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_ Abstract sors [4]. However, the problem remains significant in other
Markov random field models provide a robust formula- ;. hitectures.

tion of low-level vision problems. Among the problems,  As the system-on-chip (SoC) technique has been toward
stereo vision remains the most investigated field. Thefbelie the multicore architectures in the recent years, the imigdisst
propagation provides accurate result in stereo vision prob have adopted such novel architecture in products such as,
lems, however, the algorithm remains slow for practicaluse video game machines, personal hand-held devices, home-
In this paper we examine and extract the parallelisms in media center, and devices required high computation power.
the belief propagation method for stereo vision on multi- Such a diverse appliance of multicore processors in variety
core processors. The results show that with parallelizatio of application domains provides opportunities to optimize
exploration on multicore processors, the belief propagiati  the stereo vision algorithms. In this paper, we examine
algorithm can have a 13.5 times speedup compared to thethe performance improvement of BP algorithm on the Cell
single processor implementation. The experimental result broadband engine (Cell BE) [5] which is a multicore pro-
also indicate that the parallelized belief propagation@g  cessor containing a power processing element (PPE) and
rithm on multicore processors is able to provide a frame eight synergistic processing elements (SPE). Cell BE pro-
rate in 6 frames per second. vides a highly parallel architecture with pervasively data

1 Introduction parallel computing mechanism based on the SIMD comput-

Stereo vision has been extensively investigated in the re-ing and high performance data transferring management.
centyears to provide high-quality and high performance ap- Such architecture features benefit the stereo vision appli-
plications. One of the most advanced paradigms is to ap-cations since the algorithms are computation-intensige an
ply the technique in inferring the 3-D position of an ob- conventionally contain high data-parallelism. The result
ject. By computing the depth and disparity of referenced show that with parallelization exploration on multicor@pr
images through matching the images in the same plane ofcessors, the belief propagation algorithm can haue.a
different view position, the range information of the en- times speedup compared to the single processor implemen-
vironment can be extracted to help the robots to adapt totation. The experimental results also indicate that the par
the real world. Over the past years, Markov random field allelized belief propagation algorithm on multicore prece
(MRF) models have been used to develop algorithms with Sors is able to provide frame ratedrirames per seconds.
good results to solve the problems of stereo vision. How- This paper Is structured as follows. Section 2 provides

ever, to apply the MRF models on the stereo matching prob-an overvi_ew of the BP algorithmj Section 3 first describes
lem is NP-hard. One of the most significant approximate al- the overview of the C_eI_I BE arch|tecture_then Proposes the
gorithms is belief propagation (BP) that gathers infororati strategl_es OT parallellz_lng.the BP al_gonthm. The |mple-
from the neighborhoods of each pixel in an image to find the mentation W.'th pargllehzaﬂon gxtractllon of BP on multieo
minimum matching cost of the local point and its neighbor- processors is also illustrated in Sect|or_1 3. Section 4 shows
hoods [1, 2]. Although having highly accurate results with the e_xperlmental results of the para||e|_|zed BP on Cell EE.
outstanding quality, BP requires a long processing time tha Section 5 dlsc_usses the future work. Finally, Section 6 con-
makes it less practicable in application domains that requi cludes this f'm'de' . .

a real-time performance. There are research proposed tcé Qverwew of the Belief Propagation Algo-
optimize BP algorithm to provide a real-time performance rithm

on GPU [3]. And also some research target to the parallel Belief propagation (BP) is an efficient method for solv-
of loopy belief propagation on the clusters or multiproces- ing early vision problems. By gathering and incorporating



the information from each pixel's neighbors, the algorithm ~Ajgorithm 1: BP algorithm for stereo matching

iteratively updates and optimizes the information to finel th
best solution. In this paper, we examine and extract the par-
allelism in the BP algorithm by modifying the algorithm
presented by Felzenszwalb and Huttenlocher [6]. The pro-
cess of the BP for stereo matching is to minimize the energy
which is the quality of labeling the disparity to each pixel o
the image to be matched [1]. The estimation of the energy
includes the process of computing two different costs: the
discontinuity cost of labeling the disparity to two adjaten
pixels and the data cost of assigning the disparity label to
each pixel. If two adjacent pixels are assigned to different
labels, the discontinuity cost is increased. Differenpdrs

ity costs of labeling the pixel produces different data sost
Each pixel in the image is associated to a vector data struc-
ture with levels of disparity called the node to store the in-
formation required for minimizing the energy of the image
including the disparity cost and data cost.
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Figure 1. Initivélization process of the data
pyramid.

