
Enabling Compiler Flow for Embedded VLIW DSP Processors
with Distributed Register Files ∗

Chung-Kai Chen, Ling-Hua Tseng, Shih-Chang Chen, Young-Jia Lin,
Yi-Ping You, Chia-Han Lu, Jenq-Kuen Lee

Department of Computer Science
National Tsing Hua University

Hsinchu 30013, Taiwan

Abstract
High-performance and low-power VLIW DSP processors are in-
creasingly deployed on embedded devices to process video and
multimedia applications. For reducing power and cost in designs
of VLIW DSP processors, distributed register files and multi-bank
register architectures are being adopted to eliminate the amount of
read/write ports in register files. This presents new challenges for
devising compiler optimization schemes for such architectures. In
this paper, we address the compiler optimization issues forPAC ar-
chitecture, which is a 5-way issue DSP processor with distributed
register files. We present an integrated flow to address several
phases of compiler optimizations in interacting with distributed
register files and multi-bank register files in the layer of instruc-
tion scheduling, software pipelining, and data flow optimizations.
Our experiments on a novel 32-bit embedded VLIW DSP (known
as the PAC DSP core) exhibit the state of the art performance for
embedded VLIW DSP processors with distributed register files by
incorporating our proposed schemes in compilers.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; D.3.4 [Programming Languages]:
Processors—Optimization

General Terms Languages

Keywords Embedded VLIW DSP Compilers, Distributed Regis-
ter Files, Software Pipelining

1. Introduction
The PAC DSP processor [7], employs a five-way-issue VLIW ar-
chitecture with distributed clustered register file. In addition, there
are multi-bank register files in each cluster. It also incorporates a
banking technique called “ping-pong” register file structure, which
is divided into two banks and in which banks can only be restrict-
edly accessible in a mutual-exclusive way. PAC is targeted to meet

∗This work was supported by NSC under grant No. NSC 95-2220-E-007-
001 and NSC 95-2220-E-007-002, and MOEA research project under grant
No. 95-EC-17-A-01-S1-034 and 96-EC-17-A-01-S1-034.

Copyright is held by the author/owner(s).

LCTES’07 June 13–16, 2007, San Diego, California, USA.
ACM 978-1-59593-632-5/07/0006.

the requirements for multimedia and communication services on
the next-generation mobile devices with reasonable hardware cost
and flexibility, while the applications on these devices, such as
H.264 decoding and encoding for video streaming, demand high
computational power and low power consumption simultaneously.

The appearances of multi-banks of register files, distributed reg-
ister clusters, and ping-pong architectures on embedded VLIW
DSP processors present a great challenge for compilers to generate
efficient codes for multimedia applications. In the literature, cur-
rent research results in compiler optimizations for such problems
have been limited to address issues for cluster-based architectures.
It includes the work on partitioning register files to work with in-
struction scheduling [1], loop partitions for clustered register files
[2], and global register allocations for cluster register files [3]. The
work in [4] begins to address this complex optimization issue for
embedded DSP processors, but only in the layer of copy propaga-
tion optimizations.

In our work, we address the complex optimization issues
in meeting the challenges of features with multi-bank register
files, distributed register clusters, and ping-pong architectures. We
present a compiler flow to address the issues based on the well-
known open-source compiler infrastructure, Open ResearchCom-
piler (ORC), to utilize the state-of-the-art compiler technologies in
adressing the limited connectivity issues in register files. We ad-
dress issues both for instruction scheduling and software pipelin-
ing. A hybrid optimization scheme is proposed in our supportfor
instruction scheduling in interacting with register allocations. We
first employ a graph-partitioning-like method with severalassign-
ment policies to better utilize the distributed and ping-pong register
file architectures. The result is then used as a pre-conditioner for the
second phase simulated annealing (SA) based approach for tuning
the performance. Since the SA requires to be processed within a
limited iterations (controlled bythreshold), an appropriate initial
point usually ensures a good result. In addition, we also present
a modulo scheduling scheme to simultaneously address the issues
with distributed clustered register file, multi-bank register files, and
ping-pong register files for VLIW DSP processors. The schemeis
based on the concept of multiple-phase register allocations, ping-
pong constraint-aware scheduling, and register bank assignments
based on wild-card schemes. The scheme looks promising in our
initial experiments to address this complex optimization issue for
software pipelining. Our experiments are done with PAC ISS and
with DSP stone benchmarks. The experimental results shows our
scheme can deliver the state of the art performances for embed-
ded VLIW DSP processors with irregular register files and limited
connectivities.



