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In this article, we investigate compiler transformation techniques regarding the problem of schedul-
ing VLIW instructions aimed at reducing power consumption of VLIW architectures in the instruc-
tion bus. The problem can be categorized into two types: horizontal scheduling and vertical schedul-
ing. For the case of horizontal scheduling, we propose a bipartite-matching scheme for instruction
scheduling. We prove that our greedy bipartite-matching scheme always gives the optimal switch-
ing activities of the instruction bus for given VLIW instruction scheduling policies. For the case
of vertical scheduling, we prove that the problem is NP-hard, and we further propose a heuristic
algorithm to solve the problem. Our experiment is performed on Alpha-based VLIW architectures
and an ATOM simulator, and the compiler incorporated in our proposed schemes is implemented
based on SUIF and MachSUIF. Experimental results of horizontal scheduling optimization show
an average 13.30% reduction with four-way issue architecture and an average 20.15% reduction
with eight-way issue architecture for transitional activities of the instruction bus as compared
with conventional list scheduling for an extensive set of benchmarks. The additional reduction for
transitional activities of the instruction bus from horizontal to vertical scheduling with window
size four is around 4.57 to 10.42%, and the average is 7.66%. Similarly, the additional reduction
with window size eight is from 6.99 to 15.25%, and the average is 10.55%.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—optimiza-
tion; B.6.3 [Hardware]: Logic Design—Design Aids

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Compilers, instruction bus optimizations, low-power optimiza-
tion, VLIW instruction scheduling

1. INTRODUCTION

The push for low-power design has recently gained growing importance in de-
signing various computer systems and embedded systems. For example, an

Authors’ addresses: C. Lee, J. K. Lee, T. T. Hwang, Department of Computer Science, National Tsing-
Hua University, 300, Hsinchu, Taiwan; email: tingting@cs.nthu.edu.tw; S.C. Tsai, Department of
Information Management, National Chi-Nan University, Pu-Li, Nan-Tou, Taiwan.
This version is a revised version. A preliminary version of this work appears in the Proceedings of
the Thirteenth International Symposium on System Synthesis (ISSS 2000, Sept. 2000).
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2003 ACM 1084-4309/03/0400-0252 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 2, April 2003, Pages 252–268.



Compiler Optimization on VLIW Instruction Scheduling for Low Power • 253

embedded system with a number of DSP processors with respective VLIW ar-
chitecture must satisfy the requirements of high performance and low power
consumption. In such a high-performance embedded system we need to address
the issues of both high-performance computing and low power consumption.
Much work on aggressive compiler and software optimization has put empha-
sis on delivering high-performance computing [Landskov et al. 1980; Bernstein
and Rodeh 1991; Fisher 1983; Fisher et al. 1984]. However, less attention was
paid to reducing power during compiler optimization. For that reason, we study
the aspect of compiler transformations to reduce power consumptions for such
a system.

In CMOS circuits, power is dissipated in a gate when the gate output changes
from 0 to 1 or from 1 to 0. Minimization of power dissipation can be consid-
ered at algorithmic, architectural, logic, and circuit levels [Chandrakasan et al.
1992]. Studies on low power design are abundant in the literature [Roy and
Prasad 1992; Prasad and Roy 1993; Tsui et al. 1993; Benini and De Micheli
1995; Hachtel et al. 1994; Alidina et al. 1994; Hong et al. 1999] in which
various techniques are proposed to synthesize designs with low transitional
activities.

