
Expression Rematerialization for VLIW DSP
Processors with Distributed Register Files ?

Chung-Ju Wu, Chia-Han Lu, and Jenq-Kuen Lee

Department of Computer Science,
National Tsing-Hua University,

Hsinchu 30013, Taiwan
{jasonwu,chlu}@pllab.cs.nthu.edu.tw,jklee@cs.nthu.edu.tw

Abstract. Spill code is the overhead of memory load/store behavior if
the available registers are not sufficient to map live ranges during the
process of register allocation. Previously, works have been proposed to
reduce spill code for the unified register file. For reducing power and cost
in design of VLIW DSP processors, distributed register files and multi-
bank register architectures are being adopted to eliminate the amount
of read/write ports between functional units and registers. This presents
new challenges for devising compiler optimization schemes for such ar-
chitectures. This paper aims at addressing the issues of reducing spill
code via rematerialization for a VLIW DSP processor with distributed
register files. Rematerialization is a strategy for register allocator to de-
termine if it is cheaper to recompute the value than to use memory
load/store. In the paper, we propose a solution to exploit the character-
istics of distributed register files where there is the chance to balance or
split live ranges. By heuristically estimating register pressure for each
register file, we are going to treat them as optional spilled locations
rather than spilling to memory. The choice of spilled location might pre-
serve an expression result and keep the value alive in different register
file. It increases the possibility to do expression rematerialization which
is effectively able to reduce spill code. Experiments were done for the
PAC VLIW DSP processor and based on Open64 compiler infrastruc-
tures. Early experimental results show that our approach can reduce
memory access operations due to the well-partitioned live ranges and
well-rematerialized expression values.

1 Introduction

Register allocation is known as one of the most important phases in advanced
compilers. Generally, compilers use intermediate form to represent code sequence

? This paper is submitted to CPC 2009. The correspondence author is Jenq Kuen
Lee. His e-mail is jklee@cs.nthu.edu.tw, phone number is +886-3-5715131
EXT. 33519, FAX number is +886-3-5723694. His postal address is Prof. Jenq-
Kuen Lee, Department of Computer Science, National Tsing-Hua Uni-
versity, Hsinchu 30013, Taiwan.

2 Chung-Ju Wu, Chia-Han Lu, and Jenq-Kuen Lee

corresponding to original source code, in which infinite temporary names are
used as data representations for variables. Before emitting assembly codes for
specific target machine, the register allocator is responsible to create a map from
all live ranges of those data representations to hardware physical registers. Such
live-range-mapping problem can be modeled as a graph-coloring problem.

Chaitin’s work [6, 7] is the first to implement register allocator based on a
graph coloring algorithm. It attempts to color graph that illustrates the inter-
ference relation among live ranges using K colors, where K is the number of
physical registers. Once the graph is not K-colorable, which means the physical
registers are not sufficient to map live ranges, the spill code must be inserted into
code sequence to split particular live ranges in order to release register pressure
so that register allocator is able to map all live ranges with limited number of
registers. However, Chaitin’s naive method may produce lots of redundant spill
code which issue too many unnecessary memory access. Since the relative cost
of memory access is increasing in present day, well-utilized registers are helpful
to avoid spilling code. Several approaches have been proposed [8–10] to reduce
spill code and have shown successful result. But all those works are dedicated to
unified register file.

Nowadays, for the design of embedded processing with greater parallelism,
power consumption and chip die size are always to be the significant concerns
on top of processor performance. In designing VLIW DSP processors, the large
number of registers that are accessible by all functional units require large num-
ber of ports. This restricts the possible processor cycle duration and raises the
difficulty of the design [4]. To solve this weakness, a variety of distributed reg-
ister file architectures have been developed for embedded processors in recent
years, promoting hardware design to lower power dissipation and reduce die size
over traditional unified register file structures. The appearances of distributed
register files architectures on embedded VLIW DSP processors present a great
challenge for compilers to generate efficient codes for multimedia applications.
In the literature, current research results in compiler optimizations for such
problems include the work on partitioning register files to work with instruction
scheduling [24], loop partitions for clustered register files [25], copy propagation
method for distributed register files [26], and global register allocation method
[27,28].

