
1

Building Ontology for Optimization and
Composition of Parallel JavaBean Programs

Cheng-Wei Chen, Chung-Kai Chen, Jenq-Kuen Lee,
Department of Computer Science
National Tsing Hua University

Hsinchu 30043, Taiwan
{cwchen, ckchen}@pllab.cs.nthu.edu.tw and jklee@cs.nthu.edu.tw

Abstract— In this paper, we propose an ontology specifi-
cation for JavaBean programs, the object component model
of Java. Our specification is written using the DAML+OIL lan-
guage, which is based on the RDF schema and the XML syn-
tax. The vocabulary of this ontology provides a basic termi-
nology to annotate components with the information about
the conditions and suggestions of adopting a component for
component specializations. It also gives a reference critera
for choosing the most suitable components at a given time
and environment for performances and functionality pur-
poses. With our design of the annotations, it’s also possible
to automatically retrieve the annotations of object compo-
nents, connect them by their object-oriented relationships,
organize them to form component databases, and discover
them in the databases by component characteristics. This
will facilitate the sharing of component resources in the in-
ternets. In addition, we also give an application scenario for
employing this ontology specification. In our research work,
we have been working on enabling the techniques for the
run-time composition of parallel components. The employ-
ment of runtime compositions of components and the on-
tology specification proposed in this paper enable programs
to adapt objects dynamically according to application and
architecture characteristics. We demonstrate the employ-
ment of this ontology specification for adapting a parallel
matrix component for performance purposes. This work
provides a new direction for automatically enhancing long-
running components by allowing components to improve and
specialize themselves continuously in terms of performances
and functionality.

Keywords— Ontology Specifications, Parallel Javabean
Programs, Runtime Component Compositions, Code Spe-
cializations, Runtime Optimizations, Clustered EJB.

I. Introduction

With the non-stopping spread of the network facilities,
billions of computers have been connected to the internet to
share their resources. The data distributed on this growing
environments are so huge and diverse, it becomes an impor-
tant issue to find an efficient way to use and adopt them.
The technologies in mining the information and searching
for useful data on the web are done mainly by searching
engines to locate the data of interest. Recent progresses
have also adopted the approach to connect the information
in the web by their semantic relationship. The semantic
web [12] is formed on this purpose. The semantic web ap-
proach is an attempt to give more standard terminology
and ontology for application domains so that the catalog

The work was supported in part by NSC of Taiwan under grant
no. NSC-89-2213-E-019-019, NSC-90-2213-E-019-016, NSC-89-2218-
E-007-023, NSC-89-2219-E-007-012, and MOE research excellent
project under grant no. 89-E-FA04-1-4.

of products, the contents of literature, and the information
for merchandise can be searched and analyzed in internet
environments with precision.

In addition to the annotations and ontology descriptions
for data in application domains, the building of ontology
descriptions for software component are also important.
We consider several possible scenarios below. First, ap-
plication writers can describe the software specification for
the software components in the design process of their soft-
ware systems. If the ontology descriptions for components
are annotated properly, many of the component module
could be found via web search in the future. Due to object-
oriented techniques, the component resources have com-
mon information associated with them, the interfaces they
implements. Additional descriptions can be added. For
example, a MP3 decoding component may have the version
number information, the computing power needed for the
lowest sound quality acceptable, the memory footprint of
its implementation, and the license about its usage. These
properties, we called metadata, address the difference be-
tween the implementations of the interface. It helps us
search not only the kind of components, but also specific
realizations. Next, let’s consider another scenario. If the
components of applications are allowed to be re-composed
at runtime, the selection of a specialized component for spe-
cialized architectures, application characteristics, or addi-
tional functionality requirements can be done with proper
annotations for component characteristics.

