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Power leakage constitutes an increasing fraction of the total power consumption in modern semi-
conductor technologies. Recent research efforts indicate that architectures, compilers, and software
can be optimized so as to reduce the switching power (also known as dynamic power) in micro-
processors. This has lead to interest in using architecture and compiler optimization to reduce
leakage power (also known as static power) in microprocessors. In this paper, we investigate
compiler-analysis techniques that are related to reducing leakage power. The architecture model
in our design is a system with an instruction set to support the control of power gating at the
component level. Our compiler provides an analysis framework for utilizing instructions to reduce
the leakage power. We present a framework for analyzing data flow for estimating the component
activities at fixed points of programs whilst considering pipeline architectures. We also provide
equations that can be used by the compiler to determine whether employing power-gating in-
structions in given program blocks will reduce the total energy requirements. As the duration
of power gating on components when executing given program routines is related to the number
and complexity of program branches, we propose a set of scheduling policies and evaluate their
effectiveness. We performed experiments by incorporating our compiler analysis and scheduling
policies into SUIF compiler tools and by simulating the energy consumptions on Wattch toolkits.
The experimental results demonstrate that our mechanisms are effective in reducing leakage power
in microprocessors.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers;
D.3.4 [Programming Languages]: Processors—Optimization

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Compilers for low power, leakage-power reduction, power-
gating mechanisms

1. INTRODUCTION

The demands of power-constrained mobile and embedded computing applications
are increasing rapidly, which makes the reduction of power consumption a crucial
challenge for software and hardware developers. The continuing size reductions and
increasing speeds of transistors increases the importance of leakage-power dissipa-
tion in the absence of any switching activities. Recent theoretical analyses have at-
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tempted to characterize engineering equations and cost models for analyzing static
powers [Thompson et al. 1998; De and Borkar 1999; Doyle et al. 2002]. One such
analysis produced the following relationship: Pstatic = VCC ·N ·kdesign · Îleak, where
VCC is the supply voltage, N is the number of transistors in the design, kdesign is the
characteristic of an average device, and Îleak is a technology parameter describing
the per-device subthreshold leakage [Butts and Sohi 2000].

In this paper, we discuss compiler analysis techniques used to reduce the number
of devices, N , in the static power equation above to ease the problem of leak-
age power. The architecture model in our design is a system with an instruc-
tion set that supports the control of power gating at the component level. We
attempt to reduce the number of devices by turning devices off when they not
being used. Our work provides compiler solutions for the analysis and scheduling
of the power-gating control at the component level. A data-flow analysis frame-
work is given that estimates the component activities at fixed points in programs
whilst considering pipeline architectures. We also provide equations that can be
used by the compiler to determine whether employing power-gating instructions
in given program blocks will reduce the total energy requirements. As the dura-
tion of power gating on components in given program routines is related to the
number and complexity of program branches, we propose a set of scheduling poli-
cies (Basic Blk Sched, MIN Path Sched, and AVG Path Sched) and evaluate their
effectiveness. Our proposed framework are effective for machines with in-order
executions. Additional cares have to be taken when one deals with out-of-order
issues. For out-of-order issues, we suggest power-gating operations on a function
unit should be considered dependent to normal operations on this unit. Our ex-
periments are performed by incorporating our compiler analysis and scheduling
policy into SUIF compiler tools [Smith 1998; Stanford Compiler Group 1995] and
by simulating the energy consumptions on Wattch [Brooks et al. 2000] toolkits.
We also revise Wattch/SimpleScalar to adopt our proposed schemes to deal with
out-of-order issues. The experimental results demonstrate that our mechanisms are
very effective in reducing leakage power in microprocessors. In summary, the key
contributions of our work include the presentations of data flow analysis framework
for component activities, the scheduling policies for power-gating instructions going
beyond basic blocks, and the suggestions of hardware refinements for out-of-order
issues to work with our proposed methods.

The remainder of this paper is organized as follows. Section 2 presents our
machine architectures with power-gating controls. Section 3 presents our data-flow
analysis framework for component activities. Next, Section 4 provides scheduling
policies for leakage power reductions by utilizing gathered component information.
Experimental results will then be presented in Section 5. Finally, Section 6 describes
related work and Section 7 concludes this paper.

