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Abstract

Distributed object-oriented environments have becomeoitapt platforms for parallel and dis-
tributed service frameworks. Among distributed objedented software, .NET Remoting provides
a language layer of abstractions for performing parallel distributed computing in .NET environ-
ments. In this paper, we present our methodologies in stipgoNET Remoting over meta-clustered
environments. We take the advantage of the programmabilityetwork processors to develop the
content-based switch for distributing workloads genetdtem remote invocations in .NET. Our
scheduling mechanisms include stateful supports for .NEm®&ing services. In addition, we also
propose scheduling policy to incorporate work-flow modelstee models are now incorporated in
many of tools of grid architectures. Experiments done adtehs with IXP 1200 network processors
show that our scheme can significantly enhance the systemnghput (up to 55%) compared to
NLB method when the traffic is heavy. Our schemes are effedtivsupporting the switching of
.NET Remoting computations over meta-cluster environsment

keywords: grid computing, distributed computing, .NET remoting,delalancing scheduler, network
processor.

. INTRODUCTION

Distributed object-oriented environments have becomeoitapt platforms for parallel and dis-
tributed service frameworks. Among distributed objedewnted software, .NET Remoting provides a
framework that allows objects to interact with each otheoss the boundaries. It separates the remote
object from an application boundary and from a specific comigation mechanism. By hiding the
complexities of calling methods on remote objects, you caidbwidely distributed applications.
In the .NET Remoting Framework, channels are used to trahspessages to and from remote
objects, and the .NET Remoting infrastructure provides tyaes of channels that can be used to
provide a transport mechanism for the distributed appéioat- the TCP channel and HTTP channel.
TCP channel is a socket-based transport that utilizes thHe @iGtocol for transporting the serialized
message stream across the .NET Remoting boundaries whil® idifannel utilizes the HTTP protocol
for transporting the serialized message stream acrossnteenét and through firewalls. As other
networking applications, such as HTTP, server cluster jgayed for serving tremendous request. To
leverage the request load among servers and optimize te&eclutilization, it is necessary to apply
a load balancing mechanism in server clusters.

With the initial deployments of component services on grngimnments, there are more exciting
and challenging issues ahead in the runtime aspects of iaptions for component architectures
on grids. Meanwhile, the arrival of network processors fites aggregate computation and 1/O
bandwidth. It looks promising to explore possible runtinpimization and paradigms for addressing
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the issues with the deployments of network processors. gnidR platforms for network processing,
IXP 1200 provides 6 micro-engines for packet switching, IX#00 provides 8 micro-engines for
packet optimizations, and IXP 2800 provides 16 micro-eagito deliver performance of OC 192
(10 GDb/S). Interesting application aspects of runtime comemt switching are given below. For
example, there are currently four software frameworks fid gervices known as Java RMI, CCA
service [10], .NET remoting, and OGSA remoting. For sofevaompatibility and the re-use of
resources of different frameworks, it should be intergstio explore runtime transcoding among
different services. Second, it comes the idea of runtimeptadians of software components and
re-configurations of systems to respond to enviroment obsagd service traffics [3], [4]. As the
network processor is a good candidate for gateways in tefrawitching speeds and bandwidth, it is
interesting to see how the software can work for network @ssors to address these issues. Note that
network processors are with heterogeneous computing engimd memory hierarchies. Issues remain
open on how to utilize network processors effectively fog gwitching of high-level applications.
Finally, we need the load-balancing dispatcher for compbservices for serving tremendous request.
In addition, a combination of three scenarios above mighpdmsible. In our research work, we are
studying issues with such scanarios by exploring the céipabiof network processors [5]. As a
first step toward this idea, we try out with the issue of loatkhcing dispatchers for .NET remoting
services with network processors in this work.

In this paper, we address the issues in supporting .NET Regiover meta-cluster environments.
We take the advantage of the programmability of network @ssors to develop the content-based
switch. Stateful supports for .NET Remoting services as® ahcorporated. Our work has .NET
Remoting applications classified into two separate chanimebne application, one is for stateful,
and another is for stateless. We then try to dispatch jobstiieless applications, and also for the
scheduling of stateful invocations. In addition, we alscoiporate work-flow models for tasks to be
scheduled into our frameworks. This is due to many of thest@dlgrid architectures now are with
work-flow model supports [10]. In the first step of our schéaaypolicy, we perform scheduling policy
for statful jobs in the work-flow models. With the initial gleaments of processor allocations, we then
perform the scheduling policy for stateless applicationthie second phase. Timeout constraints for
stateful tasks are incorporated so that it might roll badcpssor assignments for stateful tasks during
the second phase. This mechanism gives load-balancingdi@ess tasks while also performs load-
balancings of stateful tasks when the timing constraintsnaet. Our work, to our best knowledge,
is the first work to address issues in supporting .Net rergatirvices for both stateful and stateless
methods with network processor supports.

