Enabling Compiler Flow for Embedded VLIW DSP Processors
with Distributed Register Files *

Chung-Kai Chen, Ling-Hua Tseng, Shih-Chang Chen, Youad-i#i,
Yi-Ping You, Chia-Han Lu, Jeng-Kuen Lee

Department of Computer Science
National Tsing Hua University
Hsinchu 30013, Taiwan

Abstract

High-performance and low-power VLIW DSP processors are in-
creasingly deployed on embedded devices to process vidéo an

multimedia applications. For reducing power and cost irigihess
of VLIW DSP processors, distributed register files and rriodtink
register architectures are being adopted to eliminaternttmuat of
read/write ports in register files. This presents new chghks for
devising compiler optimization schemes for such archites. In
this paper, we address the compiler optimization issueBAQr ar-
chitecture, which is a 5-way issue DSP processor with disteid

register files. We present an integrated flow to address aever

phases of compiler optimizations in interacting with disited
register files and multi-bank register files in the layer cftinc-
tion scheduling, software pipelining, and data flow optiatians.

Our experiments on a novel 32-bit embedded VLIW DSP (known
as the PAC DSP core) exhibit the state of the art performaoice f

embedded VLIW DSP processors with distributed registes e
incorporating our proposed schemes in compilers.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; D.3.Rfogramming Languages):
Processors—Optimization

General Terms Languages

Keywords Embedded VLIW DSP Compilers, Distributed Regis-

ter Files, Software Pipelining

1. Introduction

The PAC DSP processor [7], employs a five-way-issue VLIW ar-

chitecture with distributed clustered register file. In iéidd, there
are multi-bank register files in each cluster. It also incoapes a
banking technique called “ping-pong” register file struefuwhich
is divided into two banks and in which banks can only be refstri
edly accessible in a mutual-exclusive way. PAC is targatadeet

* This work was supported by NSC under grant No. NSC 95-2220°E-
001 and NSC 95-2220-E-007-002, and MOEA research projetngrant
No. 95-EC-17-A-01-S1-034 and 96-EC-17-A-01-S1-034.

Copyright is held by the author/owner(s).

LCTES’07 June 13-16, 2007, San Diego, California, USA.
ACM 978-1-59593-632-5/07/0006.

the requirements for multimedia and communication sesvime
the next-generation mobile devices with reasonable hamla@st
and flexibility, while the applications on these devices;lsas
H.264 decoding and encoding for video streaming, demani hig
computational power and low power consumption simultaskou

The appearances of multi-banks of register files, distethueg-
ister clusters, and ping-pong architectures on embeddedVVL
DSP processors present a great challenge for compilersiarage
efficient codes for multimedia applications. In the litewrat, cur-
rent research results in compiler optimizations for suatbfams
have been limited to address issues for cluster-basedectires.

It includes the work on partitioning register files to worktlvin-
struction scheduling [1], loop partitions for clusteredister files
[2], and global register allocations for cluster registkasfi[3]. The
work in [4] begins to address this complex optimization e$or
embedded DSP processors, but only in the layer of copy peepag
tion optimizations.

In our work, we address the complex optimization issues
in meeting the challenges of features with multi-bank regis
files, distributed register clusters, and ping-pong aectitres. We
present a compiler flow to address the issues based on the well
known open-source compiler infrastructure, Open Rese@orh-
piler (ORC), to utilize the state-of-the-art compiler taologies in
adressing the limited connectivity issues in register fild%e ad-
dress issues both for instruction scheduling and softwarelip-
ing. A hybrid optimization scheme is proposed in our suppart
instruction scheduling in interacting with register alitions. We
first employ a graph-partitioning-like method with seveaakign-
ment policies to better utilize the distributed and pingngoegister
file architectures. The resultis then used as a pre-conditifor the
second phase simulated annealing (SA) based approacmfogtu
the performance. Since the SA requires to be processednvéthi
limited iterations (controlled byhreshold), an appropriate initial
point usually ensures a good result. In addition, we alseere
a modulo scheduling scheme to simultaneously addressdbess
with distributed clustered register file, multi-bank regidfiles, and
ping-pong register files for VLIW DSP processors. The schame
based on the concept of multiple-phase register allocsitipimg-
pong constraint-aware scheduling, and register bank rassigts
based on wild-card schemes. The scheme looks promisingrin ou
initial experiments to address this complex optimizatissuie for
software pipelining. Our experiments are done with PAC 188 a
with DSP stone benchmarks. The experimental results shaws o
scheme can deliver the state of the art performances for @mbe
ded VLIW DSP processors with irregular register files andtéh
connectivities.