2. MACHINE ARCHITECTURE

The architecture model in our design is a system with an instruction set that
supports the control of power gating at the component level. Figure 1 shows an
example of our target machine architecture on which our optimization is based.
We focus on the reduction of the power consumption of the certain function units
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, M 20YY.
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Fig. 1. Machine architecture model with power-gating control

by invoking the “power-gating” technology. Power gating is analogous to clock
gating — power gating turns off devices by switching off their supply voltage rather
than switching off the clock. This can be achieved by forcing transistors to turn
off or using multithreshold voltage CMOS technology (MTCMOS) to increase the
threshold voltage [Butts and Sohi 2000; Kao and Chandrakasan 2000; Roy 1998].

We built the experimental architecture within the Wattch simulation environ-
ment [Brooks et al. 2000]. In this simulation environment we can measure the
power consumption of every microprocessor component throughout the experimen-
tal program. This architecture is essentially compatible with the DEC Alpha
21264 processor [Compaq Computer Corporation 1999]; the major difference be-
tween these two architectures is the additional power-gating design and the static
pipeline scheduling in our experimental architecture. The compiler approach pro-
posed in this paper is basically for in-order issue processors, but we also propose a
solution to make our methodology feasible for out-of-order issue processors shown
later in Section 5.3. We implemented the proposed mechanism into SimpleScalar
and evaluated our approach with out-of-order issue processors.

The power-gated function units in our experimental architecture are Integer Mul-
tiplier, Floating-Point Adder, Floating-Point Multiplier, and Floating-Point Di-
vider. The power gating of each function unit can be controlled by the “power-
gating control register” (PGCR). The PGCR is a 64-bit integer register. In this
case, only the lowest 4 bits of this register can affect the power-gating status. The
0th bit of the lowest 4 bits of the PGCR controls the power gating of the Integer
Multiplier: setting this bit will cause the Integer Multiplier on, and clearing it will
turn off the corresponding function unit in the next clock cycle. The 1st, 2nd, 3rd
bits of these 4 bits are used for the Floating-Point Adder, Floating-Point Multiplier,
and Floating-Point Divider, respectively. It is worth mentioning that the integer
ALU unit within the architecture is also involved in general program execution,
since it also performs data movements to the PGCR. This means that the inte-
ger ALU is always required, and so this function unit is always on. In addition,
we invoke a new instruction in the simulation environment to specify the access
direction of PGCR. This instruction can operate those four power-gated function
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Input A control flow graph in which each block B contains only one instruction;
a resource utilization table.

Output comp in[B] and comp out[B] for each block B.

Begin
for each block B do begin

/* computation of comp gen */
for each component C that will be used by B do begin

RemainingCycle[B][C] := N ,
where N is the number of cycles needed for C by B;

comp gen[B] := comp gen[B] ∪ C;
end

comp in[B] := comp kill[B] := ∅;
comp out[B] := comp gen[B];

end

/* iterative analysis */
while changes to any comp out occur do begin

for each block B do begin
/* computation of comp kill */
for each component C do begin

RemainingCycle[B][C] := MAX(RemainingCycle[P ][C])− 1,
where P is a predecessor of B;

if RemainingCycle[B][C] = 0 then comp kill[B] := comp kill[B] ∪ C;
end

/* computation of comp in */

comp in[B] :=
⋃

comp out[P ], where P is a predecessor of B;

/* computation of comp out */
comp out[B] := comp gen[B] ∪ (comp in[B]− comp kill[B]);

end
end

End

Fig. 2. Data-flow analysis algorithm for component activities

units at once by moving the appropriate value from a general-purpose register to
the PGCR.

3. COMPONENT-ACTIVITY DATA-FLOW ANALYSIS

In this section, we investigate the compiler analysis techniques used to reduce the
leakage power. We present a data-flow analysis framework for a compiler to analyze
the state of components in a microprocessor. The process collects the information
of the utilization of components at various points in a program. We first construct
basic blocks and control flow graphs of given programs, and then develop a data-flow
equation for the summary of component usages at given program points. To gather
the data-flow information, we define comp gen[B], comp kill[B], comp in[B], and
comp out[B] for each block B.

We say that a component-activity c is generated at a block B if a component is
required for this execution, symbolized as comp gen[B], and that it is killed if the
component is released by the last request, symbolized as comp kill[B]. We then
create the two groups of equations shown below. The first group of equations fol-
lows from the observation that comp in[B] is the union of activities arriving from
all the predecessors of B. The second group is the activities at the end of a block
that are either generated within the block, or those entering at the beginning but
not killed as control flows through the block. The data-flow equation for these two
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, M 20YY.
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groups is as follows:

comp in[B] =
⋃

P a pred−
essor of B

comp out[P ]

comp out[B] = comp gen[B] ∪ (comp in[B]− comp kill[B]).