Our experimental platform, Intel 1XP1200, contains a S§ARM core of 232 MHz and six
programmable 32-bit RISC processors of 232 MHz (a.k.a. eeiagine). With the benefit of pipeline
model, IXP1200 could guarantee wire-speed (up to 622 MIiX(312) packet processing performance.
The whole system implementation is divided into two partse és the control system executed
in StrongARM core and the other one is data path system ex@dotmicroengines. The control
system is implemented in ANSI C code; the system featureudted downloading the microcode
to microengine, maintaining the related tables in SRAM aibdR8M, and determining the routing
path for new .NET Remoting request. The data path system pgeimented in microcode, a kind
of assembly codes designed for microengines of Intel ndétywoocessors. The functionality of data
path system includes parsing and rewriting the packet hemu@ delivers the exception packet to
StrongARM core. The communication between StrongARM coikraicroengines was archived by a
resource manager and scratch memory. Experiments doneRPoa2B0 network processors show that
our schemes are effective in supporting .NET Remoting cdatjmns over meta-cluster environments.

The rest of this paper is organized as follows. Section Ivjoles an introduction for the basics
of .NET Remoting. Next, Section Ill then presents the framms for meta-cluster supports for
.NET Remoting with the assistance of IXP network processadslitional load-balancing schemes



for work-flow models are presented in Section IV. Experiraérgsults are then presented in Section
V and Section VI presents the related work. Finally, Sectidtnconcludes this paper.

[I. TECHNOLOGY BASICS
A. .NET Remoting Fundamentals

In the .NET Remoting framework, key features includes atitin, lifetime management, formatter,
and communication channel. .NET Remoting has two types t¥aion model, server-activated
and client-activated. Server-activated type includegleion and single call modes. In the singleton
mode, no more than one instance will be active at any times. $uitable for a stateful programming
model since it can maintain state between method calls. énsthgle-call mode, .NET Remoting
infrastructure will activate a new instance for every methrwvocation. This is a stateless programming
model useful for applications such as web service. Theitiletmanagement in .NET Remoting
is lease-based. Client-activated objects are under therat@f the lease manager that will trigger
garbage collection while the lease expires. The lifetimsigletons are also controlled by lease-based
lifetime. Formatters are used for encoding and decodingrteéssages before they are transported by
the channel. Channel is responsible for transporting ngessacross remoting boundaries. Figure 1
illustrates the .NET Remoting architecture and its element
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Fig. 1. .NET Remoting architecture.

When the client makes a remote method call, the client dgtn@kes a call on a proxy object,
which in turn converts the stack frame of the method call mtmessage object. The message object
will encapsulate the information related to the method ealll will be passed to a set of message
sink chains which can do various processing on the messggetolfhe message object will go
through the message sink chains until it reaches a necesisérgalled formatter sink, which is the
first sink in the channel’s sink chain and is responsible &iadizing the message object into a byte
stream according to certain wire format. Then the strearh lvél passed through several channel
sinks for further processing. The last sink in the channdt shain is the transport chain, which is
also a necessary sink and is responsible for transportmgtteam over the wire by using a specific
transport protocol. The server-side will do almost the reggrocessing as the above mentioned. The
dispatcher in server-side is indeed a StackBuilderSinkchvivill convert the message object into
a stack frame and actually make the method call on the remugez It also packages the return
result and call-by-out arguments into a message objectetnds to the client-side. In our work, the
network processor will be used to work as a scheduler for bbémt-activated and sever-activated
remoting invocations in .NET environments.

B. Network Processors

Our experimental platform, IXP1200 [29], contains a StlaRi§! of 232 MHz and six pro-
grammable 32-bit RISC processors of 232 MHz (also known asaengine). Microengine was
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Fig. 2. The IXP 1200 hardware architecture.

designed as a 5-stage pipeline processor and each alsaneohtaur hardware threads. With such a
parallel processor architecture, IXP1200 could guarawiezspeed (up to 622 Mbps, OC12) packet
processing performance to process .NET remoting packets.

Figure 2 shows the hardware architecture of IXP1200, intamdio rich set of processors, IXP1200
integrates two standard memory interfaces, SRAM and SDRAM] supports PCI and IX Bus
interfaces. The PCI interface allows IXP1200 to connect st I€PU which could take charge of
system management and then leave StrongARM as an exceptioasgor; or connect to other PCI
devices such as 802.11x wireless card to gain the accesbilitgpaf wireless network. The IX Bus
interface allows IXP1200 to connect networking deviceshsas Ethernet MACs and ATM SARs
or even another IXP1200 processor to deal with higher spegadank. IX Bus Unit also integrates
a hash unit which supports 48 and 64 bits hashing. Hashinge$ubwhen performing address
lookup especially in network application. These functionaits were interconnected by the high
speed internal buses. Besides SRAM and SDRAM memory stothgelXP1200 contains an on-
chip 4KByte Scratchpad RAM within 1X Bus unit. These threemagies vary in latency, capacity,
and bandwidth. The SDRAM has the largest capacity and battbwiut longest latency. On the
contrary, the Scratchpad has the smallest capacity andh&adiwidth of SDRAM but shortest latency.
Programmers could access these three memories concyraaetimake use of their characteristics.

IIl. EFFICIENT SWITCHING SUPPORT FORNET REMOTING

For meta-cluster supports with .NET remoting, the workldépatcher is generally needed. Load-
ing balancing mechanism is divided into centralized [8] §bjd distributed [15] versions. We focus
on the centralized version in our work. The centralized miod&lls a gateway in front of the cluster.
The gateway parses incoming request and makes approigieg decisions according to specific
request attribute (such as source IP address and URL) aver sesrkload feedbacks. The bottleneck
for the .NET remoting dispatchers often occurs in the gayelaecause it needs high computation
power to process a huge number of remoting requests. Iniaaldit the application is stateful, the
gateway will consume additional cost to keep the coherericgessions. We demonstrate how to
distribute workloads of .NET remoting with the assistan€éX®® 1200 network processors.