In this paper, we propose an ontology specification for
JavaBean programs to attempt to address the issues above.
Our specification is written using the DAML+OIL[5] lan-
guage, which is based on the RDF[13] schema and the
XML[11] syntax. The vocabulary of this ontology provides a
basic terminology to annotate components with the infor-
mation about the conditions and suggestions of adopting
a component for component specializations. It also gives a
reference critera for choosing the most suitable components
at a given time and environment for performances and func-
tionality purposes. With our design of the annotations, it’s
also possible to automatically retrieve the annotations of
object components, connect them by their object-oriented
relationships, organize them to form component databases,
and discover them in the databases by component char-
acteristics. This will facilitate the sharing of component
resources in the internets. Our annotations are with ad-



ditional interfaces a component implements, and they are
embedded into components so that the ontology interfaces
annotated in our design can be investigated by Java reflec-
tion API’s. In addition, we also give an application scenario
for employing this ontology specification. In our research
work, we have been working on enabling the techniques
for the run-time composition of parallel components. The
employment of runtime compositions of components and
the ontology specification proposed in this paper enable
programs to adapt objects dynamically according to ap-
plication and architecture characteristics. We demonstrate
the employment of this ontology specification for adapt-
ing a parallel matrix component for performance purposes.
This work provides a new direction for automatically en-
hancing long-running components by allowing components
to improve and specialize themselves continuously in terms
of performances and functionality.

The remainder of this paper is organized as follows. Sec-
tion II presents the component annotations. Next, Section
III gives resource sharing scenario, and Section IV presents
our proposed ontologies. and finally Section V presents
experimental results.

II. The Presentation of Component Annotations

In this section, we give annotation mechanism for com-
ponent writers to provide detailed characteristics for appli-
cation components. The information can include the time
complexity of the operation, the maximum latency of re-
sponse, etc. They are known only by the programmers
who had implemented them and should be annotated into
components in the design and implementation stages. A
convenient and flexible form to present such information is
an important issue of component model design.

There are several ways to embed such data into a com-
ponent. For example, to put them in the data fields of the
component, to record them in a file associated with the
component, or to have them be returned by the methods
of components, etc. In our research, we propose to present
the annotations as interfaces, called annotation interfaces,
which are additional interfaces the components implement.
For example, as shown in the RHS of Figure 1, the ver-
sion number annotation can be represented as an interface
called Version with a method getVersion(). The version
number information is then returned by the result of invok-
ing getVersion(). The first two diagams in Figure 1 give
the annotations into a field or a method of a component,
respectively. We do not adopt those two schemes in our
proposed research framework. Our proposed annotation
for components is mainly based on the following reasons:
1. The annotations can be mutable. The major rea-
son not to store these annotation information somewhere is
that the properties of the component may change dynam-
ically. Using an interface or a method gives more dynamic
extent for the specification of a component.
2. The annotations can be grouped. The interface
design allows us to group the methods a component im-
plements. We can define a class of interfaces that extends
several annotation interfaces[9]. Thus they will contain all

Fig. 1. Various ways to annotate a component.

the methods of the extended interfaces and work as an an-
notation collection. For example, the annotations usually
found on the component generating animation frames can
be grouped in a annotation collection called Animation,
and the annotations usually found on the component han-
dling audio codec can be grouped in a annotation collection
called Audio. The annotation interface collections Audio
and Animation can further form the Video annotation in-
terface collection.
3. The annotations can be analyzed. The Java reflec-
tion API makes it possible to probe many design details
of a component from the bytecode layer[6]. If we use the
fields to store annotation information or methods to report
annotation information, we need to apply some naming
conventions to distinguish them with other component el-
ements. In our design, we employ interfaces to represent
annotations. The design enables all annotation interfaces
to extend a common empty interface called Annotation for
the denotation purpose, much like the Serialization in-
terface does in the Java standard library. Therefore, Java
reflection API can be used to analyze a component anno-
tation interface automatically.

III. A Component Resource Sharing Scenario
with Component Annotations

In the following, we give examples of component resource
sharing scenario with component annotation interfaces.