We use an iterative approach to compute the desired results of comp in and comp out
after comp gen has been computed for each block. The algorithm is sketched in Fig-
ure 2.This is an iterative algorithm for data-flow equations [Aho et al. 1986] with
the addition of resource management structures. A two-dimension array, called
RemainingCycle, is used to maintain the number of cycles that are required to
fulfill requests for each component and block. In addition, a resource-utilization
table is adopted to give the resource requirement for each instruction of the given
microprocessor. The resource-utilization table can be used to give the initial values
of RemainingCycle. The remaining cycles of a component decrease by one for each
propagation. Initially, both comp in and com kill are set to be empty. The iteration
continues until comp in (and hence comp out) converges. As comp out[B] never de-
creases in size for any B, the algorithm will eventually halt when all comp out are
in the steady state. Intuitively, the algorithm propagates activities of components
as far as they will go by simulating all possible execution paths of the program.
This algorithm provides the state of utilization of components for each point of a
program.

4. LEAKAGE-POWER REDUCTION

In this section, we present a cost model for the compiler to determine whether
power-gating control should be applied, and a set of scheduling policies to place
power-gating instructions within given programs.

4.1 Cost Model

With the utilization of components obtained from Section 3, we can insert power-
gating instructions into programs at the appropriate points (i.e. the beginning and
of an inactive block) to turn off and on unused components so as to reduce the
leakage power. However, both shut-down and wake-up procedures are associated
with an additional penalty, especially the latter due to peak voltage requirements.
The following equation represents our cost model for deciding if the insertion of
power-gating instructions will provide energy-consumptions benefits:

Eturn off (C) + Eturn on(C) ≤ BreakEvenC × Pleak saving(C),

where Eturn off (C) is the energy penalty for shutting down component C, Eturn on

is the energy penalty for waking up component C, BreakEvenC is the break-even
cycle for component C, and Pleak saving(C) is the leakage-power saving of compo-
nent C per cycle when power-gating controls are employed. The left-hand side of
the equation shows the energy consumed by shut-down and wake-up procedures,
and the right-hand side equals the leakage energy consumed over a certain number
of cycles. Power-gating control will only save power if the amount of power required

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, M 20YY.
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to shut down and wake up is less than the leakage energy consumed during the same
intervening period in the absence of these procedures.

The latency associated with turning a component on should also be considered
when employing power gating. Due to the high capacitance of microprocessor
circuits, a component will typically need several clock cycles to reach its normal
operating state. Butts and Sohi also illustrated that at 1 GHz it takes about 7.5
cycles to charge 5 nF to 1.5 V with 1 A (which are typical values in microprocessor
circuits) [Butts and Sohi 2000]. With this consideration, we enforce power gating
on a component only when the size of its inactive block (i.e., the idle region) is
larger than its break-even cycle and its latency to recovery. Our cost model after
incorporating latency becomes the following:

ThresholdC = MAX(BreakEvenC,LatencyC),

where LatencyC is the power-gating latency of component C. In addition, we
attempt to insert the wake-up operations of power-gating control ahead of the time
at which the corresponding components are required, in order to avoid program
stalling whilst waiting for the wake-up latency.

4.2 Scheduling Policies for Power Gating

The component activity information gathered and the cost model for deciding if the
power-gating instructions should be employed now allow us to consider the schedul-
ing mechanisms when inserting the power-gating instructions into given programs.
As the duration of power-gating control on components is influenced to conditional
branches in programs, we propose a set of scheduling policies (Basic Blk Sched,
MIN Path Sched, and AVG Path Sched) with power-gating instructions. The de-
tails are given below.

A naive mechanism to control the power-gating instructions will set the on and
off instructions at each basic block according to the component activities gathered
by the data-flow equation in Section 3. We call this scheme Basic Blk Sched.