A. Remoting Switch

We take advantage of the programmability of network promess develop the content-based
switch. Figure 3 shows the system architecture of our dedige network processd¥P serves as



The Client Program The Server Program

Rewrite TCP
header to forward

LATETEN 1 packages
s
t RO1-ref
Ay s
e :: o Port N
i S Customized ‘m Customized
L RO2-ref ) Client — 2 Server
NL Bl Channel - Channel
Port N+c
{ RO3-ref
\\ ’I
- Here we assume that RO1 and J
' RO2 are stateful services; RO3

is a stateless service. Port N1
is for the service RO1; port N2
is for the service RO2; port N+c
is for the service RO3.

L}
(other client 4
programs...)

(other server
programs...)

Fig. 3. The system architecture of using network procesasrthe remoting service gateway.

the gateway of remoting services hosted on each backendrsel TCP channel connections of
remoting going to the servers are brokered by the networkgssor. It uses its special hardware
architecture to do fast TCP/IP header rewriting for dimgpackets back and forth. A TCP connection
table is maintained in the memory space of the network pemre® keep track of the connection
information. It includes the IP and port information of thignt and the connected server for each
connection.

As a gateway of the backend servers, the joiNBfis to dispatch remoting invocations concerning
the load-balancing issues and the session semantics.dteless remoting serviceP chooses the
least load server to dispatch invocations; for statefulatimy servicesNP has to make sure that
invocations belonging to the same session will be dispatdbehe same server. In Figure BROL,
RO2 andRC3 are all remoting objects that contain the intended operatior remote invocations.
TheROL- r ef , RO2-r ef andRO3- r ef in the client side are the TransparentProxy objects refgrri
to ROL, RO2 and RCB respectively. Both the proxy object and the remoting objex# a channel
object to manage network connections for data transportalin this system, we design and deploy a
pair of extended channel objects to automatically disteélmemoting invocations into different TCP
connection ports according to their service types. By ddhig, NP can identify the service types
through the examination of the destination port of incomiaguest packets. On the distribution of
services on different ports, we use a map data structurectydehe assigned port for each remoting
service. All stateless services are bound to the port nurdrsge thanc, wherec is a selected
constant. This map information can be a part of the remotérgice deployment configurations and
is accessible by the clients and the servers. We describdistigbution mechanism done by the
channel objects below.

o Client Channel Object When theSyncPr ocessMessage or
AsyncProcessMessage method of the client channel object is called in order totssar
remoting invocation, it analyzes the paramdtdessage object to fetch the remoting service
name. The mapped port for that remoting service is lookedyupdé map and is used for sending
request packets.

« Server Channel Object When the server channel object is first instantiated, it $oo the map
for all the currently used ports for remoting services. Thapens corresponding server sockets
on these ports to listen to connections.

Algorithm 1 shown in Figure 4 gives the detailed dispatchpngcess done by the network proces-
sor. Figure 5 also depicts the control flow of this dispatgtafgorithm that helps the understanding of
Algorithm 1. The main effort of this dispatching algorithetd decide which server a TCP connection
is going to be connected with. It is the place where dispatghiecisions are made. Once a server



Algorithm 1: A dispatching algorithm for handling stateless and stateful Remoting invocations by using
dedicated TCP channel connections.

In the context’'CT stands for the TCP connection table that is maintained tk texisting TCP connection
Each row inT’C'T contains four columns: the source IP, the source port, tiséridgion IP and the destinati

S.
N

port of one TCP connection. The destination port of each T@hection is restricted to be within one of the

three integer rangeRs;ngie—cail: Rsingleton 8N Refient—activated- They are used to identify the connectig
dedicated to single-call, singleton or client-activateshi®ting invocations, respectively. Another tabI€ is the
session table maintained to track existing sessions affatadgervices. Each row i87T contains five column
to keep track of information about one session. They are dhece IP, the source port, the destination IP,
destination port, and the access time of this session.
Begin
Step 1. Receive a packet from the clients.
Step 2. Read the source IP information in the TCP/IP header Fiol P.
Read the source port information in the TCP/IP header ftePort.
Read the destination port information in the TCP/IP heaxter DestPort.
Step 3. if (there exists a rowConn in TCT that (the source IP of'onn == Srcl P)
&& (the source port o€onn == SrcPort) && (the destination port of onn
== DestPort))
Read the destination IP column 6fonn into DestIP.
Goto Step 13.
Step 4. if (DestPort is in rangeRsingie—cail)
Goto Step 7.
Step 5. if (DestPort is in rangeRgingicton)
if (there exists a rowSess in ST that (the destination port dfess ==
DestPort)
Goto Step 10.
Step 6. if (DestPort is in rangeR jient—activated)
if (there exists a rowSess in ST that (the source IP ofess == SrclP) &&
(the source port obess == SrcPort) && (the destination port ofess ==
DestPort))
Goto Step 10.
Step 7. Find the least load server and write its IP.§0
Step 8. if (DestPort is in rangeRsingie—cail)
Goto Step 12.
Step 9. Create a new rowbess’.
Assign SrcI P to the source IP column dfess’.
Assign SrcPort to the source Port column dfess’.
Assign Dest Port to the destination port column fess’.
Assign S to the destination IP column dfess’.
Assign the current time to the time column 8éss’.
InsertSess’ to ST
Goto Step 12.
Step 10. if ((the current time) - (the time column dfess) >= SESSION _TIMEOUT)
Delete Sess from ST
Goto Step 7.
Step 11. Read the destination IP column Stss into S.
Step 12. Assign S to DestIP.
Step 13. Rewrite the TCP/IP header of the packet witlestI P as the destination IP.
Step 14. Send out the packet.
End

ns

S
the

Fig. 4. The dispatching algorithm for remoting invocations
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Fig. 5. The flow chart of the dispatching process.