2. PAC Architecture
The PAC DSP employs a five-way-issue VLIW architecture with
the heterogeneous design that equips one singular scalar unit (B-
unit) for light-weight arithmetic, address calculation, and program
flow control, plus two data stream processing clusters in which each
one contains a pair of load/store unit (M-unit) and ALU/MAC unit
(I-unit) with powerful SIMD capabilities; two types of register files
are disposed for each unit in the clusters, providing different ac-
cessing manners and constraints; the B-unit has its own accessible
register file deployed. The A, AC, and R register files are local reg-
isters that are directly attached to and only accessible by the M-,
I-, and B-units, respectively; the D register files are shared within a
cluster. The distributed register files and the clustered organizations
reduce the wire connections between functional units and regis-
ters in the hardware design, and thereby decrease the chip area and
power consumption. Another major feature adopted by the register
file architectures in the PAC DSP to further reduce the read/write
ports needed is that it incorporates a banking technique called as
the “ping-pong” register file structure, which is divided into two
banks and in which banks can only be restrictedly accessiblein a
mutual-exclusive way, as the M and I-units in a cluster can only
access the different banks in the same time. Additionally, aunique
design used in the PAC DSP, to allow the intercluster communica-
tion through the internal data-routing paths in the memory inter-
face unit which connects with all B- and M-units, simplifies the
implementation of intercluster communication compared toother
existing schemes [5], providing more reduction of area sizeand ac-
cess time [6]. With the featured register file organizationsand het-
erogeneous architectures, not only does the clustered design make
register access across clusters an additional issue, but the switched
access nature of the register file demands the new exploration into
optimizing code generations. The main focus will be addressing
the instruction scheduling in interacting with register allocations
and software pipelining issues to address the issues with distributed
clustered register file, multi-bank register files, and ping-pong reg-
ister files for VLIW DSP processors.

3. Register Allocation & Instruction Scheduling
In our work, we try to enable ORC compiler flow for PAC em-
bedded VLIW DSP processors. After going through the lowering
and WHIRL-level optimization phases, the back-end driver calls
the code generator to translate the WHIRL IR into CGIR (Code
Generation Intermediate Representation), with our efforts to sup-
port the PAC target processor. We propose a heuristic algorithm,
calledping-pong aware local favorable (PALF) register allocation,
to improve the register allocation by efficiently utilizingthe irregu-
lar register file architectures in the PAC DSP. The algorithmappro-
priately considers various characteristics in accessing different reg-
ister files, and attempts to minimize the penalty associatedwith the
interference between register allocation and instructionschedul-
ing, while retaining desirable parallelism despite ping-pong register
constraints and intercluster overheads. Gven a dependencyDAG
(directed acyclic graph) that describes the compilation regions,
PALF heuristically determines the appropriate register file/bank as-
signment and employs state-of-the-art graph-coloring register allo-
cation for each assigned register file/bank in PAC architectures. An
overall flowchart of the proposed register allocation algorithm is
shown in Fig. 1.