2. PAC Architecture

Build Maximal Register File A
The PAC DSP employs a five-way-issue VLIW architecture with x> <CRTA-DDG>_' ization || Assi | Register Bank

the heterogeneous design that equips one singular scatgiBun
unit) for light-weight arithmetic, address calculatiomdaprogram
flow control, plus two data stream processing clusters ircivbach
one contains a pair of load/store unit (M-unit) and ALU/MAGit
(I-unit) with powerful SIMD capabilities; two types of regjer files
are disposed for each unit in the clusters, providing diffierac-
cessing manners and constraints; the B-unit has its owrssibte
register file deployed. The A, AC, and R register files arellosg:
isters that are directly attached to and only accessiblenbyMm-,
I-, and B-units, respectively; the D register files are sthavithin a
cluster. The distributed register files and the clustergdmizations
reduce the wire connections between functional units agé+e
ters in the hardware design, and thereby decrease the esiaad
power consumption. Another major feature adopted by thisteg
file architectures in the PAC DSP to further reduce the reatdw
ports needed is that it incorporates a banking techniqueccak
the “ping-pong” register file structure, which is divideddrntwo
banks and in which banks can only be restrictedly accessilde

mutual-exclusive way, as the M and I-units in a cluster caly on

access the different banks in the same time. Additionallyigue
design used in the PAC DSP, to allow the intercluster comoauni
tion through the internal data-routing paths in the memateri
face unit which connects with all B- and M-units, simplifidet
implementation of intercluster communication compareattoer
existing schemes [5], providing more reduction of area aimtac-
cess time [6]. With the featured register file organizatiand het-
erogeneous architectures, not only does the clusteredrdesike
register access across clusters an additional issue,doatitched
access nature of the register file demands the new exploratio
optimizing code generations. The main focus will be addngss
the instruction scheduling in interacting with registeloahtions
and software pipelining issues to address the issues veittitdited
clustered register file, multi-bank register files, and giong reg-
ister files for VLIW DSP processors.

3. Register Allocation & Instruction Scheduling

In our work, we try to enable ORC compiler flow for PAC em-
bedded VLIW DSP processors. After going through the lowgrin
and WHIRL-level optimization phases, the back-end drivaisc
the code generator to translate the WHIRL IR into CGIR (Code
Generation Intermediate Representation), with our effartsup-
port the PAC target processor. We propose a heuristic afgoyi
calledping-pong aware local favorable (PALF) register allocation,
to improve the register allocation by efficiently utilizitige irregu-
lar register file architectures in the PAC DSP. The algoritippro-
priately considers various characteristics in accessiferent reg-
ister files, and attempts to minimize the penalty associatddthe
interference between register allocation and instructionedul-
ing, while retaining desirable parallelism despite pirtng register
constraints and intercluster overheads. Gven a dependeAGy
(directed acyclic graph) that describes the compilatiogiores,
PALF heuristically determines the appropriate registertfiink as-
signment and employs state-of-the-art graph-coloringstegallo-
cation for each assigned register file/bank in PAC architest An
overall flowchart of the proposed register allocation althan is
shown in Fig. 1.