In this paper, we propose a new technique which exploits characteristics
of distributed register files to reduce spill code. Our method is a form of re-
materialization, which tries to re-compute the values in the case of spill for
memories. Previous work for rematerialization has been mainly emphasizing on
re-computing constant expression, while we attempt to re-compute expression
still in the live range. In addition, we deal with architecture with distributed
register banks. The difficulty in trying to re-compute the expression in the case
of register spill is that the expression we want to compute might no longer be
alive in the live range while we attempt to re-compute the expression. Our pro-
posed solution is to perform a pre-calculation ahead of time when the expression
to be re-computed is still in the live range. We then try to find a free register

Expression Rematerialization on Distributed Register Files 3

in different register banks to save the value. This also provides a code motion
opportunity for the generation of spill codes to different register banks. In the
de-generalized case, our method works as if spill codes are done to other register
banks instead of memory. We propose methods to estimate register pressures
in each register bank, models to measure if the method is profitable for dis-
tributed register file architectures, and a software framework for incorporating
our proposed scheme. Experiments were done with a developing compiler for the
PAC DSP architecture and based on Open64 compiler and with our proposed
schemes. PAC (Parallel Architecture Core) DSP [1–3], is designed with distinc-
tively banked register files where port access is highly restricted. The results
indicate that our approach delivers significant performance improvement over
spill code cases.

The remainder of this paper are organized as follows. In Section 2, we will in-
troduce the processor architecture and register file organizations as target exam-
ple. Section 3 will brief the motivation for expression rematerialization concept,
and then describe our proposed approach in detail. The experimental results are
shown in Section 4 and Section 5 finally concludes this paper.

2 Background

Throughout this paper we take PAC DSP processor as our target machine. This
section brief the overview of PAC DSP VLIW architecture and its distributed
register files structure, plus a little register allocation concept and register file
assignment effort prior to our work.

2.1 PAC DSP Architecture

The Parallel Architecture Core (PAC) is a 32-bit, fixed-point, and five-way issue
VLIW digital signal processor (DSP). PAC DSP is comprised of two Load/Store
Units (LSU, memory access, M-unit), two Arithmetic Logic Units (ALU, in-
structions for powerful arithmetic, I-unit), and one Scalar Unit (Scalar, branch
operations, B-unit). LSU and ALU are organized into two clusters, each contain-
ing its own private register file and being capable to access public register file.
The Scalar unit individually takes charge of operations of control flow instruc-
tions, plus issue some load/store and arithmetic operations with its own private
register file. The overview architecture is illustrated in Figure 1.

As in Figure 1, the register file structure in each cluster is highly partitioned
and distributed. Among this architecture, PAC DSP contains four distinct reg-
ister files. The A, AC, and R register files are private registers, directly attached
to and only accessible by M-unit, I-unit, and B-unit, respectively. The D register
file is public within one cluster where M-unit and I-unit are both able to access
it. Furthermore, the internal of the D register file is partitioned into two banks to
utilize the instructional port switching technology in order to reduce more wire
connections between M- and I-unit. During each cycle, the two functional units
can only access two different banks. We believe this special register file design

4 Chung-Ju Wu, Chia-Han Lu, and Jenq-Kuen Lee

A0~A7

AC0~AC7

D0~D7
D8~D15

M-Unit

I-Unit

A0~A7

AC0~AC7

D0~D7
D8~D15

M-Unit

I-Unit

B-Unit

R0~R15

Memory Interface

Fig. 1. The PAC DSP architecture

can help us achieve low-power consumption because it retains an effective way
of data communication with less wire connections between functional unit and
registers. But it also introduces several issues to be dealt with register allocation.
These issues would be described in Section 3.

PAC DSP processor [1] is currently developed at ITRI STC, and our labora-
tory is collaborating with ITRI STC under MOEA projects for the challenging
work to develop high-performance and low-power toolkits for embedded systems
under PAC platforms [11–16,27,28]

2.2 Chaitin-Style Register Allocator

Previous literature on register allocation has proved that the problem of optimal
register allocation is NP-complete [5]. Therefore, compilers always develop their
own heuristic techniques to approximate its solution. The commonly used heuris-
tic technique is the graph coloring algorithm which was originally developed by
Chaitin et al. It constructs an interference graph in which there are nodes and
edges. Nodes in the graph represent the live ranges which need to be allocated
to machine registers. Edges represent the interference between two connected
nodes (i.e. live ranges) which cannot occupy same register. Besides, for a live
range li, its neighbors are the live ranges that interference with it and the de-
gree of li is the number of its neighbors. Chaitin operates these information and
keep changing the interference graph phase by phase. Figure 2 illustrates the
Briggs’ register allocation flow [9] which is the improvement of the Chaitin-style
coloring algorithm.