Recently, new research directions have begun to address the issues of arrang-
ing software at instruction-level to help reduce power consumption. Tiwari et al.
[1994a, b] have studied scheduling techniques for reducing power consump-
tion. These works are more related to instruction selections, which are based
issues such as register accesses and lower latency instructions. Tiwari et al.
also took into consideration reducing circuit-state overhead. Su et al. [1994]
proposed an instruction scheduling technique called cold scheduling with Gray
code addressing. Cold scheduling reduces the amount of switching activity in
the control path. Chang and Pedram [1995] focused on register assignments
and formulated the problem as a max-cost flow problem for power optimization.
Leupers and Marwedel [1996] presented algorithms that yield high utilization
of parallel AGUs by computing appropriate memory layouts for program vari-
ables, and which immediately apply to contemporary DSPs. Ye et al. [2000].
presented a power-conscious postcompilation optimization by relabeling the
register fields of the compiler-generated instructions. Bellas et al. [2000] at-
tempted to reduce L1 cache activity by placing a small L0 cache, called the
L-Cache, between the L1 and the processor. They proposed a method that takes
the responsibility for code modification and allocation of instructions into the
L-Cache.

This new direction raises an interesting issue in compiler participation in
software rearrangements for reducing power consumption for applications and
systems. In this article, we report an important aspect of compiler participa-
tion in software arrangements on VLIW architectures. We investigate compiler
transformation techniques with regard to the problem of scheduling VLIW in-
structions aimed at reducing the power consumption of VLIW architectures in
the instruction bus.

The energy E consumed by a program is given by E = P ×T , where T is the
execution time of the program [Tiwari et al. 1996; Lee et al. 1997] and P is the
average power. The average power P is given by P = 1

2 ·C ·Vdd2 · f ·D, where C
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is the load capacitance, Vdd the supply voltage, f the clock frequency, and D is
the transition density. In compiler optimizations, if we optimize programs for
the performances, T will be reduced as will energy consumption. If the compiler
performs software refinements to reduce P , without software performance
penalty, it will also reduce the energy consumption. Therefore, it is preferable
that any power minimization technique incur no performance penalty.

Judging from the power equation, it is clear that power can be reduced by
the product of capacitance loading and transition activity. Since bus wires have
large capacitance loading, the reduction of transition activities of buses will
be very effective in reducing total power consumption. According to previous
work [Irwin 1999], buses are a significant source of power dissipation due to
high switching activities and large capacitive loading. The power dissipation of
buses on the DEC Alpha 21064 processor is more than 15% of the total power
consumption, and the power dissipation of buses on the Intel 80386 processor
is more than 30% of the total power consumption. Hence, in our work, we study
compiler transformation techniques to schedule VLIW instructions aimed at the
reduction of transition activity in the instruction bus. We first present a cost
model to estimate the bus switching activities of instruction executions on VLIW
architectures. Based on the model, we further develop compiler transformation
techniques to schedule VLIW instructions for reducing power consumption in
the bus level.

The problem can be classified into horizontal and vertical scheduling cate-
gories. For horizontal scheduling, we propose a bipartite-matching scheme for
instruction scheduling. We prove that our greedy bipartite-matching scheme
always gives the optimal bus switching activities for given VLIW instruction
scheduling policies for horizontal scheduling cases. For vertical scheduling, we
prove that the problem is NP-hard and propose a heuristic algorithm to solve it.

Finally, our experiment was done on an Alpha-based VLIW architecture and
ATOM simulator [Digital Equipment Corp. 1994] and the compiler incorpo-
rated by our proposed bipartite-matching schemes was implemented based
on SUIF [Stanford Compiler Group 1994] and MachSUIF [Smith 1998]. Ex-
perimental results with an extensive set of benchmarks showed significant
improvements for switching activities as compared with conventional list
scheduling.

The remainder of the article is organized as follows. Section 2 describes our
experimental VLIW platform and cost model for power consumption in the
bus level. Section 3 proposes the policies for low-power VLIW code genera-
tion. Section 4 gives our experimental results. Finally, Section 5 concludes the
article.