is chosen and the connection is constructed, all remotivgcations go through this link are served
by this server. Here we can have the channel objects pesibditiscard connections in purpose for
the reconstruction of connections to less load servers.nebwork processor records the IP and port
information of the client and the selected server in the TGRnection table calledCT for each
constructed connection. The remoting request packetsthétlsame source IP, the same source port,
and the same destination port will be directed to the saméndgéisn IP according tofCT. The
response packets from the servers are also directed to thectalients by this connection table.
Notice that the destination port mentioned here is useddatify remoting services since we have
distributed different services to go on different ports urr gustomized client channel objects. Step 3
of Algorithm 1 does the checking to see if the incoming padketiready in arCT entry. In addition,
with the destination port plus the IP and port informationtled client, we can construct a session
table ST. ST is then used to track existing sessions for stateful sesvifethe network processor
finds that no TCP connection exists for the incoming packeit thie destination port shows that it
belongs to a stateful service, it will then look &F to find out the previous assigned server for this
service. Step 4 checks if the incoming packet is in the rariggadeful services. In addition, State 5
and state 6 checks if the incoming packet is a singleton oieatehctivated method. Note that there
are three kinds of methods in .Net remoting. Single-callt&etess, and stateful methods include
singleton and client-activated methods. Our schedulidgy#fully supports these three semanitcs for
.Net methods. A time field is also kept 8I to determine the expiration of a session. Step 10 does
the checking for the expiration of a session. The networlcg@ssor can also invalidate the content
in TCT and ST on purpose in order to reallocate stateful services to newesefor load-balancing
issues, the Remoting proxy in the client side will detect avoek failure exception and then can try
to construct a new TCP connection to the backend. Step 7tglilee connection construction request
to least load servers. Once the least server is found, stéeéks if the incoming method is indeed
a stateful request. AT will be created if this is a new stateful request. Finallye @idgorithm does
TCP header rewriting to forward packets to and from the iehserver of that connection. This is
done between step 11 and step 13.

B. Programming Network Processors

The whole system implementation is divided into two parise ds the control system executed
in StrongARM core and the other one is the data path systeroute@ in microengines. The
control system is implemented in ANSI C code,; its featurdudes downloading the microcode to
microengines, maintaining the related tables in SRAM an&A&M, and determining the routing path



i x_tcphdr_src_port_wite(tcphdr, current->ip_dport);

i x_tcphdr_dest _port_wite(tcphdr, current->ip_sport);

i Xx_tcphdr_seq wite(tcphdr, seq));

i Xx_tcphdr_ack_wite(tcphdr, ack));

i x_tcphdr_flags_wite(tcphdr, ACK SYN MASK));

i x_checksum cal c_segnent _checksum(i phdr, (voidx)tcphdr, &chksum 1);

Fig. 6. C programs for rewriting packet headers.

.l ocal nsrc ndst nsport ndport chksumdelta seq
xbuf _extract(nsrc, $$ip_header, 0, NSIP)
xbuf _extract (ndst, $$ip_header, 0, NDIP)
xbuf _extract (nsport, $$i p_header, 0, NSPORT)
xbuf _ext ract (ndport, $$i p_header, 0, NDPORT)
xbuf _extract (chksum delta, $$i p_header, 0, DT)
xbuf _extract (seq, $%i p_header, 0, SEQ

. endl ocal

Fig. 7. Microcodes for parsing TCP packet headers.

for new remoting request. Figure 6 gives a code segmentyaitireg the packet header. The functions
have prefix started with “iX are SDK library provided by Intel. Variables “iphdr” andctthdr” are
pointers to ip header and tcp header of a packet, respactivet data path system is implemented in
microcode, a kind of assembly codes designed for microesgif IXP 1200. The functionality of a
data path system includes parsing and rewriting the padadr and delivering the exception packet
to StrongARM core. The communication between StrongARMecand microengines is achieved
by a resource manager and scratch memory. Figure 7 giveseaseguinent for extracting ip and tcp
header. The syntax, “.local”, is a directive to declare dsteg for later usage. Macro “xbigxtract”
extracts a numeric byte field from the transfer register dauff$$ip.header”, to a general-purpose
register.

IV. LOAD BALANCING MECHANISMS

The key scheduling policy for our algorithm in handling battateful and stateless services of
.NET remoting is shown earlier in Algorithm 1. Step 7 of thisghtching algorithm is to find the
least load server for dispatching. Different schedulinghuds can be plugged in for this step. In
the following, we propose two methods for this purpose. Th& finethod is to schedule tasks to
the server minimizing the estimated task time. The seconthadeincorporates work-flow models
for task scheduling. This is to exploit the fact that many lué tools of grid architectures are now
equipped with work-flow model supports [10].