Expression Rematerialization on Distributed Register Files 5

renumber build coalesce spill costs simplify color

spill code

Fig. 2. The Chaitin-Briggs Allocator

To find an allocation for interference graph with K colors, all nodes with
degree < K will be removed continuously from interference graph during the
simplify phase. If there remains nodes in the graph eventually, it tells K-coloring
is not discovered and some live ranges will be chosen to do spilling. Chaitin’s
spilling roughly insert a memory store after each def of the live range and a
memory load before every use. This spilling technique would produce memory
access everywhere for the entire live range. So he also mentioned that several
optimizations can reduce amount of unnecessary spill code [7] and there were
many researches working on it [8, 9, 20–22].

2.3 Register File Assignment

Because the PAC DSP has a clustered organization with distributed register files,
the communication cost is a considerable issue to do register allocation. For sup-
porting instruction level parallelism in a VLIW architecture, effective register
allocation with scheduling stands in crucial position to optimize code perfor-
mance. Typically, register allocation and instruction scheduling are performed
in separate phases for most compiler infrastructures to decrease the complexity
of combining these two optimization problems. If we can dispatch the register
usage on register files as more parallelism as possible, the instruction scheduler
is able to bundle more than one operations in single instruction word. Unfor-
tunately, the dispatch job always requires new code sequence to exchange data
between different register files as long as they have dependencies. Those essential
communication cannot be eliminated. Instead, it is supposed to be minimized.

Minimizing the communication cost in PAC DSP makes it desirable to use
a new phase, Register File Assignment (RFA), to handle communications [11,
12,27,28]. With this heuristic approach assistance, we then apply general graph
coloring techniques for each register file.

3 Expression Rematerialization

Expression Rematerialization is the idea for improving the quality of spill codes.
Our proposed methodology analyzes register pressure for each register file, pick-
ing up a live range and then move it into the destination with low pressure. We
are going to talk about the motivation of our work followed by the details and
algorithm in this section.

6 Chung-Ju Wu, Chia-Han Lu, and Jenq-Kuen Lee

3.1 Motivation

As it is mentioned in Section 2, we apply register file assignment for every live
range, and then invoke register allocator on each register file. If the register
allocator determine the interference graph is not K-colorable, the spill code is
inserted into code sequence. In general, Register Pressure is the major factor
that leads the effect of K-coloring process. It comes from the number of physical
registers (K colors), the amounts of live ranges (Nodes), the interferences of live
ranges (Edges), and other potential hardware constraints. The higher register
pressure it is in the graph, the less possibility to make coloring succeed. This
also implies a simple idea: High register pressure causes more spill code than low
register pressure.

In distributed register file design, although it reduces the number of hardware
ports and decreases die size area, it leaves another impact to compiler that there
are only few registers can be used for each register file. Hence, the register pres-
sure is easily getting high and spill code is raised frequently because of the low
number of registers. Based on Chaitin’s algorithm, following improvements [8,9]
develop spilling heuristic and utilize rematerialization to reduce spill code. Later
work, Kolt and Bergner [20,21] futher narrowed the interference live ranges into
interference regions. Also, with precise knowledge of registers availability, spill
code motion [22] partially allocating registers by their precise availability.

While existing methods have made significant strides in reducing spill code,
they still basically address the case of a single bank of unified registers. Their
allocation algorithms are not sufficient to handle distributed live ranges on differ-
ent register files where the register allocator can do nothing for those unallocated
live ranges but spilling. However, under observation, it reveals that the register
file assignment is local-favorable to pick up register file class because its pur-
pose is to minimize the communication cost [11, 12]. It always lacks of precise
knowledge of register pressure so that it sometimes causes too many live ranges
crowded in one register file.

The situation encourages us to think about a new thought for register file
architecture. The idea is to spill (shuffle) a live range into other register files
which are estimated to still have sufficient free registers to hold. Figure 3 shows
the basic idea.

Suppose the live range in the middle of Figure 3 is the one which is chosen
to do spilling, in which the black circle denotes def point and the white circle
denotes use in the operations. Traditionally, as it is shown at left-hand-side in
Figure 3, the spilling process would do spill-out (i.e. memory store) to memory
after the definition and get the value by doing spill-in (i.e. memory load) from
memory before every use. On the contrary, rather than spilling out/in to/from
memory, the idea at right-hand-side employs data communication instructions
to move live range from D Register File to A Register File. It is obvious that
the second strategy is much better since the cost of memory access is always
expensive.

However, to move live range into A Register File may cause it to produce
new spill code due to the increasing of register pressure of it. There are supposed

Expression Rematerialization on Distributed Register Files 7

Spilling to Memory Spilling to Register File

spill-out

spill-in

spill-in

spill-in

D Register File

copy-out

copy-in

copy-in

copy-in

D Register File

A Register File

def use

Fig. 3. Memory spilling and register file spilling

to have some cost model or algorithm to estimate which live range should be
picked up and which register file could be used as spilled destination. Those cost
model and algorithm are described in the following subsections.