SA-based Refinements

Once the initial point is obtained, we then proceed with a simu-
lated annealing scheme for further tunings. The design extends that
of Leupers [1] and Lee [8] using a combined instruction schedul-
ing/cluster assignment algorithm to iteratively approachthe near-

Maximal

Localization

Register File

Assignment

Ping-pong

Register Bank

Assignment

Cluster

Assignment

Communication

Code Insertion

Postpass

Register

Allocation

Build

CRTA-DDG

Two-Cluster Code?
Yes

No

Figure 1. The flowchart of the PALF register allocation scheme

optimal result. In brief, the algorithm operates by first generating
a random cluster partitioning of instructions, and a modified list
scheduler (LS) then schedules the partitioned instructions whilst
inserting/managing cross-cluster communications. The subsequent
iterations involve random changes to the partitioning state and re-
running of the LS. The LS returns the obtained schedule length of
the instructions as the “energy” value used in a usual SA optimiza-
tion process, representing an evaluation of the current partitioning
state. Depending on whether a random change results in improve-
ment or deterioration, it will be retained or discarded. This process
is iterated until the energy/evaluation falls to below a threshold at
which we are confident that the obtained optimization state is of
sufficient quality.

4. Software Pipelining
4.1 Ping-pong Constraint aware Modulo Scheduling

In addition to the resource constraint and the recurrence constraint,
the ping-pong constraint is also checked when trying to schedule in-
structions into execution slots. In order to examine if the ping-pong
constraint is followed, the compiler maintains a mark for each cy-
cle to keep track of ping-pong agreements. The extended resource
reservation table is now with ping-pong agreement (PPA) fields.
The PPA fields determine the accessibility of ping-pong registers
at each cycle. ThePPA field for each cycle are empty initially un-
til instructions that use ping-pong registers are scheduled into that
cycle. Once thePPA field of one cycle is set, the following instruc-
tions willing to be scheduled into that cycle must comply with its
ping-pong agreement.

4.2 Multi-phase Register Allocation

In the traditional software pipelining technology dealingwith uni-
form register files, register allocation can be done independently
after the instruction scheduling. But for the case with distributed
register files, there are usually scheduling constraints depending on
the registers used. The ping-pong constraint in PAC is one example.
It is obvious that we can not hold back the register allocation phase
till the scheduling is done.

Fortunately, these kinds of constraints are usually related to
which register bank is used rather than which register is used. The
solution we proposed here is to split the register allocation into
multiple phases. We assign virtual registers to appropriate register
banks before the scheduling. Once the scheduling is completed,
they will be further allocated precisely for each bank.

The early assignment of register banks might lead to unbalanced
bank usage due to the lack of lifetime information deriving from the
scheduling. We have developed a heuristic strategy to alleviate this
side effect.

Figure 2 shows the proposed software pipelining flow with
splitted register allocation phases, which includes the following
items.

1. Restricted M/I Selection

We use an M/I selection algorithm similar with the one used
earlier in PALF (Section 3) to lower the necessity of using D



S c h e d u l eF o u n d
A l l o c a t i o nF o u n d

D e t e r m i n e M I IM o d u l oS c h e d u l i n g I n c r e a s e I IR e g i s t e rA l l o c a t i o n
C o d e b u n d l i n g& E m i s s i o nY e s

N oY e s
N oR e g i s t e rT r a n s f o r m a t i o n

M / I S e l e c t i o nR e g i s t e r B a n kA s s i g n m e n t

Figure 2. The modulo scheduling flow with multi-phase register
allocation.

registers. PALF scheme prefers the local register bank and then
does graph partitioning scheme in case the local register first
rule can’t be applied. The only difference is that here we need
to put an additional constraint on the number of resulting M
or I instructions. It is important not to overuse certain type of
instructions so that the ResMII(Resource Minimum Initiation
Interval) exceeds the current II, or it will be impossible tofind
a feasible scheduling.

2. Register Bank Assignment

After the M/I selection, we apply a simple strategy to arrange
register banks to use. The D register banks are assigned only
when it is necessary. Otherwise A/AC registers are preferred.
Since the codes are not in single assignment form, it is possible
that copy instructions are inserted to move data between D and
local registers.