A. ETT Scheduling Methods

According to the characteristics of applications, we ps#pan algorithm which dispatches the
request by referencing cpu computing power and the netwarkiwidth. TheEstimated Task Time
(ETT) model is defined as

B ce(n;) N d(n;) )
P x (1—-CPUload) = W;j x (1 — bandwidth_load)
The cc(n;) is the cycle of task i thed(n;) is the amount of data needed for communicatidts.

is the clock rate of the processor in server\W; is the network bandwidth of serveyj.sNote that
cpu load and network loadings can be gotten from feedbackbeoback-end computing servers,

ETT(TLZ', Sj)



Find_Least_L oad_Server (){
while there is an incoming request do
for each server;sdo
ComputeETT(n;, s;)
Assign request nto the server jsthat minimizeseTT of request p
end while

}

Fig. 8. The ETT Load-Balancing Algorithm.
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Fig. 9. An example of a task graph with 11 tasks.

periodically. The characteristics of jobs such as comutiime and communication time can also be

gotten by profiling schemes of systems. The scheduling ighgorfor Step 7 of Algorithm 1 is now
given in Figure 8.

B. Scheduling Methods with Work-Flow Graphs

We now present a scheduling method which incorporates Wovk-models for task scheduling.
A work-flow of tasks is represented as directed acyclic gr@phG). An example of such a graph is
shown in Figure 9. Nodes represent application tasks andsedgpresent data communication. The
computation costs and communication costs are storednirkxd andn x n matrix, respectively. In
the example graph, tasks, ng, ns, ng, n1o are stateful tasks associating with two different services
The graph also comes with information to mark the statefskdawhen the timeout constraint for
expiration is raised. In this case, the successors in thiefgtaasks can be redirected to other servers
for load balancing. This timeout information is presentedte dotted line of the edge. In our example
graph, the edge between tasksandng is with timeout edge. We assume every server can execute
maximumk tasks in parallel. Tasks will be queued until the runnindc¢eare less thak in a server
and the computation cost will be times of the original execution time of a task when thererare
tasks executed on a server.

We have defined several attributes for task scheduling. ahle of the tasks represent the priorities
of the scheduling order. Theunk(n;) is the approximation of the length of the longest path from
the taskn; to the exit task. The rank of task; is defined by



rank(n;) = w; + max (¢ ; + rank(n;)), (2)
nj€suce(n;)
where w; is the computation cost of task;, succ(n;) is the set of the immediate successors of
taskn;, c; ; is the communication cost of eddef). According to the rank, we schedule tasks by
decreasing order of a rank.

Our scheduling algorithm presents a two-phase schedubligypIn the first phase, we perform a
pre-scheduling for all stateful tasks, and then we perfacheduling for stateless tasks in the second
phase. In our first phase, we first mark all the stateful tagksdversing the graph. If the edge before
the task is marked as timeout, all the tasks following theeeddl be recognized as a new stateful
group. After separating the stateful tasks into differenoiugs, we can then schedule each group one
by one. We use the following equation to estimate the loachefstateful tasks which have been
scheduled to the server.

Load(s;) = > { > Ry}, (3)
Vg; has been scheduled to s; Vni€g;
wheres; is thei-th server, R is the remaining computation time of task, andg; is the j-th group
of the stateful task groups. We also have

AddLoad(s;, g:) = Load(s;) + { > Ri}. (4)
Vni€g:
In order to balance the group load of the stateful tasks, weethus AddLoad function to calculate the
total computation cost of each group when adding a new sébedoup. We then dispatch them
to servers by picking up the minimum one. The schedulingratyao is illustrated in the routine
Phasel_Stateful_Scheduler() of Figure 10.

After all the stateful tasks have been scheduled, we sulesdégischedule the stateless tasks by the
order generated by rank. The phasg@telesscheduler routine in Figure 10 presents the algorithm
for the second phase of the scheduling. When a stateful &msle$ the queue and prepare to be
executed, we check the timeout value of the stateful grouptwivas separated by the given timeout
mark. To see the timeout will happen or not, if not, we will iredt the rest stateful tasks to the
original server to keep the correctness of the statefulieanin this case, we also indicate the roll-
back of the scheduling results for stateful tasks, and netihe stateful scheduler in the phase one
for the remaining stateful tasks. For a stateless task, wethes following function to estimate the
finish time of the stateless task executing on the servers.

EFT(n;,sj) = Exec(w;, avail[sj], k) + max (AFT(nm) + cmi), (5)
N Epred(n;)

wherepred(n;) is the set of immediate predecessor tasks of tgslandavail[s;] is the earliest
time at which serves; is ready for task execution. AFikf,) is the actual finish time of the task
nm. Exec(w;, avail[s;], k) is the execution cost of tagk with computation costv; executed on the
servers; which can parallel execute at most k tasks from time:l[s;]. And we choose the server
with the minimum EFT to schedule. The last paragraph of tlverse routine in Figure 10 illustrates
this idea.

Now we use the algorithm to schedule our sample graph. Waressach server can execute two
tasks in parallel, and there are three servers. Accordingddirst phase, we need to schedule the
stateful tasks by equation 3. We traverse the graph to findhmustateful tasks and separate them
into groups, note that there is a timeout mark between tasknd ng. We therefore can separate
them into three groups which arg = {n4,n9}, g2 = {ng,n10}, andgs = {ng}, and then schedule
g1, g2, andgs to serversy, so, andss, respectively by equation 3. Once the stateful tasks haga be
scheduled, the rank of eack task needs to be calculated idedte scheduling order.
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Algorithm 2: The EFT load-balancing algorithms with work-flow inforn@atito handle both stateful and stateless tasks.

