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Abstract
Markov random field models provide a robust formula-

tion of low-level vision problems. Among the problems,
stereo vision remains the most investigated field. The belief
propagation provides accurate result in stereo vision prob-
lems, however, the algorithm remains slow for practical use.
In this paper we examine and extract the parallelisms in
the belief propagation method for stereo vision on multi-
core processors. The results show that with parallelization
exploration on multicore processors, the belief propagation
algorithm can have a 13.5 times speedup compared to the
single processor implementation. The experimental results
also indicate that the parallelized belief propagation algo-
rithm on multicore processors is able to provide a frame
rate in 6 frames per second.

1 Introduction
Stereo vision has been extensively investigated in the re-

cent years to provide high-quality and high performance ap-
plications. One of the most advanced paradigms is to ap-
ply the technique in inferring the 3-D position of an ob-
ject. By computing the depth and disparity of referenced
images through matching the images in the same plane of
different view position, the range information of the en-
vironment can be extracted to help the robots to adapt to
the real world. Over the past years, Markov random field
(MRF) models have been used to develop algorithms with
good results to solve the problems of stereo vision. How-
ever, to apply the MRF models on the stereo matching prob-
lem is NP-hard. One of the most significant approximate al-
gorithms is belief propagation (BP) that gathers information
from the neighborhoods of each pixel in an image to find the
minimum matching cost of the local point and its neighbor-
hoods [1, 2]. Although having highly accurate results with
outstanding quality, BP requires a long processing time that
makes it less practicable in application domains that require
a real-time performance. There are research proposed to
optimize BP algorithm to provide a real-time performance
on GPU [3]. And also some research target to the parallel
of loopy belief propagation on the clusters or multiproces-

sors [4]. However, the problem remains significant in other
architectures.

As the system-on-chip (SoC) technique has been toward
the multicore architectures in the recent years, the industries
have adopted such novel architecture in products such as,
video game machines, personal hand-held devices, home-
media center, and devices required high computation power.
Such a diverse appliance of multicore processors in variety
of application domains provides opportunities to optimize
the stereo vision algorithms. In this paper, we examine
the performance improvement of BP algorithm on the Cell
broadband engine (Cell BE) [5] which is a multicore pro-
cessor containing a power processing element (PPE) and
eight synergistic processing elements (SPE). Cell BE pro-
vides a highly parallel architecture with pervasively data-
parallel computing mechanism based on the SIMD comput-
ing and high performance data transferring management.
Such architecture features benefit the stereo vision appli-
cations since the algorithms are computation-intensive and
conventionally contain high data-parallelism. The results
show that with parallelization exploration on multicore pro-
cessors, the belief propagation algorithm can have a13.5
times speedup compared to the single processor implemen-
tation. The experimental results also indicate that the par-
allelized belief propagation algorithm on multicore proces-
sors is able to provide frame rate in6 frames per seconds.

This paper is structured as follows. Section 2 provides
an overview of the BP algorithm. Section 3 first describes
the overview of the Cell BE architecture then proposes the
strategies of parallelizing the BP algorithm. The imple-
mentation with parallelization extraction of BP on multicore
processors is also illustrated in Section 3. Section 4 shows
the experimental results of the parallelized BP on Cell BE.
Section 5 discusses the future work. Finally, Section 6 con-
cludes this article.
2 Overview of the Belief Propagation Algo-

rithm
Belief propagation (BP) is an efficient method for solv-

ing early vision problems. By gathering and incorporating



the information from each pixel’s neighbors, the algorithm
iteratively updates and optimizes the information to find the
best solution. In this paper, we examine and extract the par-
allelism in the BP algorithm by modifying the algorithm
presented by Felzenszwalb and Huttenlocher [6]. The pro-
cess of the BP for stereo matching is to minimize the energy
which is the quality of labeling the disparity to each pixel of
the image to be matched [1]. The estimation of the energy
includes the process of computing two different costs: the
discontinuity cost of labeling the disparity to two adjacent
pixels and the data cost of assigning the disparity label to
each pixel. If two adjacent pixels are assigned to different
labels, the discontinuity cost is increased. Different dispar-
ity costs of labeling the pixel produces different data costs.
Each pixel in the image is associated to a vector data struc-
ture with levels of disparity called the node to store the in-
formation required for minimizing the energy of the image
including the disparity cost and data cost.
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Figure 1. Initialization process of the data
pyramid.