Algorithm 1 shows the BP method for stereo matching.
The BP method starts from Gaussian filtering two rectified
gray-level pictures of different view point&, andG’. Then
it measures the data cost by subtracting the images to com-
pute the difference off andG’. The data cost can be al-
ternatively generated by using the sum of squared differ-
ence ofG andG’ without Gaussian filtering. Then the data
cost of each pixel in the image is collected and stored in
the data layerdatal, , —of width wy and heighta. After
the data layer is computed, it then builds the data pyramid
from datal, , to form a fine-to-coarse multi-scale match-

Data: Two rectified gray-level pictures, the left side
vision G and the right side visioti”

Data: Distance of passing message in advahce,

Data: Iteration for message updating,

Result: Disparity graphD

data?uu, n, = Pixel by pixel difference betwee@ and

G’ with width wq and heighty ;

Initializing data pyramidlatal, , ,i=1,---

fori<L—-1to0do

if notin the top levethen
Get message from the upper level message
layers;

else

| Initialize top level message layer @o
end
fort<0toT—1do

L1

fory<1toh —1do
for x < (y +¢) mod2tow — 1 do
Update upward-message of
nod€z, y);
Update downward-message of
nod€z, y);
Update leftward-message of
nod€z, y);
Update rightward-message of
nod€z, y);
r=ux+2;
end
end
end

end
fory<1toh—1do
forz < 1tow —1do
Accumulate messages delivered by adjacent
‘ nodes and compute the disparity, D(X,y);
end

end

ing scheme. The data pyramid is generated by building a
hierarchy of data layers frommm?m_’ n,- The data layer,
datal, , ,of the data pyramid is first formed from the finer
data layer — 1 by by halving the width and height. In other
words,w; = fw;_, andh; = 1h;_;. Then the value of
each nodes of data layeis calculated by the summing val-
ues of adjacent four nodes in finer data layerl. Figure 1
shows the process of initializing the data pyramid.

Four message layersp;, down;, right;, andleft;, are
associated to each data layeto indicate the directions

after BP after BP

left[], right[], up(],
down[] message array
initial to 0

W

Level 1

Level 2 (top) Level 0
Figure 2. Message updating from coarse to
fine.

where each node sends messages to for estimating the digfrom each node’s neighbors and the data cost of the node.

continuity cost. Then the method performs BP Toitera-

The messages produced at the coarser laigghen used to

tions in each level.T" is a constant determined by the de- initialize the message layers of finer layer1 to iteratively
velopers. Greatefl produced better quality. It starts at the performs the BP from the coarsest layer to the finest layer.
coarsest layer through gathering and updating the messagebhe hierarchical message updating process is illustrated i



(a) Update upward message (b) Update downward message ~ (c) Update rightward message (d) Update leftward message