A. The fetch of annotation information through the anno-
tation interfaces.

Generally, an annotation information is a description of
a characteristic. Through well-designed methods of the an-
notation interfaces, we give the component writer a way to
reveal messages about his implementation. We can design
a method that has an expressive name and a boolean re-
turn value to present the assertion of some facts. We use a
method isResumeSupported() as an example. The com-
ponent writer implements it to return true if his implemen-
tation commits to this fact. If the description gives values,
it is more appropriate to put it in the method response.
For example, if we want to say ”this component need to
be run on a 200MHz machine at least”, we may design a
method called getRequiredCPUClockRate() and the com-
ponent writer implements it on his component to return
200. Numerical values, strings, or specific data structures
can all be returned by a method.

Additional profiling methods can be added in de-
signing the annotation interface. Consider the fol-



lowing scenario. The component relying on the net-
work may have an annotation about the bandwidth pre-
ferred(lowest required). Then we can design an an-
notation interface Bandwidth having a method called
getPreferredBandwidth(). Through invoking this
method on the component we got the information of pre-
ferred bandwidth. Now we can give the bandwidth value of
the current system and choose the right component. How-
ever, in fact the bandwidth the component actually got is a
part of the total bandwidth of the system and it might vary
depending on the sharings of the components on the net-
work. Eventually, we will hope to profile and collect some
information about the actual bandwidth for a component.
This helps more precise adoption of the components. A
possible solution to this problem is to provide an accompa-
nied profiling method, getAvailableBandwidth(). It acts
as a window for the component writer to deliver the profil-
ing data. We then put this profiling method in the related
annotation interface, which is Bandwidth in this example.

Once the annotation information are added into inter-
faces of components, they can be inspected. By invoking
the methods of the annotation interfaces, we can get use-
ful annotation information. Figure 2 illustrates the fetch
of such annotation information. As Figure 2 shows, if the
components are not currently running in a JavaBean pro-
grams, it can be deployed in a JavaBean container so that
we can invoke methods on it. The JavaBean container is a
program that can load JavaBeans and investigate or mod-
ify their properties by calling the corresponding methods.
A JavaBean container serving as the component resource
database/bank/pool can be practically built to carry out
the queries on the annotation information of components.

getRequiredMem()
getInputDataSize()
getAvailableMem()

compare

getRequiredMem()
getInputDataSize()
getAvailableMem()

compare
The component currently 
running in a program

The component deployed 
in a JavaBean container

Fig. 2. An example of using methods in the annotation interface to
fetch annotated information.

B. The search of component specifications with annota-
tions.

In a component-based program, the programming logic
is achieved by the interactions of components. These in-
teractions are abstracted as interfaces in which the compo-
nents have responsibilities to realize the functionality de-
fined. In our work, we consider that all the functional
interactions of a component are abstracted to one inter-
face, called the source interface for the distinction from the
proposed annotation interfaces. Theoretically, one compo-
nent A can be replaced by another B if B implements all
the methods in the source interface of A. Thus by compar-
ing two components’ source interfaces, this assertion can

be claimed. However, given a source interface, we usually
have many kinds of implementations each having specific
characteristics. The adoption of wrong components may
possibly cause dramatic performance drop, though the logic
of the program is preserved. For example, when the input
data size grows into thousands, the component containing
a piece of code using bubble sort to sorting the data will
become the performance bottlenecks in a program. This
is why we need additional annotations to participate in
the choice of components. In our design, we have the fol-
lowing search policy for components. We first locate the
components who implement the required interface to guar-
antee the logical validity of adoption. We then fetch their
annotation information about the appliance requirements,
constraints, or suggestions. Finally, heuristic algorithms
can be developed to pick up the most suitable component.

To find the components for a specific interface, we have
to manage the source interfaces and components system-
atically in advance. Intuitively, they can be organized by
their object-oriented relationship. As soon as we locate
the target interface within the object-oriented hierarchy,
all components and the components of their downstream
are consequently the right ones to choose. These compo-
nents are then the candidates for further searches. The
annotation information of these candidates are examined
and compared with the pre-given system configuration or
runtime profiled information. The search and estimation of
candidates can also proceed simultaneously in a BFS man-
ner propagating from the queried interface to the bottom
of the hierarchy.

.