SA-based Refinements

Once the initial point is obtained, we then proceed with ausim
lated annealing scheme for further tunings. The desigmdstthat
of Leupers [1] and Lee [8] using a combined instruction scihed
ing/cluster assignment algorithm to iteratively appro#ud near-

Ping-pong

Postpass Communication Cluster
i - 2
< Reglst_er — Code Insertion Assignment Two-Cluster Code?
Allocation
1 No

Figure 1. The flowchart of the PALF register allocation scheme

optimal result. In brief, the algorithm operates by first gieting
a random cluster partitioning of instructions, and a modifist
scheduler (LS) then schedules the partitioned instrustiehilst
inserting/managing cross-cluster communications. Theeguent
iterations involve random changes to the partitioningestatd re-
running of the LS. The LS returns the obtained schedule teafjt
the instructions as the “energy” value used in a usual SAvopé-
tion process, representing an evaluation of the curreritipaing
state. Depending on whether a random change results in veypro
ment or deterioration, it will be retained or discarded.sIiocess
is iterated until the energy/evaluation falls to below a#old at
which we are confident that the obtained optimization statef i
sufficient quality.

4. Software Pipelining
4.1 Ping-pong Constraint aware Modulo Scheduling

In addition to the resource constraint and the recurrenostcaint,
the ping-pong constraint is also checked when trying todualedn-
structions into execution slots. In order to examine if thegong
constraint is followed, the compiler maintains a mark focreay-
cle to keep track of ping-pong agreements. The extendedineso
reservation table is now with ping-pong agreemerraj fields.
The PPA fields determine the accessibility of ping-pong registers
at each cycle. Thera field for each cycle are empty initially un-
til instructions that use ping-pong registers are schetlint that
cycle. Once thePA field of one cycle is set, the following instruc-
tions willing to be scheduled into that cycle must complyhnits
ping-pong agreement.

4.2 Multi-phase Register Allocation
In the traditional software pipelining technology dealingh uni-

form register files, register allocation can be done inddpatly
after the instruction scheduling. But for the case withrdisted
register files, there are usually scheduling constraineading on
the registers used. The ping-pong constraint in PAC is oamegie.
It is obvious that we can not hold back the register allocatibase
till the scheduling is done.

Fortunately, these kinds of constraints are usually relate
which register bank is used rather than which register id.Lifbe
solution we proposed here is to split the register allocatido
multiple phases. We assign virtual registers to appropriegister
banks before the scheduling. Once the scheduling is coetplet
they will be further allocated precisely for each bank.

The early assignment of register banks might lead to unbatan
bank usage due to the lack of lifetime information deriviranf the
scheduling. We have developed a heuristic strategy toiatkethis
side effect.

Figure 2 shows the proposed software pipelining flow with
splitted register allocation phases, which includes tHewdng
items.

1. Restricted M/l Selection

We use an M/I selection algorithm similar with the one used
earlier in PALF (Section 3) to lower the necessity of using D



Determine MII

M/I Selection

Modulo Register Bank
Scheduling Assignment
Schedule Increase 11
Found
No
Yes
Register

Register
Transformation

Allocation
Found
Yes

Code bundling
& Emission

!

Allocation

orcc -02 -PHASE:w:| -
LNO:full_unroll=5:0uter
_unroll_prod_max=4 -
SWP:=on -IPA

1 orcc -00

M orcc -O1 orcc -02

Figure 2. The modulo scheduling flow with multi-phase register
allocation.

registers. PALF scheme prefers the local register banktze t
does graph partitioning scheme in case the local registdr fir
rule can’'t be applied. The only difference is that here wednee
to put an additional constraint on the number of resulting M
or | instructions. It is important not to overuse certaineyqf
instructions so that the ResMII(Resource Minimum Initiati
Interval) exceeds the current Il, or it will be impossiblefitzd

a feasible scheduling.

. Register Bank Assignment
After the M/I selection, we apply a simple strategy to areang

register banks to use. The D register banks are assigned only

when it is necessary. Otherwise A/AC registers are prederre
Since the codes are not in single assignment form, it is plassi
that copy instructions are inserted to move data betweendD an
local registers.