Input: A task graphG with the computation cost, communication costs, and thiefsdagroups.

Phasel_Stateful _Scheduler (){
while there is a unscheduled group dp
for each server sdo
Compute the AddLoad{sg;).
Assign the tasks of ,gto the server sthat minimizes AddLoad(sg;).
end while
}
Phase?_Stateless_Scheduler (){
while there is a un-scheduled task in the grajzh
Find the highest ranked task among un-scheduled tasks,;s#&gr rscheduling
if task n is stateful{
if (the timeout constraint for expiration is raised for tagk n
and ((the current time) - (the time for last done task of thisug))< TIMEOUT {
Assign the tasks of the group to the server which the taskisfgioup has been scheduled.
Revise this scheduling information to call PhastdtefullScheduler() to re-do remaining stateful tag
}
else do
Assign the stateful request to the server assigned at pheese o
and update the session table.
end if

else {/* Schedule stateless tasks */
for each server sdo
ComputeEFT(n;, s;).
Assign request nto the server ;s that minimizeseFT of request n
}
Update the connection table
end while

Fig. 10. The EFT load-Balancing algorithm for the applioativith a work-flow graph.

By the second phase of EFT algorithm. We need to calculatedibigatching order by using
equation 2, the ranks of tasks afe; = 93,n, = 77,n3 = 63,n4 = 71,n5 = 53,n6 = 57,n7 =
43, ng = 32,n9 = 31,n19 = 27,n11 = 8}. Then we sort the rank by decreasing order to get the
scheduling order, which i nq, no, n4, n3, ng, ns, n7, ng, ng, n1g, n11 >. ONce the scheduling order
is obtained, the tasks can be scheduled subsequently. Bysiclgothe task with highest rank, task
ny1 Will be scheduled first. We use the EFT (equation 5) to find batrhinimized execution time on
servers. Because task has no predecessor, the result of EFTs is equal /8, FFT(nq1,s;) =
Ezec(8,avail[s;],2) + 0 = 8. The availg;] is 0, because the task is the first task of each server.)
By the scheduling order, the next task is also a stateful task whose EFTs need to be calculated:
(EFT(ng,s1)= Exec(15,avail[s1],2) + maz{AFT (n1) + c12} = 15 + (8+0) = 23;EF T (ng, s2) =
15 + (8+18) = 41; and® F'T'(ns, s3) = 15 + (8+18) = 41.) From such results, we can schedule the task
no to servers; which has the minimum EFT value. The task is the next task to be scheduled by
the order. Since the task; is a stateful task, we dispatch task to the serves; which was decided
previously. Next, we calculate the EFT value of task((EF'T'(ns, s1)= Exec(7 * 2, avail[s1],2) +
maz{AFT(n1) + c12} = 14 + (18+0) = 32,EFT(n3,s2) = 7 + (8+12) = 27; andEF'T'(n3, s3) =
7 + (8+12) = 27.), then we will dispatch it to server. According to the algorithm, we can dispatch

11
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Fig. 11. The result of the sample application using our salegl algorithm.

the rest of tasks and get a simulated result of the sampléhgrtapwn in Figure 11. The timeout of
taskng will not happen when the application is executed, it showddddirected to the servei to
keep the stateful tasks correctness. The final schedul¢hl@righe sample graph is 86.

V. EXPERIMENTS

The experimental environment includes two clients and tlueters. These two clients each belongs
to individual subnet issuing remoting requests to the loaldrxer. On the other hand, two identical
clusters composed of two P4-2GHz servers were employedntd&Remoting server applications. In
the hardware configuration of NLB experiment, we replace 1XB0 with a 4-port 1200Mbps switch
such that the maximum aggregate throughput from servetd ceach to 200Mbps. The throughput is
given in Figure 12 where we compare the throughputs of oupgwed dispatcher for .NET remoting
with that of Microsoft Network Load Balancing (NLB) techmgly. NLB is a distributed methodology
in which each server in the NLB cluster will receive the saropycof packet. Our work is to have
.NET remoting framework classified into two separate chémineone application, one is for stateful,
and another is for stateless. We then try to dispatch jobssmgithe proposed mechanism in Section
4.2.

To measure the throughput, two clients concurrently caflechethod transferData() which will
transmit a piece of data buffer to the server and receivehanatata buffer back. The ratio between
transmitting and receiving buffer size is adjustable. €hare totally 128Kbytes exchanged in one
method call, that is, a client transmits 128*ratio Kbytestserver and receives 128*(1-ratio) Kbytes
each time transferData() was called. We adjusted the raedim 0 to 1 progressively and measured
the aggregate throughput of two clients. Figure 12 showsitperimental result.

8 140 S . N -
2 120 }
é. 100 |
<
g 80t
<]
< 60 —&— Netw ork Processor
% 40 —=—NLB
g 20
% O I 1 1 1
0/100 25/75 50/50 75125 100/0

transmit/receive data ratio of client request

Fig. 12. Throughputs with two different load-balancing imegisms.
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Fig. 13. The response time among three load balancing mischsiwith interval time (1500, 3000, 5000).