2. MACHINE ARCHITECTURE AND COST MODEL

2.1 Machine Architecture

Figure 1 shows an example of the target machine architecture on which our
optimization is based. We focus on the reduction of switching activities for the
instruction bus. The abstract VLIW machine has several execution units. In
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Fig. 1. Our VLIW machine architectures and bus models.

the example given in Figure 1, units 1 through 3 are integer ALUs with integer
multiplication, division, and logic operation units. Unit 4 is the same as other
units, performs branch/flow control, or executes a load/store function. In this
architecture, a VLIW instruction can only issue one load/store (or branch/flow
control) microinstruction and three integer/logic microinstructions at the same
time. Also, it can perform four integer/logic microinstructions without load/store
or branch microinstructions [Hennessy and Patterson 1996].

Figure 1 is also the architecture model by which we carry out our experiments
later in Section 4. Our approach goes to minimize the switching activities of the
bus from instruction memory to instruction decoder. The length of an VLIW
instruction in our experiment is 128 bits. Memory addressing is byte address.
Also, we use real executable instructions of the Alpha chip for experiments. We
assume this VLIW machine assigns an 128 bit instruction into four function
units per instruction fetch. The instruction bus is 128 bits wide.

2.2 Cost Model

The average power P is given by P = 1
2 · C · Vdd2 · f · D, where C is the

load capacitance, Vdd the supply voltage, f the clock frequency, and D is the
transition density. Judging from the power equation, it is clear that power can
be reduced by the product of capacitance loading and transition activity. Since
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Fig. 2. Hamming distance.

bus wires have large capacitance loading, the reduction of transition activities
of buses will be very effective in reducing total power consumption. We use
hamming distance as our cost model to estimate the transition activity in the
instruction bus. Hamming distance is the number of bit differences between
two binary strings. For example, the hamming distance of two adjacent 32 bit
microinstructions shown in Figure 2 is 15.

Suppose X and Y are two consecutive VLIW instructions with k-way issues.
The instruction components of X and Y are (x1, x2, . . . , xk) and ( y1, y2, . . . , yk),
respectively. Then the bus transition cost H(X , Y ) for instruction Y after the
issue of X is defined as

H(X , Y ) = 6k
i=1 h(xi, yi),

where h is the hamming distance between two instruction components.

3. INSTRUCTION-SCHEDULING POLICIES FOR LOW POWER

Both high performance and low power are two important objectives of compiler
optimization. However, since degradation of performance has a negative effect
not only on performance but also energy consumption, we require that any
power minimization technique incur no software performance penalty. There-
fore, we propose a two-phase instruction scheduling approach. In the first phase,
instructions are scheduled for performance. Then, in the second phase, a sched-
uler is employed to rearrange the codes produced by the first phase for low power
without incurring a performance penalty.

In this work, a list scheduling algorithm [Landskov et al. 1980] is used in
the first phase for performance optimization. List scheduling programs are
easy to write, and can compact original microinstructions approximately as
fast as linear analysis [Landskov et al. 1980]. However, any conventional VLIW
instruction scheduler [Landskov et al. 1980; Bernstein and Rodeh 1991; Fisher
1983; Fisher et al. 1984] can be used. Since the list scheduling algorithm is well-
documented, we focus on algorithms as presented in the following subsections
to reschedule instructions for power optimization.

3.1 Horizontal Scheduling

We first propose a horizontal scheduling algorithm to reschedule instruction
components of an instruction to minimize transition activity of instruction
buses; that is, microinstructions of an instruction are to be rescheduled for
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different instruction buses but executed in the same instruction. It is formally
defined as follows.

We focus on the basic block of a program. Suppose in this basic block we
have n VLIW instructions, and they are X 1, X 2, . . . , X n, where the instruction
components of instruction X i are given as

X i = (xi,1, xi,2, . . . , xi,k),

where k is the number of microinstructions within one VLIW instruction. Then
our goal is to find an instruction scheduling so that the total hamming distance
of n consecutive VLIW instructions X