Figure 3. Updating four-direction messages of node (X,Y). T he arrows point to the node (X,Y) is the
messages send to (X,Y) from neighboring nodes.
Figure 2. Since the image has been built into a data pyra-a heterogeneous multicore processor, the operating system
mid, it reduces the number of nodes in the coarsest layerand applications are running on the PPE while computation-
By performing such coarse-to-fine scheme, the finer mes-intensive tasks are explicitly dispatched to execute onsSPE
sage layers are initialized to a more possible minimal cost. by the developers. Such an architectural feature leadeto th
It is thus helps the algorithm to get convergence rapidly. adoption of master-slave execution model in our implemen-
Such paradigm reduces the processing time of doing the BRation of parallelized BP method which partitions the algo-
on the coarser layerto update the message [6]. rithm into two parts: control tasks, and computational éask
Figure 3 illustrates the four-direction message updating. The control tasks are scheduled by the Linux to be executed
A node at corresponding positi¢iX, Y) of each data layer  on PPE while the computational tasks are explicitly invoked
1 and message layer is associated with four message vecand scheduled by the control tasks and the operating system
tors stored in the message layerFor example, the mes-  to be run on SPE.
sage vector of node dtX,Y’) for the directionup is de- The SPE is a RISC architecture with registers of 128 bits
noted asip; (X, Y') to present the message that n¢de ") wide which supports SIMD arithmetic instructions. The
passes to the upward nod&,Y — 1) at theith message  SPE can only access its local store (LS), which is the main
layer in thet iteration. Figure 3 (a) depicts the process. storage of each SPE. To exchange data between the main
The messagep!(X,Y) is generated by gathering the mes- memory of PPE and LS of other SPEs, the developers
sages from the other three directionght, ' (X — 1,Y), use direct memory access (DMA) to explicitly control the
up! ' (X,Y + 1), lefti" (X + 1,Y), provided by adja-  data flow. The synchronization, event communication, and
cent nodes from the last iteratian- 1 and the data cost, data transmission are managed by the memory flow con-
datal, , (X,Y), of the nodg(X,Y’) at theith level. After  troller (MFC) associated to each SPE. The SPE issues DMA
performing the BP in each layer of the image pyramidfor  commands to the associated MFC to perform efficient data
times, the messages are then accumulated from the adjacemtansmission that is concurrently executed with the compu-
nodes of nod¢ X, Y’) along with the data cost to compute tation. Such mechanism is a key factor to gain performance
the disparity graph in positio(X, Y) at the finest level. by supporting efficient implementation of multiple buffer-
- : : ing through overlapping communication and computation
3 Par aI.Iellzmg te Belief Propagation on in the parallelized BP. Moreover, the data reusability &f th
Multicore Processors partitioned method is important since the data movement

3.1 Cell BE Architecture Overview from main memory to LS of each SPE produces extra over-
SPE SPE SPE SPE head.
‘ SXU ‘ ‘ SXuU ‘ ‘ SXuU ‘ ‘ SXuU ‘

In addition to the efficient data transmission, the Cell
Ls Ls BE provides various communication mechanisms to support
message passing between processors. Each SPE is associ-

PPE

PPU 11 11
L2 :{ EIB ‘
= i i i ated with one input mailbox with four 32 bits message en-
' tries and two output mailbox with one message entry. Writ-
Lo | Lo ) Lo ] o] ing the input mailbox of an SPE transmits a 32 bits data to
SPE SPE SPE SPE the message entry. The output mailbox allows the SPE to
Figure 4. Cell broadband engine architecture. send small message in the output mailbox, other cores or

In this section, we describe the architecture overview devices requiring the message is able to access the output
of the Cell BE [5] which is a high performance platform mailbox and empty it after reading the message. The SPE
for application domains of financial, networking, sciewtifi is allowed to trigger an interrupt to the PPE along with a
computing, and high-resolution multimedia. Figure 4 de- 32 bits message by writing the message to the associated
picts the architecture overview. The Cell BE is composed output mailbox entry. The mailbox mechanism is adopted
of one PPE and eight SPEs connected by a high bandwidthoy the proposed parallelized BP to reduce the communica-
on-chip bus called the element interconnect bus (EIB). As tion overhead. Section 3.2 details the strategies of paral-
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Figure 7. Bipartite graph.

puted in the last iteration. The process implies that every
message updating operation of each iteration can be per-
formed independently. Thus the four-direction updating ca

be executed independently in each SPE by partitioning the

STAGE3 !

. . up, down, left, right direction updating to be execute in
Figure 5. Execution flow of the BP on Cell BE. SPH, SPE, SPB, SPEL, respectively. Although the parti-

lelizing BP method on the Cell BE. tioning provides a way of parallelizing the message passing
3.2 Parallelization Strategies stage, the data locality reduces the performance gainlof tas
In this section, we analyze the parallelism in the BP al- parallelism. The messages fetched from main memory for

' updating one direction are not reusable for the updating of

gorithm proposed in Section 2 and then show the strategies . o
of implementing parallelized BP on the Cell BE. Figure 5 the next node in the same direction. The SPE has to fetch

shows the execution flow of BP algorithm that can be di- the messages required for each node. _ _
vided into three stages: initializing the image pyramidsme | nerefore, we propose another strategy to parallelize this
sage updating, and computing the disparity graph. The analStage. As shown in Algorithm 1, the updating process are

ysis and implementation strategies are detailed as follows "Ot Performed for every node in each iteration but in a bi-
partite behavior. Take iteratianfor example, the four di-