When only the client received data from the server (ratio ~ti®® performance of NLB is close
to 150Mbps which is 5.4% better than our system. However,thineughput of NLB declined as
the ratio increased while our system remained high throughfyhen the ratio was raised to 0.08,
both two systems have similar performance. The throughpWNLdB decreased to 90Mbps when
only clients transmitted data to servers. This is becausB NLa distributed methodology in which
each server in the NLB cluster will receive the same copy afkpa The NLB driver in front of
TCP/IP protocol stack will decide to forward the packet totpcol stack or discard it according to
given packet information (ex. TCP/IP header). The aggeegacket received on server side equals
the amount of packets transmitted from client side muéiblby the server number of NLB cluster.
Consequently, NLB may waste network bandwidth while outesysdoes not.

Next, we compare the scheduling effects with our schedylislizy. In the experiment, we devel-
oped a Remoting method getPrimeCount(int X) that couldutate the count of prime number smaller
than integer X. (Note that the CPU consumption time of thishoe is positively proportional to X.)
On the client side, the client program invoked the Remotireghod repeatedly by an interval time
Y (milliseconds). To simulate real environment, we geregtaY by an exponential function floor(-
log(rand(0,1))* intervalMulti). Similarly, the number X hich the client wants to calculate was also
generated by an exponential function floor(-log(rand(®,a)imeRangeMulti). Therefore, the average
X and Y are primeRangeMulti and intervalMulti, respectivéhccording to primeRangeMulti=30K
and different intervalMulti values (1500, 3000, and 6000 rfws (2, 4) nodes and (500, 750 and
1000 ms) for (4, 8) nodes, we generated 3 X-Y distribution@ameach with 1000 points. It means
the client program will use these samples to call getPrine@X) 1000 times, totally. We measured
the response time of each method call in three load balamgghanisms. The first one is our load
balancer (called NRB), the second one is also our system but it dispatches jol®und-robin
fashion instead of dispatching by servers’ load (calledINBPRR). The final one is NLB technology.
The results were shown in Figure 13 and Figure 14. We coulddindhat the average response
time of NPLB is better than NELB_RR and NLB in all combinations. When server number is 2
and average arrival interval time is 3 seconds, INB? could reduce 47.6% response latency than
NLB. Moreover, NPLB could even reduce 76.1% overhead than NLB when server suisb? and
average arrival interval time is 1 seconds. That is becalséBldispatches the request according to
servers’ load rather than the random selection used by NLBwnd-robin selection in NB.B_RR
such that it could get better CPU utilization.

In the following we measure the performance factors in n@ngine allocations of network proces-
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I D Conbi nat i on
1 1+1 (I ngress+L2+LB+L3) + (Egress)
2 1+1+1 (I ngress) + (L2+LB+L3) + (Egress)
3 1+4+1 (Ingress) + (L2+LB+L3)*4 + (Egress)
4 1+3+2 (Ingress) + (L2+LB+L3)*3 + (Egress)*2
5 2+3+1 (Ingress)*2 + (L2+LB+L3)*3 + (Egress)
6 2+2+2 (Ingress)*2 + (L2+LB+L3)*2 + (Egress)*2

Fig. 15. The effects of microengine allocations.

sors in our implementation. In the experiment, we try défgrmicroengine allocation to examine how
it affects load balancer. Just like the previous experim@atmeasure the aggregate throughput of two
clients which invoke transferData() concurrently. There & combinations listed in Table 15. Except
for the first combination, the microblocks for layer-2 biiinlgy processing, load balancing processing,
and layer-3 forwarding processing (called main proceskinghort) was allocated together. Take the
third combination (1+4+1) as example; it allocates one a@ngine for packet ingress, one for packet
engress, and the other four for the main processing. Thét keasi shown in Figure 16, combination 1
and 2 have the similar performance although the latter @etil’one more microengine. It explains that
the internal packet forwarding from one microengine to haotncrease the memory access overhead
and therefore eliminates the gain of additional microeagiomputation power. Combination 3 has
the best performance because main processing requirescommgutation power. It was illustrated
by combination 4, 5, and 6. We arranged one microengine fr@im pprocessing to transmit packets
in combination 4. Similarly, two microengines were assifjte receive packets in combination 5.
These two groups both result about 14% throughput drop coedpaith the best one. Nevertheless,
the last combination which rearranged two microengine ket ingress, two for main processing
and two for packet egress diminish almost quarter throughfa could summarize that the quantity
of computation power for main processing affect the systenfiopmance rather than the computation
power needed for packet input and output.

Finally, we experiment with our workload algorithms EFT hynslations. We have constructed
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Fig. 16. Throughputs with different microengine allocaso
Parameter Value
Y 25, 50, 100, 200, 400
S 1
o] 2,34
CCR 0.3
Stateful groups 2, 4,8
Stateful task ratio 0.25, 0.5
TABLE |

PARAMETER SETS USED INFIGURE 17 AND FIGURE 18

a software simulator that emulates the network processpattthing behavior for scheduling ran-
dom tasks. The work-flow graphs of tasks are generated by arglegraph generator with several
parameters:

o Number of nodes v: The number of nodes (tasks) in the graph.