IV. The Ontology

In the section above, we have shown the way to present
the annotation information for components. However, a
convention or a standard for giving the ontology informa-
tion is needed. In this section, we give our proposed con-
ventions and ontology classifications in annotating proper-
ties for components. Figure 3 gives a sample of our con-
ventions for ontology represented in DAML+OIL language.
We model the adoption knowledge of components in the
following vocabulary. They are classified into five classes.
1. SourceInterface and hasExtension model the source
interfaces and their extension relationship. They are used
to build the source interface hierarchy and assert the logical
validity of adoptions.
2. hasImplementation, implement, and Component are
used to describe the implementation relationship between
source interfaces and components. Through them and the
source interface hierarchy, we can traverse candidates of
specified interfaces.
3. withAnnotation and AnnotationInterface define the
annotations of components.
4. Denotation, Requirement, Preference, and Adminicle
model the annotation interface into four kind of anno-
tations. Denotation is for the informational annota-
tion. Requirement annotation gives the requirement on
adoption. Preference provides adoption suggestion and



<rdf:RDF <daml:onProperty rdf:resource=’Location’/>
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#" </daml:Restriction>
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" </rdfs:subClassOf>
xmlns:daml="http://www.daml.org/2001/03/daml+oil#" </daml:ObjectProperty>

> ...
<daml:Class rdf:ID="Denotation">

<daml:Ontology rdf:about=""> <rdfs:subClassOf rdf:resource=’AnnotationInterface’/>
<daml:imports rdf:resource="http://www.daml.org/2001/03/ </daml:ObjectProperty>

daml+oil"/>
</daml:Ontology> <daml:Class rdf:ID="Requirement">

<rdfs:subClassOf rdf:resource=’AnnotationInterface’/>
<daml:ObjectProperty rdf:ID="Location"> </daml:ObjectProperty>

<rdfs:domain>
<rdf:Alt> <daml:Class rdf:ID="Preference">
<rdf:li rdf:resource=’SourceInterface’/> <rdfs:subClassOf rdf:resource=’AnnotationInterface’/>
<rdf:li rdf:resource=’Component’/> </daml:ObjectProperty>
<rdf:li rdf:resource=’AnnotationInterface’/>

</rdf:Alt> <daml:Class rdf:ID="Adminicle">
</rdfs:domain> </daml:ObjectProperty>

</daml:ObjectProperty>
<daml:ObjectProperty rdf:ID="judgeCriterion">

<daml:TransitiveProperty rdf:ID="hasExtension"> <rdfs:domain>
<rdfs:domain rdf:resource=’SourceInterface’/> <rdf:Alt>
<rdfs:range rdf:resource=’SourceInterface’/> <rdf:li rdf:resource=’Requirement’/>

</daml:ObjectProperty> <rdf:li rdf:resource=’Preference’/>
</rdf:Alt>

<daml:ObjectProperty rdf:ID="hasImplementation"> </rdfs:domain>
<rdfs:domain rdf:resource=’SourceInterface’/> <rdfs:range>
<rdfs:range rdf:resource=’Component’/> <rdf:Alt>

</daml:ObjectProperty> <rdf:li rdf:resource=’Denotation’/>
<rdf:li rdf:resource=’Adminicle’/>

<daml:ObjectProperty rdf:ID="implement"> </rdf:Alt>
<daml:inverseOf rdf:resource=’hasImplementation’/> </rdfs:range>

</daml:ObjectProperty> </daml:ObjectProperty>

<daml:Class rdf:ID="SourceInterface"> <daml:ObjectProperty rdf:ID="parameter">
<rdfs:subClassOf> <rdfs:domain>

<daml:Restriction daml:minCardinality="1"> <rdf:Alt>
<daml:onProperty rdf:resource=’Location’/> <rdf:li rdf:resource=’Requirement’/>

</daml:Restriction> <rdf:li rdf:resource=’Preference’/>
</rdfs:subClassOf> <rdf:li rdf:resource=’Adminicle’/>