′
1, X

′
2, . . . , X

′
n is minimized. That is, we

want to minimize

6n−1
i=1 H(X

′
i, X

′
i+1),

where X
′
i = (τi,1, τi,2, . . . , τi,k), 1 ≤ i ≤ n, and (τi,1, τi,2, . . . , τi,k) is a permutation

of (xi,1, xi,2, . . . , xi,k), for 1 ≤ i ≤ n.
Our horizontal scheduling algorithm proceeds to reschedule microinstruc-

tions from the first instruction to the last. Initially, the first instruction is
rescheduled without changing it. Iteratively, the next instruction is resched-
uled to minimize hamming distance between the instruction and the last in-
struction already scheduled. We model the rescheduling of microinstructions of
an instruction as a weighted bipartite graph matching. Let the bipartite graph
G = (UpLayer ∪ LowLayer, E) be constructed, where UpLayer and LowLayer
are bipartite. Each ui ∈ UpLayer represents a microinstruction in the last in-
struction already scheduled and li ∈ LowLayer represents a microinstruction
of an instruction to be scheduled. There is an edge linking ui and li if microin-
struction li can be scheduled into the same position, or slot, in the whole VLIW
instruction as the position of microinstruction ui in the ui ’s VLIW instruction,
and does not violate the hardware constraints. The weight on the edge is defined
as−h(ui, li), the hamming distance of ui and li. Note that the original version of
the bipartite-matching algorithm is the maximum weight bipartite-matching
algorithm. In our application of microinstruction scheduling, we “minimize” the
transitional activities. So, we present our algorithm in a negative sign version.
Figure 3 illustrates the construction of a bipartite graph. In this figure, there are
four microinstructions in each instruction. The instruction represented by Up-
Layer is the last instruction already rescheduled. The instruction represented
by LowLayer is the instruction to be rescheduled. The weight on the edge of ui
and li is −h(ui, li).

Now, we apply the maximum weight bipartite-matching [Fredman and
Tarjan 1987] algorithm to the graph to get the matched graph. The matched
graph has n links, where n is the same as the number of microinstructions in one
VLIW instruction, and the matched graph has maximal weight. In other words,
the matched graph has minimal switching activities between these two parti-
tions. Each microinstruction in UpLayer will match an only one microinstruc-
tion in LowLayer. If microinstruction li is matched with microinstruction ui, li
will be scheduled into the same position as li in the VLIW instruction binary
format. The matching procedure repeats untill all instructions are rescheduled.
This matching procedure reschedules microinstructions so that the hamming
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Fig. 3. An example of bipartite-matching for horizontal scheduling

Input : Array X of VLIW instruction sequence with n elements, i.e., X 1, X 2, . . . ,X n.

Each VLIW instruction in X has k microinstructions.
Output: New optimal X on power consumption.

Begin
while(i = 1 to n− 1)

X ′i+1 = maximum weight bipartite matching(X i , X i+1);
/* maximum weight bipartite matching(UpLayer, LowLayer) return an

VLIW instruction NewLowLayer, which is a permutation of LowLayer, such
that −1× hamming distance(UpLayer, NewLowLayer) is the maximum */

Replace X i+1 with X ′i+1;
end while
End

Fig. 4. Multistage bipartite-matching algorithm to schedule VLIW instructions to minimize bus
transition activities

distance between the instruction of UpLayer and the instruction of LowLayer
is minimum. Figure 4 details this process.

This greedy bipartite-matching algorithm can actually produce an optimal
solution for our horizontal scheduling problem. In the following, we show the
proof.

THEOREM 1. The algorithm in Figure 4 always gives the optimal solution to
the problem of minimization of transition activity of the instruction bus when mi-
croinstructions are rescheduled with horizontal moves for a given VLIW schedul-
ing of a basic block with n consecutive instructions.
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PROOF. Suppose we are given a VLIW scheduling for a basic block. Let the
given scheduling be X 1, X 2, . . . , X n. The instruction components of X i are
(xi,1, xi,2, . . . , xi,k). Our goal is to show that the above algorithm mini-
mizes the transition cost. That is, we want to find n consecutive VLIW
instructions X

′
1, X

′
2, . . . , X

′
n to minimize 6n−1

i=1 H(X
′
i, X

′
i+1), where X

′
i =

(τi,1, τi,2, . . . , τi,k), 1 ≤ i ≤ n, and (τi,1, τi,2, . . . , τi,k) is a permutation of
(xi,1, xi,2, . . . , xi,k).