3.2.1 Stagel: initializing the data pyramid rections of light-color nodes are updated as shown in Fig-
In this stage, the initialization of data pyramid is perfesin ~ ure 7. Then in the next iteration of+ 1, it only updated
by grouping the adjacent four nodesdrj;mfmJI0 to form the message of each dark-color nodes. The bipartite be-
the coarser image layer. Considering the generalization ofhavior of message updating gives hints of parallelizing thi
each node in the coarsest data layer, the computation of eachtage. Instead of partitioning one direction of each node to
node can be performed independently as shown in Figure 6e executed concurrently, we can update the four-direction
The initialization fromdata, , ~can thus be partitoned ~messages of each node independently since the messages
into independent parts. The data parallelism in this stagerequired are computed in the last iteration. Moreoverat pr
provides opportunities to optimize the algorithm. To ex- vides high data reusability for the reason that the messages
pose the architecture parallelism, assume that therd. are required for updating each direction are the same vectors.
data layers in the image pyramid, we first partition the input ~ Thus, the nodes are partitioned into several groups ac-
datadata?uu,h0 into 2“;“—?’501 divisions. Then the divisions cording to the numbers of SPE available. Each group is
are grouped into groups of data to be initialized in the SPE scheduled to be processed in an SPE. After dispatching the
of the Cell BE: Each division in the SPE can be process to jobs and data in each SPE, the four-direction messages of
form the image pyramid from finer to coarser image layer each node in a group are calculated independently in each
without synchronizing with other divisions. iteration. The computed messages are then transmitted back
S to the main memory for the message updating of the next it-
eration. The strategy is able to provide good data and task
parallelism with good data reusability.

3.2.3 Stage3: computing the disparity graph

The last stage of the algorithm is to gather the information
computed from the prior two stages to produce the disparity
Figure 6. Building the data pyramid from low- graph. The disparity of each node is computed by gathering
est level data layer. the messages of the neighboring nodes toward this node and
the information fromiata?m n, to decide the proper dispar-

ity. The disparity computafion process of each node can be
In this stage, the message updating in each iteration are perperformed in parallel. Therefore, this stage also shows hig
formed in four directions by referring to the message com- data parallelism that allows the decision process of each
node to be performed in the SPE.

3.2.2 Stage2: message updating



(a) Original image pair. (b) Ground-truth. (b) Result of parallelized BP.
Figure 8. Stereo matching results for the Tsukuba image pair
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Figure 9. Performance improvement of parallelized BP.

324 SIMD also indicates & times faster than the implementation on
Analyzing the data layout and usage of the algorithm, most3 GHz pentium4 computer. Table 1 shows the execution
of the data structures used are vectors and arrays. The SPgme of different implementation of BP for Tsukuda image
of Cell BE provides a set of application interfaces for the pair. Note that the BP on single PPE is about two times
developers to expose the architecture benefits of SIMD byg|ower than on Pentium 4. The main reason is that the BP
exploiting the potential instruction-level data parafied. algorithm requires a lot of memory for processing the im-
Such feature provides another opportunity for optimizatio ages and updating the messages. However, the PS3 plat-
by packing the data accessing of the program into SIMD orm we used provided limited memory (256MB XDRAM)
Instructions. for the PPE which leads to a dramatically decreasing of the
4 Experimental Results performance.