Algorithm 1 shows the BP method for stereo matching.
The BP method starts from Gaussian filtering two rectified
gray-level pictures of different view points,G andG′. Then
it measures the data cost by subtracting the images to com-
pute the difference ofG andG′. The data cost can be al-
ternatively generated by using the sum of squared differ-
ence ofG andG′ without Gaussian filtering. Then the data
cost of each pixel in the image is collected and stored in
the data layer,data0

w0,h0
of width w0 and heighth0. After

the data layer is computed, it then builds the data pyramid
from data0

w0,h0
to form a fine-to-coarse multi-scale match-

ing scheme. The data pyramid is generated by building a
hierarchy of data layers fromdata0

w0,h0
. The data layeri,

datai
wi,hi

, of the data pyramid is first formed from the finer
data layeri−1 by by halving the width and height. In other
words,wi = 1

2
wi−1 andhi = 1

2
hi−1. Then the value of

each nodes of data layeri is calculated by the summing val-
ues of adjacent four nodes in finer data layeri− 1. Figure 1
shows the process of initializing the data pyramid.

Four message layers,upi, downi, righti, andlefti, are
associated to each data layeri to indicate the directions
where each node sends messages to for estimating the dis-
continuity cost. Then the method performs BP forT itera-
tions in each level.T is a constant determined by the de-
velopers. GreaterT produced better quality. It starts at the
coarsest layer through gathering and updating the messages

Algorithm 1: BP algorithm for stereo matching
Data: Two rectified gray-level pictures, the left side

visionG and the right side visionG′

Data: Distance of passing message in advance,L
Data: Iteration for message updating,T
Result: Disparity graphD

data0

w0,h0
⇐ pixel by pixel difference betweenG and

G′ with width w0 and heighth0 ;
Initializing data pyramiddatai

wi,hi
, i = 1, · · · ,L −1

for i ⇐ L − 1 to 0 do
if not in the top levelthen

Get message from the upper level message
layers;

else
Initialize top level message layer to0;

end
for t ⇐ 0 to T − 1 do

for y ⇐ 1 to h − 1 do
for x ⇐ (y + t) mod2 to w − 1 do

Update upward-message of
node(x, y);
Update downward-message of
node(x, y);
Update leftward-message of
node(x, y);
Update rightward-message of
node(x, y);
x = x + 2;

end
end

end
end
for y ⇐ 1 to h − 1 do

for x ⇐ 1 to w − 1 do
Accumulate messages delivered by adjacent
nodes and compute the disparity, D(x,y);

end
end
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Figure 2. Message updating from coarse to
fine.

from each node’s neighbors and the data cost of the node.
The messages produced at the coarser layeri is then used to
initialize the message layers of finer layeri−1 to iteratively
performs the BP from the coarsest layer to the finest layer.
The hierarchical message updating process is illustrated in
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Figure 3. Updating four-direction messages of node (X,Y). T he arrows point to the node (X,Y) is the
messages send to (X,Y) from neighboring nodes.

Figure 2. Since the image has been built into a data pyra-
mid, it reduces the number of nodes in the coarsest layer.
By performing such coarse-to-fine scheme, the finer mes-
sage layers are initialized to a more possible minimal cost.
It is thus helps the algorithm to get convergence rapidly.
Such paradigm reduces the processing time of doing the BP
on the coarser layeri to update the message [6].

Figure 3 illustrates the four-direction message updating.
A node at corresponding position(X, Y ) of each data layer
i and message layer is associated with four message vec-
tors stored in the message layeri. For example, the mes-
sage vector of node at(X, Y ) for the directionup is de-
noted asupt

i(X, Y ) to present the message that node(X, Y )
passes to the upward node(X, Y − 1) at theith message
layer in thet iteration. Figure 3 (a) depicts the process.
The messageupt

i(X, Y ) is generated by gathering the mes-
sages from the other three directions,rightt−1

i (X − 1, Y ),
upt−1

i (X, Y + 1), leftt−1

i (X + 1, Y ), provided by adja-
cent nodes from the last iterationt − 1 and the data cost,
datai

wi,hi
(X, Y ), of the node(X, Y ) at theith level. After

performing the BP in each layer of the image pyramid forT

times, the messages are then accumulated from the adjacent
nodes of node(X, Y ) along with the data cost to compute
the disparity graph in position(X, Y ) at the finest level.