An additional complication is that the inactive period of a component may span
more than two adjacent basic blocks. We therefore use a depth-first-traveling algo-
rithm to traverse all possible execution paths. In general, an inactive block will be
turned off when the criteria discussed in Section 4.1 are reached. Another case to
consider in power gating is that of an inactive block containing conditional branches,
since the length of the two inactive blocks — which follow the branch targets —
may be different. For example, only one of the branchings may benefit from power
gating, in which case taking power-gating control in that branch when the other
branch is instead taken may not reduce the power requirements. In other words,
the path lengths of the taken and not-taken paths of a branch may not be equal
and therefore one path may satisfy the cost model in Section 4.1 and the other path
may not. Hence, we propose a MIN Path Sched policy to ensure that power-gating
control is activated only when the inactive lengths of both branching paths exceed
the power-gating threshold; that is, the minimum length of those paths reaches the
criteria for power gating.

Figure 3 presents the details for the MIN Path Sched algorithm proposed. The
algorithm is adopted from depth-first-traveling algorithm, where recursion is in-
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, M 20YY.
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Input A control flow graph (CFG) annotated with component utilization.
Output A scheduling for power-gating instructions.

MIN Path Sched(C, B, Branched, Edge, Count)
Begin

if block B is the end of CFG or Count > MAX COUNT then return Count;
if block B has two children then do

/* condition 1; conditional branch, inactive */
if C /∈ comp out[B] then do

Count := Count + 1;
if left edge is a forward edge then

l Count := MIN Path Sched(C, left child of B, TRUE, FWD, Count);
else

l Count := MIN Path Sched(C, left child of B, TRUE, BWD, Count);
if right edge is a forward edge then

r Count := MIN Path Sched(C, right child of B, TRUE, FWD, Count);
else

r Count := MIN Path Sched(C, right child of B, TRUE, BWD, Count);
if MIN(l Count, r Count) > ThresholdC and !Branched then

schedule power-gating instructions at the beginning and end of inactive blocks;
return MIN(l Count, r Count);

/* condition 2; conditional branch, active */
else

if Count > ThresholdC and !Branched then
schedule power-gating instructions at the beginning and end of inactive blocks;

if Edge = FWD then
if right edge is a forward edge then

MIN Path Sched(C, left child of B, FALSE, FWD, Count);
else

MIN Path Sched(C, left child of B, FALSE, BWD, Count);
if left edge is a forward edge then

MIN Path Sched(C, right child of B, FALSE, FWD, Count);
else

MIN Path Sched(C, right child of B, FALSE, BWD, Count);
end
return Count;

end;
else

/* condition 3; statements except conditional branches, inactive */
if C /∈ comp out[B] then do

Count := Count + 1;
if edge is a forward edge then

return MIN Path Sched(C, child of B, Branched, FWD, Count);
else

return MIN Path Sched(C, child of B, Branched, BWD, Count);

/* condition 4; statements except conditional branches, active */
else

if Count > ThresholdC and !Branched then
schedule power-gating instructions at beginning and end of inactive blocks;

if Edge = FWD then
if the edge pointing to child of B is a forward edge then

MIN Path Sched(C, child of B, FALSE, FWD, Count);
else

MIN Path Sched(C, child of B, FALSE, BWD, Count);
end
return Count;

end
end

End

Fig. 3. MIN Path Sched algorithm based on depth-first-traveling for power gating

corporated in order to guarantee that all paths of the inputted control flow graph
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, M 20YY.
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(CFG) — which is annotated with component utilization — are traversed. The ar-
guments (C, B, Branched, Edge, and Count) represent the type of the component
in analysis for power-gating control, the node ID of the CFG, a boolean variable
that shows whether the current traverse comes through a branch, the type of the
outgoing edge, and the accumulated inactive length so far, respectively. The algo-
rithm starts traversing from the root of the CFG with a Count of zero, schedules
power-gating instructions at the beginning and end of inactive blocks if necessary,
and halts when all execution paths are traversed. The algorithm is divided into
four parts to handle conditions when encountering or not encountering a condi-
tional branch while the analyzing component is active or inactive, respectively:

(1) A conditional branch is reached and the component is inactive. Under this
condition, the algorithm increases the Count and makes two recursive calls
that returns the inactive length of its right and left branch, respectively. A
judgment on power gating is then made, and it returns the minimum inactive
length of two branchings. Note that comp out[B] represents the set of the
component activities of block B; therefore, the condition C /∈ comp out[B]
indicates that component C is not in the active set of comp out[B].

(2) A conditional branch is reached and the component is active. Under this con-
dition, the algorithm takes control of power gating if necessary, starts two re-
cursive calls for both branches, and finally returns the current inactive length.

(3) Any statement except for a conditional branch is reached and the component is
inactive. Under this condition, the algorithm continues the traverse; that is, it
only increases Count and then returns.