. Register Allocation with Transparent Register Transforma
tion
As mentioned before, the early bank assignment may cause
unbalanced allocation. This problem can be eased by the fol-
lowing step. We can try to find a set of “transparent registers
which can be promoted from local register to D register (ping
pong register) bank. These transformations turn the use-of |
cal registers to global registers. The “transparent” mehag
won't cause ping-pong constraint violation for the schewyl
currently found.

5. Experiments & Summary

Preliminary experiments were performed using DSPstonetben
marks [9]. Figure 3 shows the performance of our compiler im-
plementation on DSPstone benchmarks. The X-axis listsdh@en

of each tested benchmark program. The Y-axis is given wih th
speedup of three compiler settings compared with -O0. Tt -O
version is the base version for comparison, and it's themensith

our retargetting effort from ORC to PAC without considerithg
effect of distributed register file. The instruction schiguly tech-
nigue proposed in Section 3 is enabled in -O1. The revised sof
ware pipelining technique in Section 4 is enable in -O2. We ca
see that for -O1 we get the speedup from 13% to 45% over the
base -O0 version. For -O2 we get the speedup from 16% to 500%

Figure 3. DSPstone benchmark performance with four compiler
options.

over the base -O0 version. We can see significant speedups fro
-01 to -02. In addition, the fourth set of compiler options consists
of explicit parameters controlling the unroll of loop boslidPA
(inter-procedural analysis) and LNO (loop optimizations$hows
that our optimization scheme can work with IPA and LNO to fur-
ther optimize performance from 200% to 1000% over the bage -O
version. In summary, our experiments on a novel 32-bit emibed
VLIW DSP (known as the PAC DSP core) exhibit the state of the ar
performance for embedded VLIW DSP processors with disteithu
register files by incorporating our proposed schemes in dersp

References

[1] R. Leupers, Instruction scheduling for clustered VLIVBBs, INPACT,
pages 291-300, Oct. 2000.

[2] Y. Qian and S. Carr and P. Sweany, Optimizing loop perfamoe for
clustered VLIW architectures, Ifihe 2002 International Conference
on Parallel Architectures and Compilation Techniques, pages 271- 280,
Sept. 2002.

[3] J. Hiser, S. Carr, and P. Sweany, Global Register Ramtitg, InProc.
Ninth Intl Conf. Parallel Architectures and Compilation Techniques, pp.
13-23, Oct. 2000.

[4] Chung-Ju Wu, Sheng-Yuan Chen, and Jeng-Kuen Lee, Copy
Propagation Optimizations for VLIW DSP Processors withtilhsited
Register Files, Ih.CPC, 2006.

[5] A. Terechko, E. L. Thenaff, M. Garg, Eijndhoven, and H.r@araal.
Inter-cluster communication models for clustered VLIW gassors.
Procs. HPCA, 2003; 354—-364.

[6] T.-J. Lin, P.-C. Hsiao, C.-W. Liu, and C.-W. Jen. Aredigént register
organization for fully-synthesizable VLIW DSP cores. Imtational
Journal of Electrical Engineering, vol. 13, May 2006.

[7] David Chang and Max Baron. Taiwan’s Roadmap to Leader-
ship in Design. Microprocessor Report, In-Stat/MDR, De@04
http://www.mdronline.com/mpr/archive/m004.html

[8] Yung-Chia Lin, Chung-Lin Tang, Chung-Ju Wu, Ming-Yu Hyn
Yi-Ping You, Ya-Chiao Moo, Sheng-Yuan Chen and Jeng Kuen Lee
Compiler Supports and Optimizations for PAC VLIW DSP Praes,

In LCPC, 2005.

[9] V. Zivojnovic, J. Martinez, C. Schlager and H. Meyr. DSéne: A
DSP-Oriented Benchmarking Methodolodgroc. of ICSPAT, Dallas,
1994.