</daml:Class> </rdf:Alt>
</rdfs:domain>

<daml:Class rdf:ID="Component"> <rdf:range rdf:resource=’Adminicle’/>
<rdfs:subClassOf> </daml:ObjectProperty>

<daml:Restriction daml:minCardinality="1">
<daml:onProperty rdf:resource=’Location’/> <daml:ObjectProperty rdf:ID="content">

</daml:Restriction> <rdf:domain rdf:resource=’Denotation’/>
</rdfs:subClassOf> </daml:ObjectProperty>

</daml:Class>
<daml:ObjectProperty rdf:ID="judge">

<daml:ObjectProperty rdf:ID="withAnnotation"> <rdfs:domain>
<rdf:domain rdf:resource=’Component’/> <rdf:Alt>
<rdfs:range> <rdf:li rdf:resource=’Requirement’/>

<rdf:Alt> <rdf:li rdf:resource=’Preference’/>
<rdf:li rdf:resource=’AnnotationInterface’/> </rdf:Alt>
<rdf:li rdf:resource=’Adminicle’/> </rdfs:domain>

</rdf:Alt> </daml:ObjectProperty>
</rdfs:range>

</daml:ObjectProperty> <daml:ObjectProperty rdf:ID="profiler">
<rdf:domain rdf:resource=’Adminicle’/>

<daml:Class rdf:ID="AnnotationInterface"> </daml:ObjectProperty>
<rdfs:subClassOf>

<daml:Restriction daml:minCardinality="1"> </rdf:RDF>

Fig. 3. The Ontology for Optimization and Composition of Parallel JavaBean Programs.



public interface RMI { ... }
public interface Latency extends Denotation {

public String getLatency();
}
public interface ViplVersion extends Requirement {

public String getRequiredViplVersion();
public String getViplVersion();

}
public interface PacketSize extends Preference {

public int getPreferredPacketSize();
public int getAvgPacketSize();

}
public class VIARMI implements RMI, Latency,

ViplVersion, PacketSize {
...

}

Fig. 4. The VIARMI Component implements RMI and several annota-
tion interfaces.

Adminicle represents the profilers that dynamically deliver
useful information for the criteria of adoption judgement.
5. judgeCriterion and parameter define how the infor-
mation from Adminicle be used as the criteria of the adop-
tion and the parameter of other annotation.

The vocabulary is formally defined in Figure 3 using
DAML+OIL language.

In the vocabulary above, class 1, 2, and 3 are terms di-
rectly mapped from the object-oriented design and denoted
for the relationship related to the source interfaces and the
components. This information can be automatically gener-
ated Java reflection API. For class 4 and 5 above, a naming
convention of the annotation interfaces can help translate
the methods into the ontology model. Thus given a com-
ponent with annotation interfaces implemented, We can
generate an annotation description in daml format.

V. Application Examples

A. RMI Component

Java RMI [7] is an important fucntion supported in
Java standard library as the communication basis for dis-
tributed computing. In addition to the inherent imple-
mentation of RMI using TCP/IP sockets, we can also im-
plement RMI over various network architecture. Note
that one major part of RMI functionality is carried
out by UnicastRemoteObject. The RMI remote ob-
jects export themself to provide RMI service by call-
ing UnicastRemoteObject.exportObject(). Suppose we
have reimplemented UnicastRemoteObject to have RMI
been connected over VIA, an user-level network architec-
ture. We can have a possible annotation interface shown
in Figure 4. Figure 5 then shows the annotation descrip-
tion from VIARMI in daml format. Note the daml format
can be automatically generated from annotation interface.
Various RMI implementations such as RMI over bluetooth,
RMI over nexus, RMI over IB can be annotated with spec-
ifications so that the components can be used or adopted
for specializations.