It is clear that the best possible of H(X ′i, X ′i+1) can be found by the above-
mentioned maximum weighted matching algorithm for i = 1, . . . , n − 1. Let
pi be the cost between X i and X i+1 obtained from the above algorithm. Let
C = ∑n−1

i=1 pi. We prove by contradiction. Suppose there is a better scheduling
with cost C′ < C. Let qi, i = 1, . . . , n − 1, be the cost between X i and X i+1

under this scheduling. We have C′ = ∑n−1
i=1 qi <

∑n−1
i=1 pi. Then there exists an

i such that qi < pi. But we know pi is the best possible for X i and X i+1, a
contradiction. Thus the above algorithm does find the best transition cost.

Note that the construction of edges in a bipartite graph needs to take architec-
ture constraints into consideration. For example, Figure 5 [Texas Instruments
1997] gives an overview of the TI TMS320C62XX DSP processor, where the
function units are separated into several classes (four classes in this case). The
swapping can only be done with function units of the same class. This constraint
can be implemented by constructing bipartite edges only among microinstruc-
tions using function units in the same class. For example, in our model, mul-
tiply instructions can be assigned into four given function units, but in the
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case of TMS320C62XX, multiply operations can be done by the .Mx (M1 or M2)
units.

3.2 Vertical Scheduling

Although the discussions in the previous subsection are based on instruction
scheduling with horizontal movements, our vertical scheduling allows microin-
structions to move across instructions. Since we want to optimize power con-
sumption without degrading performance, care has to be taken so that no per-
formance penalty is incurred. Vertical scheduling is formally defined as follows.

Suppose we are given a performance-optimized VLIW scheduling (X ), data
dependence graph (DDG) for a basic block (B), and the total cycle time (T ) for
the execution of X . Let the given scheduling X be 〈X 1, X 2, . . . , X n〉 and the
instruction components of instruction X i:

X i = (xi,1, xi,2, . . . , xi,k), 1 ≤ i ≤ n.

The vertical scheduling is to find a scheduling Y where Y , is 〈Y1, Y2, . . . , Yn〉,
and the instruction components of instruction Yi are:

Yi = ( yi,1, yi,2, . . . , yi,k), 1 ≤ i ≤ n.

The vertical scheduling Y needs to satisfy the following constraints.

(1) There exists a bijection δ : A → B, where A = ⋃n
i=1{xi, j |xi, j ∈ X i} and

B = ⋃n
i=1{ yi, j | yi, j ∈ Yi}.

(2) The new scheduling obeys the original dependence, DDG.
(3) The cycle time of Y is less than or equal to T .

We then try to find the scheduling Y for the minimum bus transition activi-
ties, so that 6n−1

i=1 H(Yi, Yi+1) is minimized. The following theorem shows that
the problem to find the minimum scheduling Y for the vertical case is NP-hard.
For completeness, we give a simple and self-contained proof for Theorem 2,
which could also be proved by reducing from other NP-complete problems
[Papadimitriou 1995].

THEOREM 2. Suppose we are given a VLIW scheduling X for a basic block B.
Let the given scheduling X be 〈X 1, X 2, . . . , X n〉 and the instruction components
of X i be X i = (xi,1, xi,2, . . . , xi,k). Then the problem of finding a scheduling Y ,
where Y is 〈Y1, Y2, . . . , Yn〉, and a bijection δ satisfying the following criteria is
NP-hard.

(1) There exists a bijection δ : A → B, where A = ⋃n
i=1{xi, j |xi, j ∈ X i}, and

B = ⋃n
i=1{ yi, j | yi, j ∈ Yi}.