(4) Any statement except for a conditional branch is reached and the component is
active. Like condition 2, the algorithm takes control of power gating if necessary
and starts a new traveling for its successor. And finally, it returns Count.

Note that care must be taken for recursive boundaries to reach the backward edges
for a loop. As a depth-first search algorithm can find the loop, cycling can occur in
our algorithm. In a cyclic situation, if none of the instructions used in the cycle of
a program fragment use the component in the search, we will assume the loop cycle
is executed once with the minimum-path scheduling policy. If some instructions in
the backward edge of a program fragment do use the component in the search, the
backward edge extending to that instruction will be accounted for in the program
path. In addition, since our proposed algorithm is based on depth-first-traveling,
the complexity of our approach is O(N) where N is the number of nodes in a control
flow graph.

Next, since the behavior of program branches depends on the structure and the
input data of programs, some branches may be followed rarely or even never. To ac-
commodate this, we propose an eclectic policy, called AV G Path Sched, to sched-
ule power-gating instructions. The only difference between AV G Path Sched and
MIN Path Sched is the judgments made in condition 1 above: AV G Path Sched
returns the average length of two branchings instead of the minimum. This scheme
will take advantage of power reduction if an infrequently taken branch returns a
small value of Count which causes inactivation of power-gating mechanism. The
AV G Path Sched mechanism can be approximately implemented by assuming the
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, M 20YY.
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probabilities of all branches are 50%, by assigning branch probabilities at compila-
tion time by programmers or compilers, or by incorporating path-profiling schemes
to examine the probabilities of all branches.

5. EXPERIMENTS AND DISCUSSIONS

5.1 Platform

We use a DEC-Alpha-compatible architecture with power-gating control and in-
struction sets described in Figure 1 as the target architecture for our experiments.
The proposed data-flow analysis and scheduling policies are incorporated into the
compiler tool with SUIF [Stanford Compiler Group 1995] and MachSUIF [Smith
1998], and evaluated by the Wattch simulator [Brooks et al. 2000]. Table I sum-
maries the baseline configuration of the simulator in our experiment. By default
the simulator performs out-of-order execution. We use “-issue:inorder” option in
the configuration so that instructions would be executed in order for ensuring the
correctness of execution; our approach might be harmed in an out-of-order archi-
tecture if no additional support is provided. We discuss the problem and propose
solutions with hardware supports to the limitation in Section 5.3. Furthermore,
several assumptions are made for completeness as follows: (1) As Wattch does
not model leakage at the component level per se, we assume that leakage power
contributes 10% of total power consumption. Though ten percent might be un-
derestimated according to De and Borkar [De and Borkar 1999] and Thompson et
al. [Thompson et al. 1998], larger percentage of leakage power result in more power
reduction for our approach. (2) We assume that wake-up operations of power-gating
control take 20-cycle latency, although 7.5 cycles are introduced in [Butts and Sohi
2000]. We show our scheme is still with good benefits despite of overestimated
latency. (3) To let the power-gating instructions — which are generated by the op-
timized compiler — be recognized by the Alpha assembler and linker, power-gating
instructions are replaced by a set of instructions “stl $24, negative offset($31)”,
where negative offset is a negative integer and is used for indicating which func-
tion unit to be powered on or off. The instruction stores the value of register $24
into the memory address below zero, which is an invalid memory address, — $31
is a constant zero register — and should never be generated by standard compil-
ers. To avoid processors from accessing the invalid memory addresses, we made
a small modification in SimpleScalar: when the instruction decoder decodes such
instructions, it extracts the power-gating information and converts it to a NOP in-
struction. The test suites used in our experiment are benchmarks listed in AbuFAQ
of comp.benchmarks [Aburto et al. 1997].

5.2 Simulation Results

Figure 4(a) and 4(b) illustrate the power-consumption results for the simulations
of power-gating control over Floating-Point Adder and Floating-Point Multiplier
for the nsieve application, respectively. In these figures, the X-axis represents
the break-even cycle for our scheduling criteria, and the Y -axis represents the
power consumption. The leftmost bar shows the power dissipated by function units
when no power-gating control is employed, which represents the result of stan-
dard clock-gating mechanism provided by the Wattch power estimator. We use

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, M 20YY.
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Table I. Baseline processor configuration
Parameter Configuration