3. Register Allocation with Transparent Register Transforma-
tion

As mentioned before, the early bank assignment may cause
unbalanced allocation. This problem can be eased by the fol-
lowing step. We can try to find a set of “transparent registers”
which can be promoted from local register to D register (ping-
pong register) bank. These transformations turn the use of lo-
cal registers to global registers. The “transparent” meansthey
won’t cause ping-pong constraint violation for the scheduling
currently found.

5. Experiments & Summary
Preliminary experiments were performed using DSPstone bench-
marks [9]. Figure 3 shows the performance of our compiler im-
plementation on DSPstone benchmarks. The X-axis lists the name
of each tested benchmark program. The Y-axis is given with the
speedup of three compiler settings compared with -O0. The -O0
version is the base version for comparison, and it’s the version with
our retargetting effort from ORC to PAC without consideringthe
effect of distributed register file. The instruction scheduling tech-
nique proposed in Section 3 is enabled in -O1. The revised soft-
ware pipelining technique in Section 4 is enable in -O2. We can
see that for -O1 we get the speedup from 13% to 45% over the
base -O0 version. For -O2 we get the speedup from 16% to 500%

Figure 3. DSPstone benchmark performance with four compiler
options.

over the base -O0 version. We can see significant speedups from
-O1 to -O2. In addition, the fourth set of compiler options consists
of explicit parameters controlling the unroll of loop bodies, IPA
(inter-procedural analysis) and LNO (loop optimizations). It shows
that our optimization scheme can work with IPA and LNO to fur-
ther optimize performance from 200% to 1000% over the base -O0
version. In summary, our experiments on a novel 32-bit embedded
VLIW DSP (known as the PAC DSP core) exhibit the state of the art
performance for embedded VLIW DSP processors with distributed
register files by incorporating our proposed schemes in compilers.

References
[1] R. Leupers, Instruction scheduling for clustered VLIW DSPs, InPACT,

pages 291-300, Oct. 2000.

[2] Y. Qian and S. Carr and P. Sweany, Optimizing loop performance for
clustered VLIW architectures, InThe 2002 International Conference
on Parallel Architectures and Compilation Techniques, pages 271- 280,
Sept. 2002.

[3] J. Hiser, S. Carr, and P. Sweany, Global Register Partitioning, InProc.
Ninth Intl Conf. Parallel Architectures and Compilation Techniques, pp.
13-23, Oct. 2000.

[4] Chung-Ju Wu, Sheng-Yuan Chen, and Jenq-Kuen Lee, Copy
Propagation Optimizations for VLIW DSP Processors with Distributed
Register Files, InLCPC, 2006.

[5] A. Terechko, E. L. Thenaff, M. Garg, Eijndhoven, and H. Corporaal.
Inter-cluster communication models for clustered VLIW processors.
Procs. HPCA, 2003; 354–364.

[6] T.-J. Lin, P.-C. Hsiao, C.-W. Liu, and C.-W. Jen. Area-efficient register
organization for fully-synthesizable VLIW DSP cores. International
Journal of Electrical Engineering, vol. 13, May 2006.

[7] David Chang and Max Baron. Taiwan’s Roadmap to Leader-
ship in Design. Microprocessor Report, In-Stat/MDR, Dec. 2004.
http://www.mdronline.com/mpr/archive/mpr2004.html

[8] Yung-Chia Lin, Chung-Lin Tang, Chung-Ju Wu, Ming-Yu Hung,
Yi-Ping You, Ya-Chiao Moo, Sheng-Yuan Chen and Jenq Kuen Lee,
Compiler Supports and Optimizations for PAC VLIW DSP Processors,
In LCPC, 2005.

[9] V. Zivojnovic, J. Martinez, C. Schläger and H. Meyr. DSPstone: A
DSP-Oriented Benchmarking Methodology.Proc. of ICSPAT, Dallas,
1994.