(2) The new scheduling obeys the original dependence, DDG. More for-
mally, ∀xi1, j1 , xi2, j2 ∈ A. Suppose there is a dependence between xi1, j1 and
xi2, j2 in DDG, and δ(xi1, j1 ) = yi′1, j ′1

, δ(xi2, j2 ) = yi′2, j ′2
. We will have (i

′
1, j

′
1)

precede (i
′
2, j

′
2). It means i

′
1 is smaller than i

′
2.

(3) The scheduling Y minimizes the bus transition activities; that is, Y mini-
mizes 6n−1

i=1 H(Yi, Yi+1), where the instruction components of instruction Yi
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are ( yi,1, yi,2, . . . , yi,k), where k is the number of microinstructions within
one VLIW instruction.

Now we want to show that the vertical scheduling is NP-hard. The extreme
case of this problem is that the DDG is an empty set. In that case, virtually
every instruction component of the instruction is allowed to move freely either
vertically or horizontally. Then the scheduling algorithm will take the longest
execution time of any other cases with data dependence constraints. We show
that a special case of this problem is indeed NP-hard. Thus it implies that the
general case is NP-hard. More specifically, we show a polynomial time reduction
from the famous Hamiltonian path problem to our special case. We review the
definition of the Hamiltonian path problem [Papadimitriou 1995] before we give
the proof. The problem is simply this: given a graph, is there a path that visits
each node exactly once? It is well known that the Hamiltonian path problem is
NP-complete.

PROOF. It is sufficient to prove NP-hardness for k = 1. In this case, the
problem turns out to be finding a permutation π for xi,1s, where 1 ≤ i ≤ n,
such that

∑n−1
i=1 H(xπi ,1, xπi+1,1) is minimized. We reduce the Hamiltonian path

problem to our special case.
Given an instance G of the Hamiltonian path problem with n vertices, for

each edge of G we assign weight 1 and assign M to each nonedge vertex pair,
where M is an integer and M > n. The nonedge vertex pair means the ver-
tex pair without connected edges. That is, we construct a complete graph with
weights 1 and M from G. Let’s call the new graph G ′. Now we can see G has
a Hamiltonian path if and only if the corresponding permutation has minimal
summation n− 1 over G ′. The corresponding permutation is the corresponding
problem in our vertical scheduling. It is clear that the reduction is polyno-
mial. The reduction is problem reduction. The conventional usage in reducing
a problem into another problem when trying to show a problem is NP-complete
or NP-hard. Therefore, our special case is NP-hard, and so is the general
version.

Since the problem is NP-hard, we propose a heuristic algorithm based on al-
lowable moving windows of instruction sets and bipartite-matching techniques
(see Figure 6).

Our algorithm is given an initial instruction placement X as input. The ini-
tial placement can be obtained from conventional instruction scheduling for
performance optimization. Our heuristic algorithm is to find a new scheduling
Y so that bus transition activities are minimized as much as possible. Other
given inputs to our algorithm for the rescheduling of instructions of a basic
block are the data dependence graph and critical path information. The data
dependence graph specifies the execution order among the components of given
instructions to obey the original program semantics. The critical path informa-
tion specifies how far an instruction component can be placed without incurring
a software performance penalty. The “critical path” is defined as the following.
Given the required arrival time of computational output data that is deter-
mined by the timing constraint, we can compute the required arrival time of
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Input : 1. Array X of VLIW instruction with n elements,i.e., X 1,X 2, . . . , X n, and
the instruction components of X i be X i = (xi,1, xi,2, . . . , xi,k).

