an

d
sh

ak
in

g
 t

im
es

,
lo

g
(2

)

Threshold number

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

•To meet the response time constraint of the application

•Time of the first element (∆bytes, in bandwidth B)to be
processed after waiting for the sender to transmitting n
stream elements must be less than the timing constraint

Analytic Model for Deciding Threshold n

Response time constrain

Overhead of triggering the
remote process

Time required for transferring n
streaming elements

Time required for receiver to process
the first stream element

thus,

Time required for receiver to
get the first stream element

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Experiment Platform

PAC Evaluation Board:
• Parallel Architecture Core (PAC), Developed by STC, ITRI, Taiwan
• ARM9 (300MHz)
• PAC DSP (250 MHz,5-way issued VLIW)

• 64 KB data memory
• 32 KB instruction cache

•Linux 2.6.17
• pCore Bridge(*) communication module

OMAP 5912 OSK :
• Developed by TI
• ARM9 (192 MHz)
• TMS320 C55x
• Linux 2.6.17
• pCore Bridge(*) communication module

* Hsieh, K., Lin, Y., Huang, C., and Lee, J. 2008. Enhancing Microkernel Performance on VLIW DSP Processors via Multiset Context Switch. J. Signal Process. Syst.

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Experiment Setup

•Three applications: JPEG, MP3, and H.264 decoders to
demonstrate the performance improvement

•Three application kernels: IDCT, IMDCT, IQ/IT to show
the characteristics of streaming RPC

•Effects of threshold value to response time and
performance are also evaluated

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Performance Improvement on PAC

0

0.25

0.50

0.75

1.00

1.25

1.50

JPEG MP3 H.264

1.32
1.38

1.24

1.001.001.00

RPC Streaming RPC

Performance evaluation of different kernels Performance improvement of applications

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Performance Improvement on PAC

0

0.25

0.50

0.75

1.00

1.25

1.50

JPEG MP3 H.264

1.32
1.38

1.24

1.001.001.00

RPC Streaming RPC

Performance evaluation of different kernels Performance improvement of applications

Saturated

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Performance Improvement and Corresponding
Internal Handshaking Times: MP3

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 20 40 60 80 100 120 140
 1

 1.1

 1.2

 1.3

 1.4

 1.5

In
te

rn
al

 h
an

d
sh

ak
in

g
 t

im
es

 (
lo

g
ri

th
m

 t
o
 b

as
e

2
)

Threshold number

PAC

Internal handshaking times
Performance improvement

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 20 40 60 80 100 120 140
 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

Threshold number

OMAP

Internal handshaking times
Performance improvement

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Performance Improvement and Corresponding
Internal Handshaking Times: MP3

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 20 40 60 80 100 120 140
 1

 1.1

 1.2

 1.3

 1.4

 1.5

In
te

rn
al

 h
an

d
sh

ak
in

g
 t

im
es

 (
lo

g
ri

th
m

 t
o
 b

as
e

2
)

Threshold number

PAC

Internal handshaking times
Performance improvement

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 20 40 60 80 100 120 140
 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

Threshold number

OMAP

Internal handshaking times
Performance improvement

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Performance Improvement and Corresponding
Internal Handshaking Times: MP3

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 20 40 60 80 100 120 140
 1

 1.1

 1.2

 1.3

 1.4

 1.5

In
te

rn
al

 h
an

d
sh

ak
in

g
 t

im
es

 (
lo

g
ri

th
m

 t
o
 b

as
e

2
)

Threshold number

PAC

Internal handshaking times
Performance improvement

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 20 40 60 80 100 120 140
 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

Threshold number

OMAP

Internal handshaking times
Performance improvement

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Performance Improvement and Corresponding
Internal Handshaking Times: MP3

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 20 40 60 80 100 120 140
 1

 1.1

 1.2

 1.3

 1.4

 1.5

In
te

rn
al

 h
an

d
sh

ak
in

g
 t

im
es

 (
lo

g
ri

th
m

 t
o
 b

as
e

2
)

Threshold number

PAC

Internal handshaking times
Performance improvement

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 20 40 60 80 100 120 140
 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

Threshold number

OMAP

Internal handshaking times
Performance improvement

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Effect of Threshold to Response Time

•With timing constraint 12,500 micro-seconds

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140

R
es

p
o

n
se

 t
im

e(
m

ic
ro

se
co

n
d

s)

Threshold number

MP3 decoder on PAC

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 20 40 60 80 100 120 140

R
es

p
o

n
se

 t
im

e(
m

ic
ro

se
co

n
d

s)

Threshold number

MP3 decoder on OMAP

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Effect of Threshold to Response Time

•With timing constraint 12,500 micro-seconds

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140

R
es

p
o

n
se

 t
im

e(
m

ic
ro

se
co

n
d

s)

Threshold number

MP3 decoder on PAC

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 20 40 60 80 100 120 140

R
es

p
o

n
se

 t
im

e(
m

ic
ro

se
co

n
d

s)

Threshold number

MP3 decoder on OMAP

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Effect of Threshold to Response Time

•With timing constraint 12,500 micro-seconds

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140

R
es

p
o

n
se

 t
im

e(
m

ic
ro

se
co

n
d

s)

Threshold number

MP3 decoder on PAC

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 20 40 60 80 100 120 140

R
es

p
o

n
se

 t
im

e(
m

ic
ro

se
co

n
d

s)

Threshold number

MP3 decoder on OMAP

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Effect of Threshold to Response Time

•With timing constraint 12,500 micro-seconds

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140

R
es

p
o

n
se

 t
im

e(
m

ic
ro

se
co

n
d

s)

Threshold number

MP3 decoder on PAC

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 20 40 60 80 100 120 140

R
es

p
o

n
se

 t
im

e(
m

ic
ro

se
co

n
d

s)

Threshold number

MP3 decoder on OMAP

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Summary

•We presented a stream programming model for
embedded dual-core processors

•Attempt to provide an abstraction for modeling
data streaming applications
• Communication and computation overlapping

• Reducing communication overhead

• Software patterns

•Improve the performance applications
•A methodology of analytic model for reducing
internal handshaking times

Monday, February 9, 2009

2008 IEEE Workshop on Signal Processing Systems October 8-10, 2008 Washington, D.C. Metro Area, U.S.A.

Thank You!

Monday, February 9, 2009