3 Parallelizing the Belief Propagation on
Multicore Processors

3.1 Cell BE Architecture Overview
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Figure 4. Cell broadband engine architecture.
In this section, we describe the architecture overview

of the Cell BE [5] which is a high performance platform
for application domains of financial, networking, scientific
computing, and high-resolution multimedia. Figure 4 de-
picts the architecture overview. The Cell BE is composed
of one PPE and eight SPEs connected by a high bandwidth
on-chip bus called the element interconnect bus (EIB). As

a heterogeneous multicore processor, the operating system
and applications are running on the PPE while computation-
intensive tasks are explicitly dispatched to execute on SPEs
by the developers. Such an architectural feature leads to the
adoption of master-slave execution model in our implemen-
tation of parallelized BP method which partitions the algo-
rithm into two parts: control tasks, and computational tasks.
The control tasks are scheduled by the Linux to be executed
on PPE while the computational tasks are explicitly invoked
and scheduled by the control tasks and the operating system
to be run on SPE.

The SPE is a RISC architecture with registers of 128 bits
wide which supports SIMD arithmetic instructions. The
SPE can only access its local store (LS), which is the main
storage of each SPE. To exchange data between the main
memory of PPE and LS of other SPEs, the developers
use direct memory access (DMA) to explicitly control the
data flow. The synchronization, event communication, and
data transmission are managed by the memory flow con-
troller (MFC) associated to each SPE. The SPE issues DMA
commands to the associated MFC to perform efficient data
transmission that is concurrently executed with the compu-
tation. Such mechanism is a key factor to gain performance
by supporting efficient implementation of multiple buffer-
ing through overlapping communication and computation
in the parallelized BP. Moreover, the data reusability of the
partitioned method is important since the data movement
from main memory to LS of each SPE produces extra over-
head.

In addition to the efficient data transmission, the Cell
BE provides various communication mechanisms to support
message passing between processors. Each SPE is associ-
ated with one input mailbox with four 32 bits message en-
tries and two output mailbox with one message entry. Writ-
ing the input mailbox of an SPE transmits a 32 bits data to
the message entry. The output mailbox allows the SPE to
send small message in the output mailbox, other cores or
devices requiring the message is able to access the output
mailbox and empty it after reading the message. The SPE
is allowed to trigger an interrupt to the PPE along with a
32 bits message by writing the message to the associated
output mailbox entry. The mailbox mechanism is adopted
by the proposed parallelized BP to reduce the communica-
tion overhead. Section 3.2 details the strategies of paral-



STAGE 1

STAGE 2

STAGE 3

Initial the data pyramid

Input image

Message updating

Compute disparity

Output image

PPE SPEs

Get Message from 

previous iteration

Figure 5. Execution flow of the BP on Cell BE.
lelizing BP method on the Cell BE.

3.2 Parallelization Strategies
In this section, we analyze the parallelism in the BP al-

gorithm proposed in Section 2 and then show the strategies
of implementing parallelized BP on the Cell BE. Figure 5
shows the execution flow of BP algorithm that can be di-
vided into three stages: initializing the image pyramid, mes-
sage updating, and computing the disparity graph. The anal-
ysis and implementation strategies are detailed as follows.

3.2.1 Stage 1: initializing the data pyramid
In this stage, the initialization of data pyramid is performed
by grouping the adjacent four nodes indata0

w0,h0
to form

the coarser image layer. Considering the generalization of
each node in the coarsest data layer, the computation of each
node can be performed independently as shown in Figure 6.
The initialization fromdata0

w0,h0
can thus be partitioned

into independent parts. The data parallelism in this stage
provides opportunities to optimize the algorithm. To ex-
pose the architecture parallelism, assume that there areL

data layers in the image pyramid, we first partition the input
datadata0

w0,h0
into w0∗h0

22∗L−1 divisions. Then the divisions
are grouped into groups of data to be initialized in the SPE
of the Cell BE: Each division in the SPE can be process to
form the image pyramid from finer to coarser image layer
without synchronizing with other divisions.

Figure 6. Building the data pyramid from low-
est level data layer.