B. Experiments with Parallel Matrix Component

<rdf:RDF
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:cao="http://.../cao#"

>
<cao:Component rdf:ID="VIARMI">

<daml:versionInfo>$1.0$</daml:versionInfo>
<cao:Location>...</cao:Location>
<cao:implement rdf:resource=’RMI’/>
<cao:withAnnotation>
<rdf:Bag>

<rdf:_1 resource=’Latency’/>
<rdf:_2 resource=’RequiredViplVersion’/>
<rdf:_3 resource=’GetViplVersion’/>
<rdf:_4 resource=’PreferredPacketSize’/>
<rdf:_5 resource=’GetAvgPacketSize’/>

</rdf:Bag>
</cao:withAnnotation>

</cao:Component>

<cao:Denotation rdf:ID="Latency">
<cao:Location>...</cao:Location>
<cao:content>220</cao:content>
<rdfs:comment>microsecond</rdfs:comment>

</cao:Denotation>

<cao:Requirement rdf:ID="RequiredViplVersion">
<cao:Location>...</cao:Location>
<cao:judge>getRequiredViplVersion()</cao:judge>
<cao:judgeCriterion rdf:resource=’GetViplVertion’/>

</cao:Requirement>

<cao:Adminicle rdf:ID="GetViplVersion">
<cao:profiler>getViplVersion()</cao:profiler>

</cao:Profiler>
<cao:Preference rdf:ID="PreferredPacketSize">

<cao:Location>...</cao:Location>
<cao:judge>getPreferredPacketSize()</cao:judge>
<cao:judgeCriterion rdf:resource=’GetAvgPacketSize’/>

</cao:Profiler>

<cao:Adminicle rdf:ID="GetAvgPacketSize">
<cao:profiler>getAvgPacketSize()</cao:profiler>

</cao:Profiler>
<cao:SourceInterface rdf:about="RMI">

<cao:Location>...</cao:Location>
<cao:hasImplementation rdf:resource=’VIARMI’/>

</cao:SourceInterface>

</rdf:RDF>

Fig. 5. A generated annotation description file of Component VIARMI.

The ontology specification can be used to adapt com-
ponents at runtime. In our research work, we have been
working on enabling the techniques for the run-time com-
position of parallel components. The ontology specifica-
tion proposed in this work helps adapt objects dynamically
according to application and architecture characteristics.
Our runtime support for runtime component compositions
is based on the dynamic proxy support of Java[8]. As Java
is a statically typed language, objects are created in heap
and held by reference variables with a particular type. If we
want to re-compose an object, a new object with the same
type of subtype can be created in heap and assigned to the
original reference variable. However, an object can be ref-
erenced by more than one reference variable. In addition,
the references can be forwarded as arguments in method in-
vocations. Therfore, assigning an object to a reference can



public interface IMatrix { ... }
public interface JPVMVersion extends Requirement {

public int getRequiredJPVMVersion();
public int getJPVMVersion();

}
public interface Sparsity extends Preference {

public int getPreferredSparsity();
public int getSparsity();

}
public interface ParaNodeNum extends Preference {

public int getPreferredParaNodeNum();
public int getAvlParaNodeNum();

}
public class DMatrix implements IMatrix, Sparsity {

...
}
public class SMatrix implements IMatrix, Sparsity {

...
}
public class PDMatrix implements IMatrix, Sparsity,

JPVMVersion, ParaNodeNum {
...

}

Fig. 6. The Parallel Matrix Components implement IMatrix and a
variety of annotation interfaces.

not alter other references pointing to the original object.
To avoid problems in component substitution, the proxy
object in Java is needed to wrap the original object. There-
fore, the reference variables maintain their references to the
proxy object, and assigning an object to the proxy object
can alter other references to the original object through the
proxy object.

In our experiment, we demonstrate the benefit of em-
ployment of this ontology specification and runtime com-
positions for a parallel matrix components on a 8-node PC-
cluster. The 8-node PC-cluster is connected with 100Mbps
ethernet, and each node is running on 800MHz AMD
Athlon CPU with 256MByte memory. The software en-
vironment includes SUN J2SDK 1.4.0-rc, PVM 3.4.4, and
jPVM 1.1.4 over Linux kernel version 2.4.8. The software
is wrapped with Java components and JavaPVM interface
for experiments.