We performed the experiments on the PlayStation3 (PS3)  To demonstrate the performance improvement of the par-
platform which provides one 3.2 GHz Cell BE processor gallelization strategies illustrated in Section 3.2, we mea
with six SPEs and one PPE. The PPE has a 32 KB in-sured the performance improvement of each strategy. Fig-
struction cache and a 32 KB data cache as L1 cache, and @re 9 shows the performance improvement comparing to the
512 KB L2 unified cache for instruction and data. The im- sequential implementation on PPE of the Cell BE. As shown
plementation of the parallelized BP was based on the develin Figure 9, by parallelizing stage | for the data pyramid ini
opment environment where the PPE runs the Linux kerneltialization produced about two times performance improve-
2.6.22. The toolkit provided by IBM includes the libspe for mentin execution time. Parallelizing stage Il for procugi
managing SPE, pthread library, compiler, linker, and assem the disparity graph also produced about two times perfor-
bler of PPE and SPE. The data and event communicationmance improvement. As the BP method spent ar&i04d
were through the mailbox mechanism. Since the platform of the execution time in updating messages, parallelizing
we used only provided six runnable SPEs, the data layerstage Il for the message updating produced great perfor-
is partitioned to six groups. Our implementation processedmance improvement bg.5 times faster. By merely par-
five iterations for six disparity levels for the Tsukubaireag allelizing the control flow and data communication existed

pair. Figure 8 (a) depicts one of the original image pair-Fig in the algorithm, the method was improved abéutmes
ure 8 (c) shows the result produced by the parallelized BP.

Comparing to the ground-truth of the image pair as shown
in Figure 8 (b), the result of the parallelized BP presented a
great quality.

Table 1. Execution time of the different im-
plementation of BP on different machines for
Tsukuba image pair.

. . . . Method Sequential Sequential Parallelized BP
The execution time of the parallelized BP method is —pptom 3G Penfium 21 PPE on CellBE™ CellBE
0.175 seconds which is abouB.5 times faster than the se- [ Performance(seconds)  1.195 2.34 0175

guential implementation on PPE of the Cell BE. The result



9 _ 5 Future Work _
s 776 Packing the array and vector operations to a set of SIMD
| SIMD in stage
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plications. It provides facilities to pack four 32-bits daic-

358 cessing into a single SIMD128-bits data access, which po-
tentially presents four times performance improvement for
each data accessing. The early evaluation of our work only
includes partial implementation of the SIMD data access-
ing in the parallelized BP. Analyzing the BP method, the
image processing and message updating in the implementa-
tion were mainly array and vector structures. As shown in
the experimental results, SIMD presented a important role
. i ) in improving the overall performance. In the future work,

We also implemented the method with partial SIMD data n4cking SIMD instructions for all the memory operations
accessing in the parallelized BP for stage Il. The image pro-cqu1d be a key factor to produce more performance im-
cessing and message updating in the implementation Weréyrovement for supporting a real-time performance. More-
converted to a set of SIMD operations on arrays and vectors gyer, the adoption of intrinsic function for special opera-
As shown in Figure 9, the performance was improvedby ions and carefully choosing compiler optimization phases

times after packing memory access operations into SIMD g,chy as loop unrolling, also reveal opportunities of furthe
instructions. Figure 9 shows the result of parallelized BP a improving the performance.

ter applying all the parallelization strategies which pres 6 Conclusion
an overall13.5 times performance improvement. The ex- In this paper we examined the parallelization of a be-
perimental results also shows that the stereo matching carief propagation algorithm on the multicore processors. We
have a nearly real-time performance of abéditames per  have proposed methods to demonstrate the issues in opti-
second. mizing the algorithm by exploiting the potential paralbsti

For evaluating the performance gain with difference to expose the architecture benefits. The methodology of an-

numbers of SPEs, we consider the implementation of the@lYZing and exploiting parallelism presented in this detic
parallelized BP on one SPE as the baseline. Figure 10'S applicable to other stereo vision algorithms. The result

shows the scalability of the parallelized BP algorithm. The Showed that with careful analysis and parallelizing, the im
bright color bar shows the performance improvement of Plémentationis able to produce a highly accurate result wit
the implementations of parallelized BP on different num- f@st processing time.

bers of SPEs. The dark color bar shows the performanceAC_llShri‘g\pé'Seefjagcr:ﬂevvgs supported in part by the NSC under
scaling of parallelized BP with SIMD data accessing run- grant nos. NSC 97-2218-E-007-009, NSC 97-2218-E-007-

ning on different numbers of SPEs compared to the imple- 508 and NSC 96-2220-E-007-030, and by the MOEA re-
mentation of single SPE without SIMD exploration. The search project under grant nos. 95-EC-17-A-01-S1-034 and

performance was linearly improved as the numbers of SPE96-EC-17-A-01-S1-034 in Taiwan.

used were increased which shows 26 times improvement  References
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