2. Register Dependence Graph (DDG) and critical path information.
3. Allowable moving window size w.

Output: A new scheduling Y with lower power consumption.
Begin

Let Y1 = X 1.
Construct LowLayerSet with all microinstructions in X 2, X 3, . . . , X w.
for(i = 1; i < n; i ++)
{

a) Add X i+w into LowLayerSet.
b) Let Yi be UpLayer.
c) Build bipartite graph BG with UpLayer and LowLayerSet, where

the weight of edge from u ∈ UpLayer to l ∈ LowLayerSet is −h(u, l ).
d) Remove all edges linked to lq ∈ LowLayerSet, if lq is data dependent

on l p ∈ LowLayerSet.
e) Suppose l ∈ LowLayerSet is on critical path; we replace the weight of

edges from UpLayer to l by∞.
f) Perform maximum weight bipartite matching on BG to select new Yi+1.
g) Remove all y ∈ Yi+1 from LowLayerSet.

}
End

Fig. 6. A heuristic algorithm based on weighted bipartite-matching and allowable window for
vertical scheduling.

each node within the DDG by traversing the DDG from the required input data
to the computational output data. For any node Ci ∈ DDG, the timing slack is
defined as

T Slack(Ci) = Required ArrTime(Ci)− Actual ArrTime(Ci).

The critical node is a node whose timing slack is negative, and a critical path is
a signal path where the timing slack of every node down to this path is negative.

Our vertical scheduling algorithm proceeds to reschedule microinstructions
from the first instruction to the last. First, a window size w needs to be specified,
which defines the number of instructions that are allowed to be moved in each
iteration. Initially, the first instruction is rescheduled without changing it. Iter-
atively, the next w instructions are candidates to be selected and rescheduled to
minimize hamming distance. The microinstructions in the next w instructions
have to satisfy the data dependence and critical path constraints. To satisfy
the data dependence constraint, it is required that if the parents of a microin-
struction have not been assigned, the microinstruction should be removed from
the window, and wait for rescheduling in next iteration. The “parents of a mi-
croinstruction” indicates those other microinstructions that will generate the
computational outputs needed by this microinstruction. To satisfy the critical
path constraint, it is required that microinstructions that are on the critical
path be rescheduled by only a horizontal move.

We also model the vertical rescheduling of microinstructions as a weighted
bipartite-matching. A bipartite graph G = (UpLayer ∪ LowLayerSet, E) is
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Fig. 7. An example of bipartite matching for vertical scheduling

constructed, where UpLayer and LowLayerSet are bipartite and LowLayerSet
represents the microinstructions in the next w instructions that satisfy the data
dependence constraint. Each ui ∈ UpLayer represents a microinstruction in the
last instruction already scheduled and li ∈ LowLayerSet represents a microin-
struction to be scheduled. There is an edge linking ui and li if microinstruction
li can be assigned to the same bus as the microinstruction ui.

There are two ways to define the weights on edges. The first way is that li is
on the critical path. The weights on all edges linking li are defined as∞, which
guarantees that li will be selected in the matching. Otherwise, the weight on an
edge linking li and ui is defined as−h(ui, li), the hamming distance of ui and li.
Figure 7 illustrates the construction of a bipartite graph for vertical scheduling.
In this example, the window size is 2, l4 is on the critical path, and l2 is the
parent of l5 in the data dependence graph. Therefore edges linking l4 are set to
∞ and l5 is deleted from the window. Figure 6 gives our heuristic algorithm.

4. EXPERIMENTS

We use the Alphalike VLIW architecture described in Figure 1 of Section 2 as
the target architecture for our experiments. The proposed scheduling policy is
incorporated into the compiler tool with SUIF [Stanford Compiler Group 1994]
and MachSUIF Library [Smith 1998]. Figure 8 shows the three phases of com-
pilations in incorporating our algorithms into SUIF and MachSUIF systems. In
the first phase of SUIF compilation, we use the SUIF library to perform classical
compiler optimizations and exploit as much parallelism as possible. Next, we
follow the MachSUIF’s recommended steps to perform machine-dependent op-
timizations for the Alpha chip. In the third phase of our compilations, we work
on the optimizations with low-power issues. In this phase, we load the almost-
executable outputs from the MachSUIF library, and perform list scheduling to
get VLIW instruction sequences. We then execute the bipartite-matching algo-
rithm to schedule instructions to reduce the power consumption of VLIW archi-
tectures in the instruction bus. The Alpha assembly code (.s code) generated by
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Fig. 8. Our compiler phases on low power optimizations.