Clock 600 MHz

Process parameters 0.10 µm, 1.9 V

Issue In-order

Decode width 4

Issue width 4

Commit width 4

RUU size 8

LSQ size 8

Function units 4 integer ALU
1 integer multiply/divide unit
4 FP ALU
1 FP multiply/divide unit

Register file 32 64-bit integer registers
32 64-bit FP registers
1 power-gating control register
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Fig. 4. (a) Results of Floating-Point Adder for nsieve (b) Results of Floating-Point Multiplier for
nsieve

this as the baseline version for comparison. The clock-gating mechanism gates the
clocks of those unused resources in multiported hardware to reduce the dynamic
power. However, static power is still leaked. The remaining bars in the figures
show the power-gating results for the proposed scheduling policies with different
break-even cycles. The results show that the power-gating mechanism reduces the
leakage power by a large amount even when the penalty of power-gating control
is high (i.e., a large break-even cycle). Note that we have incorporated the en-
ergy penalty associated with inserting power-gating instructions into the Wattch
power simulator. Our experimental data also indicate that the MIN Path Sched
and AV G Path Sched scheduling algorithms always provide better results than
the Basic Blk Sched algorithm. This is because the Basic Blk Sched algorithm
schedules power-gating instructions within basic blocks while the other two sched-
ule those beyond branches. The possible inactive durations of components are
extended when MIN Path Sched or AV G Path Sched is employed. A more ac-
curate model for the AV G Path Sched mechanism would incorporate path profil-
ing schemes (replacing our assumption of 50% probabilities in all branches), which
would further improve the results. The power consumed by the Floating-Point
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, M 20YY.
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Fig. 5. Power gating on (a) Floating-Point Adder and (b) Floating-Point Multiplier for miscella-
neous benchmarks (BreakEvenC = 32)
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Fig. 6. Simulation results when using the power-gating control for integer and floating-point units
(BreakEvenC = 32)

Adder is reduced from 0% to 50.3%, from 27.5% to 65.5%, and from 27.5% to
70.2% for the Basic Blk Sched, MIN Path Sched and AV G Path Sched poli-
cies, respectively. The corresponding reductions for the Floating-Point Multiplier
are from 0% to 39.8%, 30.3% to 55.4%, and 30.3% to 62.0%, respectively.

Figure 5(a) and Figure 5(b) give the power consumption of the Floating-Point
Adder and the Floating-Point Multiplier for various benchmarks while employing
the power-gating mechanism with a break-even cycle of 32. It is again evident
that the AV G Path Sched policy provides the greatest power reduction, with the
MIN Path Sched and Basic Blk Sched coming second and third, respectively.
However, all three produce better results than the one without power gating (i.e.,
which only employs clock gating). Figure 5(a) shows that the Basic Blk Sched,
MIN Path Sched, and AV G Path Sched policies produce average reductions of
16.77%, 70.41%, 70.43% for the Floating-Point Adder in all benchmarks, respec-
tively. In the case of the hanoi benchmark, which is an integer program, the reduc-
tion is 96.7% of power for Basic Blk Sched and 99.5% for MIN Path Sched and
AV G Path Sched. Similar results are summarized in Figure 5(b).

Our experiments demonstrate a clear reduction in the energy consumption of
each component, but it is also of interests to determine the reduction in energy as
a percentage of the total energy consumption. The information from our experi-
mental data is given in Figure 6(a). For a break-even cycle set to be 32, using the
power-gating control for integer and floating-point units with the Basic Blk Sched,
MIN Path Sched, and AV G Path Sched policies reduces the total power by av-
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Fig. 7. Ratio of power-gating instructions to total instructions when when using the power-gating
control for integer and floating-point units (BreakEvenC = 32).

erage 1.98%, 8.78%, and 8.89%, respectively. With regard to the impact on perfor-
mance, the cycle counts of execution provided by the Wattch (i.e., SimpleScalar)
show that our approach has a light impact (less than 2%) on performance. Fig-
ure 6(b) shows the performance degradation in terms of different scheduling policies.
Note that, as mentioned earlier, the latency of power-on operations is assumed to be
20 cycles, which is overestimated for strict evaluation. Note that the performance
degradation numbers of hanoi, heapsort, nsieve, and eqntott-test1 program are too
small (less than 0.01%) to be illustrated in the figure. The reason why the numbers
are small is that the execution time of these programs is so large that it amortizes
the performance impact caused by power-gating operations.