The parallel matrix sets include dense matrix, sparse
matrix, and parallel matrix. We use a conjugate gradi-
ent solver for experimenting our matrix components. The
dense matrix, sparse matrix, and parallel matrix are all
equipped with ontology annotation interface, as shown in
Figure 6. In the runtime execution, if a dense matrix is
executed for a long time, one might adapt the dense ma-
trix component into parallel matrix component by utilizing
the ontology annotations. Similarly, in the runtime execu-
tion, if a dense matrix is executed for a while and one
finds the dataset for the matrix is sparse, one might adapt
the dense matrix component into a sparse matrix compo-
nent by utilizing the ontology annotations. The decisions
of the adapting a component can be done by a runtime
monitor facility or container, while the re-composition is
implemented by Java proxy in our system. Table I first
gives the benefits of switching a dense matrix component
into a sparse component on CG solver. The data set is
actually a sparse dataset. If a adaption can be done af-

TABLE I

The computation time (ms) of conjugate gradient solver on

dense matrix and sparse matrix, the test case is a 479*479

sparse matrix.

Direct Ref. Dynamic Proxy

DenseMatrix 1004.9 1010.1
SparseMatrix 111.4 111.7

TABLE II

The computation time (ms) of conjugate gradient solver on

parallel matrix, the tsetcase is an 800*800 dense matrix.

Procs. Direct Ref. Dynamic Proxy

1 551.2 559.1
2 287.5 292.2
4 155.9 172.0
8 100.0 100.8

ter initial iterations, the performance can be gained for the
rest of iterations. The dataset is a sample from the tool-
box of Matlab and a well-known test case[2, page 352, Fig.
4][1]. Potential benefit exists in such a sample example. In
addition, we can also observe the overhead in our proxy im-
plementation. Table II shows another test example. Again
after initial iteration on sequential dense matrix compo-
nent, an adaption can be made to switch the component
into a parallel dense matrix component. Table II gives the
potential benefits for such cases.

References

[1] Rong–Guey Chang, Cheng–Wei Chen, Tyng–Ruey Chuang, and
Jenq Kuen Lee. Towards automatic supports of parallel sparse
computation in Java with continuous compilation. Concurrency:
Practice and Experience, 9(11):1101–1111, November 1997.

[2] John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse ma-
trices in MATLAB: Design and implementation. SIAM Journal
on Matrix Analysis and Applications, 13(1):333—356, January
1992.

[3] T. R. Gruber. Toward principles for the design of ontologies
used for knowledge sharing, In Nicola Guarino, Ed., International
Workshop on Formal Ontology, Padova, Italy, 1993.

[4] U. Holzle., Integrating independently-developed components in
object-oriented languages., In ECOOP, pages 36–56, 1993.

[5] Reference description of the daml+oil (march2001), Ontology
markup language, http://www.daml.org/2001/03/reference.html,
March 2001.

[6] Sun Microsystems, Inc. Java Core Reflec-
tion API and Specification, Available at
http://java.sun.com/j2se/1.4/docs/api/java/lang/reflect/package-
summary.html.

[7] Sun Microsystems, Inc. Java Remote Method Invoca-
tion Specification , revision 1.70 edition, December 1999.
http://java.sun.com/products/jdk/rmi/index.html.

[8] Sun Microsystems, Inc. Dynamic Proxy Class API,
Java 2 SDK Std. Ed. Documentation v1.3.1 Available at
http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html

[9] Sun Microsystems, Inc. The Java Language
Specification, Second Edition. Available at
http://java.sun.com/docs/books/jls/second edition/html/
j.title.doc.html.

[10] Gruber, T.R. (1993). A Translation Approach to Portable On-
tology Specifications, Knowledge Acquisition, Vol.5, pp.199-220.

[11] W3C. Extensible Markup Language (XML), 2001. Available at
http://www.w3.org/XML/.

[12] W3C. Semantic Web, Available at
http://www.w3.org/2001/sw/, February 2001.



[13] W3C. Semantic Web Activity: Resource Description Framework
(RDF), 2001. URL: http://www.w3.org/RDF/.