our software is annotated with additional information for VLIW instructions so
that the ATOM simulator [Digital Equipment Corp. 1994] can pick up the VLIW
instruction information. Some of the key items in the software implementation
are described below. In the implementation steps for VLIW scheduling and low
power optimization, we started from the class machine instr in MachSUIF li-
brary. The class machine instr is an extended class from the super class in gen
in the SUIF library. We use class machine instr and all its methods to get in-
formation about hardware architecture. In addition, we use “machineUtil.*”
source files for setting up compilation steps. Once the code is generated, we use
the ATOM simulator on the DEC Alpha UNIX v4.0 for simulations. Our cost
model, which is described in Section 2 for switching activities and hamming
distance, is incorporated into the ATOM for simulations.

Figure 9 gives the experimental result for the simulations on a four-way issue
architecture described in Section 2. The gray line represents the base informa-
tion which is the switching activities of the instruction bus for programs sched-
uled by list scheduling. It’s used as the baseline. The white line represents the
switching activities of the instruction bus for programs scheduled by our pro-
posed bipartite-matching scheme with horizontal scheduling. The improvement
(reduction) in switching activities ranges from 3.05 to 19.28% among test suites,
with an average of 13.30%. The test suites in the experiment include three parts.
The first five suites of Figure 9 are from the common integer benchmarks listed
in FAQ of comp.benchmarks [Aburto et al. 1997]. The next suite is the text
grep utility routine taken from GNU Grep v2.2. The rest of the 22 test suites
in Figure 9 are from GNU TextUtils v1.22. Those text-processing utilities are
all integer programs. The integer benchmarks tested with their self-attached
data set and we used those text utilities to process their own source files.

Focus is now directed to Figure 10 which gives the experimental result for
the simulations on an architecture similar to the previous experiment but
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Fig. 9. Switching activities with four-way issues.
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Fig. 10. Switching activities with eight-way issues.

with eight-way issues. Again, the gray line is the base information which
is the switching activities of the instruction bus for programs scheduled by
list scheduling. The white and gray color lines represent the results with
horizontal scheduling. The average improvement (reduction) in switching
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Fig. 11. Vertical scheduling switching activities with four-way issues.

activities is around 20.15% over the list scheduling by incorporating our
schemes.

Figure 11 shows the experimental results for vertical scheduling with a four-
way issue architecture. The gray line is the best case in four-way issue horizon-
tal scheduling. The black line is the vertical scheduling with w = 4. The white
line is the vertical scheduling with w = 8. The additional enhancement from
horizontal scheduling to vertical scheduling with window size four is around
4.57 to 10.42%, and the average is 7.66%. Similarly, the additional enhance-
ment with window size eight is from 6.99 to 15.25%, and the average is 10.55%.
Recently we learned the related work done by Ye et al. [2000]; they relabel the
registers to reduce the transition on the instruction bus. Their performance
gain is around 10%. We feel their methods differ from ours, but the perfor-
mance improvements are in line. An interesting open problem that remains to
be explored is how to combine these two schemes.

5. CONCLUSION

In this article we first described a model for calculating the bus switching activ-
ities of instruction executions on VLIW architectures. Based on the model, we
investigated the compiler transformation techniques to schedule VLIW instruc-
tions aimed at reducing the power consumption of VLIW architectures in the
instruction bus. Our experiment was done on Alpha-based VLIW architectures
and the ATOM simulator. Our compiler was implemented based on SUIF and
MachSUIF, and by incorporating our proposed schemes. Experimental results
showed significant improvements in power consumption over conventional list
scheduling for an extensive set of benchmarks by incorporating our proposed
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schemes. We think our work is important for a class of high-performance em-
bedded systems, where we need to address both high-performance computing
and power consumption issues.
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