We also compiled the experiment statistics and found that the ratios of power-
gating instructions to total instructions in the program code and simulated code
are small. Figure 7 illustrates the details. Figure 7(a) shows the ratios of power-
gating instructions in the program code when Integer ALU, Floating-Point Adder,
and Floating-Point Multiplier are considered for power gating, and Figure 7(b)
shows those in the simulated code (code ratio in runtime execution) when Integer
ALU, Floating-Point Adder, and Floating-Point Multiplier are considered for power
gating. It is found that the ratios in tfftdp and eqntott-test4 program are much
higher. This is because the lengths of these programs are small so that the propor-
tion of power-gating instructions looks much larger. However, it is also found that
power-gating instructions, in fact, are issued with a very small number of counts,
which turns out that the inserted power-gating instructions would barely affect the
program execution.

Finally, in the issue to increase the off-times of the units by scheduling instruc-
tions, it’s certainly important to be able to do that. As compiler technologies
nowadays are now done one phase after another phase. We consider the increase
of the off-time phase can be done as a separate phase before our instruction issue
phase. Our work can work with the increase off-time phase if available.

5.3 Simulation Results for Out-of-order Issue Processors

The proposed framework is applicable to general superscalar machines that execute
instructions in order. Our approach can be applied to out-of-order issue machines
as well if additional hardware supports are employed. We present a solution below.
Superscalar machines use dynamic pipeline scheduling, which dynamically reorder
instructions to avoid hazards (such as structure and data hazards), to utilize the
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, M 20YY.
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resources and then result in out-of-order execution. To ensure that power-gating
instructions are executed at the correct timing with respect to instructions, called
consumer instructions, that use the power-gated function units, power-gating in-
structions on a function unit are considered dependent to consumer instructions
on this unit. That is, consumer instructions cannot be advanced before power-on
operations and postponed after power-off operations during the dynamic pipeline
scheduling; moreover, power-on and power-off operations are not interchangeable.
In this regard, the situation that an instruction finds its function unit turned off
can be avoided, which turns out that our approach can be applied to out-of-order
machines.

We implemented the above idea into SimpleScalar by checking the status of reser-
vation stations to maintain the dependencies between power-gating instructions and
consumer instructions. (Remember that in this paper we had proposed a compiler
technique to insert power-gating instructions at appropriate positions, i.e., the com-
piler automatically inserts a power-on instruction before consumer instructions and
a power-off instruction after the consumer instruction.) These dependencies can be
categorized into two types: the dependencies between power-on instructions and
consumer instructions that use the unit to be powered on and the dependencies
between power-off instructions and consumer instructions that use the unit to be
powered off. In fact, the former type of dependencies is unnecessary and needs no
adaptation in SimpleScalar since a power-on instruction should be issued in ad-
vance of consumer instructions due to the in-order fetch model in SimpleScalar,
and thus a unit will be powered on before it is used. However, the dependencies
between a power-off instruction and consumer instructions are required — power-
off instructions might be issued in advanced of consumer instructions — in order to
avoid executing instructions on a unit that is turned off. We modified SimpleScalar
to ensure that a power-off instruction is stalled until the reservation station of the
unit to be powered off is empty, i.e., the power-off instruction is issued after all of
the consumer instructions are executed. Moreover, to ensure the execution order
of power-on and power-off instructions, we enforce a power-gating instruction be
stalled until an another power-gating instruction prior to the power-gating instruc-
tion are issued. In fact, if this happens, these two power-gating instructions, a
power-on instruction and a power-off instruction, can be flushed since a successive
execution of the power-on and power-off operation is unnecessary. It would be
meaningless if we power on a unit right after powering off the unit and vice versa.
With the above adaptation, the proposed compiler framework for power-gating
control can be applied to out-of-order issue processors.

Admittedly, the above mechanism will have performance impacts — a power-off
instruction is stalled and occupied a slot in the instruction window until the depen-
dencies between the power-off instruction and consumer instructions are resolved,
but along with the results of Figure 7(b), the occurrence of issuing a power-gating
instruction is so rare that the performance impact would be negligible. In fact,
the performance impacts can even be eliminated with a minor modification in the
implementation: adding a power management controller to handle power-gating
instructions. Once the instruction decoder decodes a power-gating instruction, the
instruction dispatcher dispatches the instruction to the power management con-
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Fig. 8. Simulation results (out-of-order issue) when using the power-gating control for integer and
floating-point units (BreakEvenC = 32)

troller and removes the instruction from the instruction window and the power
management controller performs power-gating control based on the behavior de-
scribed in the last paragraph. In this case, the performance impact is eliminated.