3.2.2 Stage 2: message updating

In this stage, the message updating in each iteration are per-
formed in four directions by referring to the message com-

Figure 7. Bipartite graph.

puted in the last iteration. The process implies that every
message updating operation of each iteration can be per-
formed independently. Thus the four-direction updating can
be executed independently in each SPE by partitioning the
up, down, left, right direction updating to be execute in
SPE1, SPE2, SPE3, SPE4, respectively. Although the parti-
tioning provides a way of parallelizing the message passing
stage, the data locality reduces the performance gain of task
parallelism. The messages fetched from main memory for
updating one direction are not reusable for the updating of
the next node in the same direction. The SPE has to fetch
the messages required for each node.

Therefore, we propose another strategy to parallelize this
stage. As shown in Algorithm 1, the updating process are
not performed for every node in each iteration but in a bi-
partite behavior. Take iterationt for example, the four di-
rections of light-color nodes are updated as shown in Fig-
ure 7. Then in the next iteration oft + 1, it only updated
the message of each dark-color nodes. The bipartite be-
havior of message updating gives hints of parallelizing this
stage. Instead of partitioning one direction of each node to
be executed concurrently, we can update the four-direction
messages of each node independently since the messages
required are computed in the last iteration. Moreover, it pro-
vides high data reusability for the reason that the messages
required for updating each direction are the same vectors.

Thus, the nodes are partitioned into several groups ac-
cording to the numbers of SPE available. Each group is
scheduled to be processed in an SPE. After dispatching the
jobs and data in each SPE, the four-direction messages of
each node in a group are calculated independently in each
iteration. The computed messages are then transmitted back
to the main memory for the message updating of the next it-
eration. The strategy is able to provide good data and task
parallelism with good data reusability.

3.2.3 Stage 3: computing the disparity graph
The last stage of the algorithm is to gather the information
computed from the prior two stages to produce the disparity
graph. The disparity of each node is computed by gathering
the messages of the neighboring nodes toward this node and
the information fromdata0

w0,h0
to decide the proper dispar-

ity. The disparity computation process of each node can be
performed in parallel. Therefore, this stage also shows high
data parallelism that allows the decision process of each
node to be performed in the SPE.



(a) Original image pair. (b) Ground-truth. (b) Result of parallelized BP.

Figure 8. Stereo matching results for the Tsukuba image pair .
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Figure 9. Performance improvement of parallelized BP.

3.2.4 SIMD
Analyzing the data layout and usage of the algorithm, most
of the data structures used are vectors and arrays. The SPE
of Cell BE provides a set of application interfaces for the
developers to expose the architecture benefits of SIMD by
exploiting the potential instruction-level data parallelism.
Such feature provides another opportunity for optimization
by packing the data accessing of the program into SIMD
instructions.

4 Experimental Results
We performed the experiments on the PlayStation3 (PS3)

platform which provides one 3.2 GHz Cell BE processor
with six SPEs and one PPE. The PPE has a 32 KB in-
struction cache and a 32 KB data cache as L1 cache, and a
512 KB L2 unified cache for instruction and data. The im-
plementation of the parallelized BP was based on the devel-
opment environment where the PPE runs the Linux kernel
2.6.22. The toolkit provided by IBM includes the libspe for
managing SPE, pthread library, compiler, linker, and assem-
bler of PPE and SPE. The data and event communication
were through the mailbox mechanism. Since the platform
we used only provided six runnable SPEs, the data layer
is partitioned to six groups. Our implementation processed
five iterations for six disparity levels for the Tsukuba image
pair. Figure 8 (a) depicts one of the original image pair. Fig-
ure 8 (c) shows the result produced by the parallelized BP.
Comparing to the ground-truth of the image pair as shown
in Figure 8 (b), the result of the parallelized BP presented a
great quality.

The execution time of the parallelized BP method is
0.175 seconds which is about13.5 times faster than the se-
quential implementation on PPE of the Cell BE. The result

also indicates a6 times faster than the implementation on
3 GHz Pentium4 computer. Table 1 shows the execution
time of different implementation of BP for Tsukuda image
pair. Note that the BP on single PPE is about two times
slower than on Pentium 4. The main reason is that the BP
algorithm requires a lot of memory for processing the im-
ages and updating the messages. However, the PS3 plat-
form we used provided limited memory (256MB XDRAM)
for the PPE which leads to a dramatically decreasing of the
performance.