« Shape of graph s: We use this parameter to control the shape of graphs. Thkésle¥ generated
graphs form a normal distribution with the mean value eqoa)/t/s. The nodes of each level
also form a normal distribution with the mean value equal/tox s.

« Out degree O: Out edges of each node. We use this parameter to controkfhendence degrees
between two tasks.

« Communication to computation ratio CCR: It is the ratio of the communication cost to
computation cost. We can generate computation-intengipdication graphs by assigning low
values toCCR.

o Number of stateful task groups: It denotes the number of stateful service groups. We can als
control the height of each stateful task group by suppliedupaters.

In order to demonstrate the benefits of our ETT algorithm oalidg with stateful tasks, we use
the parameters as listed in Table I. Under the parameténgein Table |, we show the performance
results of two different stateful task ratio 25% and 50% iguré 17 and Figure 18, respectively. We
use 500 graph instances for evaluating each parameténgettThe x-axis gives different distribution
of task nodes. It includes the amount of tasks and the amdwtat@ful groups as specified in Table 1.
In Figure 17 and Figure 18, the results with ETT and EFT arenadized over the results of Round-
robin (RR). We can see that the EFT algorithm has significanfiopmance improvement over ETT
and RR. The improvement goes higher with bigger task graphhégher stateful task ratio. While
the stateful task ratio is 25%, the improvement of EFT is frdii6% to 12.63% when compared
to ETT and is from 9.31% to 34% when compared to RR; While tlagefil task ratio is 50%, the
improvement of EFT is from 5% to 21% when compared to ETT anftdm 8% to 34% when
compared to RR. This phenomenon can be explained by thennmerk knowledge of work-flow
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Fig. 17. Performance of EFT scheme with work-flow informat{@5% stateful tasks in each graph).
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Fig. 18. Performance of EFT schemes with work-flow informat{50% stateful tasks in each graph).

graphs and the specific handling of stateful tasks in EFT.Hasp 1 of the EFT algorithm, it will
first consider the scheduling of stateful task groups. Itgssigns the stateful groups into back-
end servers according to the group computation load. InegpRasve also provide a mechanism for
stateful task groups to timeout and rescheduling. This yred a more fine-grained load-balancing
scheduling.

VI. RELATED WORK

Efficient supports for Java remote method invocation haen @portant topics for investigations,
as RMI provides a layer of abstractions for communicatidessearch results include an open RMI
implementation which makes better use of the object-cgidfi¢atures of Java [16]. ARMI [14] and
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Manta [11] systems reduce various drawbacks in RMI and teigeonew RMI style systems with
added functionality. KaRMI [13] is a better way to implemé&tivll with exploiting Myrinet hardware
features to reduce latencies for high performance. Alsdthad range of RMI applications was done
in [2]. Our research group also addressed the researchsissu&kMI| with wireless environment.
These are done done by Lee and Chen in [17], [6]. The Aromasy$12], which is Java-based
middleware that aims to exploit the Java RMI to replicateeoty for availability and adaptability.
The dynamic proxy is used as an interceptor to extend thebdédpaof Java RMI. In addition,
specifications for RMI programs over heterogeneous networkronments are done in our early
work [3]. An abstraction for object interaction in a P2P @awment, called query/share (QS) [7], is
implemented in Java and relies heavily on the concept of miymaroxy. Similar to Java RMI, .NET
provides remoting as a way for application in different mineb/domains to communicate with each
other. All the method calls along with the parameters aresgrhigo the remote object through the
HTTP channel or TCP channel. With more layers of abstrastidls an interesting issue to abstract
channels and transport layers for supporting heterogeneetwork environments via dynamic proxy
in .NET environments.

Efficient task scheduling algorithms are vital for achigyvimgh performanced from cluster-based
computer systems. The task scheduling problem of multgssar environments is NP-complete in
general forms [18], [19]. Therefore, heuristic solutions auitable for such problems. There are
two models for this problem, static and dynamic model. Inictanodel, task execution time, task
type, task dependence, and communication cost should lverkimoadvance. According to foregoing
information, tasks are assigned to suitable processorshi@vae minimum scheduling length. In the
dynamic model, status feedback of each processor, whiehdRU utility, bandwidth utility and task
distribution, is profiled. Various heuristics were propdger the task scheduling problem in [20],
[21], [22], [23], [24]. Among those work, Wu’'s work [20] algaroposed efficient algorithms HEFT
and CPOP to cope with work-flow graph for heterogeneous ctingpuThe HEFT algorithm was
used to to find out the Earliest-Finish-Time server to dislpatask, and the CPOP algorithm uses
critical path to arrange the dispatch order. Both of two athms get good performance and low
overhead. In our case, we are dealing with .NET Remotingiegjidins, and we need to handle the
schedulings for both the stateful and stateless tasks.dtica] we allowk tasks to be scheduled in
each processor.

VIlI. CONCLUSION

In this paper, we presented our methodologies in supporiiBl Remoting over meta-clustered
environments. Both Stateful and stateless supports foiT.REmoting services are incorporated.
Experiments show that our scheme can significantly enhameesystem throughput (up to 55%)
compared to NLB method when the traffic is heavy. Our work gaveomprehensive study for
efficient support of .NET remoting in the presence of advdnoetwork architectures such as IXP
network processors. Our proposed scheduling methodsdedchemes with or without work-flow
information of tasks. Further efforts to integrate our silimg policy with CCA grid environments
will be important directions for future research explaoas.
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