We used the same processor configuration in Table I, but the instruction issue is
changed to be out-of-order to evaluate the effect on out-of-order processors. Fig-
ure 8(a) shows the total energy reduction in terms of the entire microprocessor
when only integer and floating-point units are under the power-gating control. The
results are quite similar to Figure 6(a) which is configured with in-order issue. The
major differences in simulation result between in-order and out-of-order processors
are the number of the simulation cycle and the total energy consumption. Out-of-
order processors are in average 29.3% faster and consume less 17.5% of power than
in-order processors. The performance degradation due to power-gating instructions
is shown in Figure 8(b) and is almost the same as those shown in Figure 6(b).

6. RELATED WORK

Minimization of power dissipation can be considered at algorithmic, architectural,
logic, and circuit levels [Chandrakasan et al. 1992]. Studies on low-power design are
abundant in the literature [Alidina et al. 1994; Benini and Micheli 1995; Hachtel
et al. 1994; Hong et al. 1999; Prasad and Roy 1993; Roy and Prasad 1992; Tsui
et al. 1993], and these have proposed various techniques for synthesizing designs
with low transitional activities. Static power dissipation (or the leakage current in
the absence of any switching activities) has increased in importance as transistors
have become smaller and faster.

The reduction in power consumption has been addressed by architecture designs
and software arrangements at the instruction level [Bellas et al. 2000; Chang and
Pedram 1995; Horowitz et al. 1994; Lee et al. 2003; Lee et al. 1997; Su and Despain
1995; Tiwari et al. 1997; Tiwari et al. 1998]. The efforts to reduce dynamic power
include software rearrangements to optimize the value locality of registers [Chang
and Pedram 1995], the swapping of operands for the Booth multiplier [Lee et al.
1997], the scheduling of VLIW instructions to reduce the power consumption on
the instruction bus [Lee et al. 2003], gating the clock to reduce workloads [Horowitz
et al. 1994; Tiwari et al. 1997; Tiwari et al. 1998], cache subbanking mechanism [Su
and Despain 1995], and the utilization of the instruction cache [Bellas et al. 2000].

Several research groups have recently proposed and developed hardware tech-
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, M 20YY.
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niques to reduce dynamic and static power dissipation. The work of Powell et
al. [Powell et al. 2000] combines circuit and architectural techniques to reduce the
power consumption in a processor’s cache. The cache miss rate is used to determine
the working-set size of the application relative to that of the cache. Power is then
removed from the unused portions of the cache using Vdd-gated transistors. Kaxi-
ras et al. [Kaxiras et al. 2001] also addressed static power dissipation in the cache,
by considering policies and implementations for reducing cache leakage by turning
off cache lines when they hold data that is unlikely to be reused. Our approach
considers compiler optimizations for static power reduction, and forms a part of
our efforts in the Design Technology Center of our university to develop compiler
toolkits [Lee et al. 2003; You et al. 2002; Chen et al. 2004; Hwang et al. 2003; You
et al. 2001; Chang et al. 2001; Chang et al. 1998; Hwang et al. 1998] for reduc-
ing the power consumption of advanced microprocessors. The work done by Rele
et al. [Rele et al. 2002] is a concurrent work to ours by using compiler technique
and microarchitecture support to guide power-gating controls. We brought up the
idea quite early as well as the essential mechanism of this work was applied for a
patent in Taiwan, June 2001 (with the issue number 172459). Rele’s work is based
on profiling approach to identify hot blocks and cold blocks with the execution
frequencies of those blocks. Our work provides data-flow analysis framework for
component activities. In addition, we present schemes to schedule power-gating
instructions go beyond basic blocks when branches are encountered.

7. CONCLUSIONS

In the study described in this paper, we investigated compiler analysis techniques
aimed at reducing microprocessor leakage power. The architecture model in our
design is a system with an instruction set that supports the control of power gat-
ing at the component level. Here we presented a data-flow analysis framework for
estimating the component activities at fixed points of programs whilst consider-
ing pipeline architectures. A set of scheduling policies comprising Basic Blk Sched,
MIN Path Sched, and AVG Path Sched mechanisms was proposed and evaluated.
The experimental results demonstrate that our mechanisms are effective in reducing
leakage power in microprocessors. Future research directions include investigating
the effects of using AVG Path Sched mechanism with path profiling and edge pro-
filing schemes in experiments.
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