To demonstrate the performance improvement of the par-
allelization strategies illustrated in Section 3.2, we mea-
sured the performance improvement of each strategy. Fig-
ure 9 shows the performance improvement comparing to the
sequential implementation on PPE of the Cell BE. As shown
in Figure 9, by parallelizing stage I for the data pyramid ini-
tialization produced about two times performance improve-
ment in execution time. Parallelizing stage III for producing
the disparity graph also produced about two times perfor-
mance improvement. As the BP method spent around90%
of the execution time in updating messages, parallelizing
stage II for the message updating produced great perfor-
mance improvement by6.5 times faster. By merely par-
allelizing the control flow and data communication existed
in the algorithm, the method was improved about9 times

Table 1. Execution time of the different im-
plementation of BP on different machines for
Tsukuba image pair.

Method Sequential Sequential Parallelized BP
Platform 3G Pentium 4 PPE on Cell BE Cell BE
Performance(seconds) 1.195 2.34 0.175
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Figure 10. Scalability of the parallel BP algo-
rithm using different numbers of SPEs.

faster comparing to the sequential implementation on PPE.

We also implemented the method with partial SIMD data
accessing in the parallelized BP for stage II. The image pro-
cessing and message updating in the implementation were
converted to a set of SIMD operations on arrays and vectors.
As shown in Figure 9, the performance was improved by9
times after packing memory access operations into SIMD
instructions. Figure 9 shows the result of parallelized BP af-
ter applying all the parallelization strategies which presents
an overall13.5 times performance improvement. The ex-
perimental results also shows that the stereo matching can
have a nearly real-time performance of about6 frames per
second.

For evaluating the performance gain with difference
numbers of SPEs, we consider the implementation of the
parallelized BP on one SPE as the baseline. Figure 10
shows the scalability of the parallelized BP algorithm. The
bright color bar shows the performance improvement of
the implementations of parallelized BP on different num-
bers of SPEs. The dark color bar shows the performance
scaling of parallelized BP with SIMD data accessing run-
ning on different numbers of SPEs compared to the imple-
mentation of single SPE without SIMD exploration. The
performance was linearly improved as the numbers of SPE
used were increased which shows a4.26 times improvement
compared to the single SPE implementation. With the four-
word SIMD data accessing, the performance of the algo-
rithm was improved by3.88 times compared to the single
SPE implementation. The implementation on six SPEs with
SIMD was8.48 times faster than that on one SPE. How-
ever, the speedup of parallelized BP on different numbers
of SPEs with SIMD exploitation was not increased linearly
for that the execution of I/O processing for image file open-
ing and reading is around0.09 seconds which is not able to
be parallelized in our implementation.

Considering the case when applying the method in a real-
time scenario where the image pairs are continuously cap-
tured from the devices for stereo matching. The overhead
of I/O operations may be eliminated by pipelining the im-
age reading and processing with the BP method. If not con-
sidering the overhead of file operations, the parallelized BP
can produce11 frames per second performance in our early
evaluation on the Cell BE.

5 Future Work
Packing the array and vector operations to a set of SIMD

operations is one of the key factors in tuning the Cell BE ap-
plications. It provides facilities to pack four 32-bits data ac-
cessing into a single SIMD128-bits data access, which po-
tentially presents four times performance improvement for
each data accessing. The early evaluation of our work only
includes partial implementation of the SIMD data access-
ing in the parallelized BP. Analyzing the BP method, the
image processing and message updating in the implementa-
tion were mainly array and vector structures. As shown in
the experimental results, SIMD presented a important role
in improving the overall performance. In the future work,
packing SIMD instructions for all the memory operations
could be a key factor to produce more performance im-
provement for supporting a real-time performance. More-
over, the adoption of intrinsic function for special opera-
tions and carefully choosing compiler optimization phases,
such as loop unrolling, also reveal opportunities of further
improving the performance.
6 Conclusion

In this paper we examined the parallelization of a be-
lief propagation algorithm on the multicore processors. We
have proposed methods to demonstrate the issues in opti-
mizing the algorithm by exploiting the potential parallelism
to expose the architecture benefits. The methodology of an-
alyzing and exploiting parallelism presented in this article
is applicable to other stereo vision algorithms. The results
showed that with careful analysis and parallelizing, the im-
plementation is able to produce a highly accurate result with
fast processing time.
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