In addition, the example in Figure 3 can be considered as a de-generalized
case from the viewpoints of expression rematerialization. In the more general
term, one can further perform a pre-calculation ahead of time when the expres-
sion to be re-computed is still in the live range. We then try to find a free register
in different register banks to save the value. This can provide further opportunity
for a code motion opportunity for the generation of spill codes, while attempting
to find the most profitable candidate in another bank for a spill location.

3.2 Register File Spilling

In the subsection, we would like to introduce register file spilling, an alternative
spilling for the architecture of distributed register files. In the Chaintin-style
allocator, when coloring fails, it would spill virtual registers to memory. We
call such spilling memory spilling. For the architecture with distributed register
files, since the register pressure of register files varies, its spilling can employs the
natrual of distributed feature and spill virtual registers to register files instead.

One of the essential issues in the spilling is to estimate the register pressure of
each register files since register file spilling would decrease the register pressure
of one register file and increase that of another. In the paper, there are two
methods of the register pressure estimation for register file spilling. Both the
methods are based on the global interference graph. For the register allocator of
distributed register files, it builds the interference graphs for each register file.
That is, every register file has its interference graph built on interference between

8 Chung-Ju Wu, Chia-Han Lu, and Jenq-Kuen Lee

Algorithm 1 Estimate the Register Pressure
1: /* Higher number means lower register pressure. */

2: procedure numFreeRegs(liveRange, regF ile, method)
3: /* Initialization */

4: for all regF ile do
5: // regMembers[regF ile] is a set of the registers

6: // belongs to regF ile.
7: regs[regF ile] ← regMembers[regF ile]
8: end for
9: /* The first method: the global interference degree (GID).

10: The second method: the global interference degree

11: and register availability (GID/RA). */

12: if method = GID then
13: for all regF ile do
14: regs[regF ile] ← regs[regF ile]
15: end for
16: else if method = GID RA then
17: /* Check the register availability. */

18: itfLiveRanges ← liveRange.globalItfLiveRanges
19: for all itfLiveRange ∈ itfLiveRanges do
20: reg ← itfLiveRange.reg
21: if reg 6= NONE then
22: regs[regF ile] ← differElement(regs[regF ile], reg)
23: end if
24: end for
25: end if
26: for all regF ile do
27: free[regF ile] ← size(regs[regF ile])
28: end for
29: /* Check the global interference degree. */

30: for all itfLiveRange ∈ itfLiveRanges do
31: reg ← itfLiveRange.reg
32: if reg = NONE then
33: free[regF ile] ← free[regF ile]− 1
34: end if
35: end for
36: num ← free[regF ile]
37: if num ≤ 0 then
38: num ← 0
39: end if
40: return num
41: end procedure

Expression Rematerialization on Distributed Register Files 9

Algorithm 2 Code Motion of the First Definition and Last Use
1: procedure moveFirstDefLastUse(liveRange)
2: liveRange ← moveFirstDef(liveRange)
3: if liveRange 6= liveRange then
4: liveRange ← liveRange
5: else
6: liveRange ← moveLastUse(liveRange)
7: end if
8: return liveRange
9: end procedure

10: procedure moveFirstDef(liveRange)
11: firstDef ← liveRange.firstDef
12: nextRef ← nextReference(liveRange)
13: if (firstDef + 1) 6= nextRef then
14: firstDef = firstDef + 1
15: end if
16: liveRange ← updateFirstDef(liveRange, firstDef)
17: return liveRange
18: end procedure

19: procedure moveLastUse(liveRange)
20: lastUse ← liveRange.lastUse
21: prevRef ← prevReference(liveRange)
22: if (lastUse− 1) 6= prevRef then
23: lastUse = lastUse− 1
24: end if
25: liveRange ← updateLastUse(liveRange, lastUse)
26: return liveRange
27: end procedure

28: procedure beforeMove(liveRange)
29: dupLiveRange ← liveRange
30: removeLiveRange(liveRange)
31: addLiveRange(dupLiveRange)
32: return dupLiveRange
33: end procedure

34: procedure afterMove(liveRange, dupLiveRange)
35: removeLiveRange(dupLiveRange)
36: addLiveRange(liveRange)
37: end procedure

10 Chung-Ju Wu, Chia-Han Lu, and Jenq-Kuen Lee

Algorithm 3 Register File Spilling
1: /* Determine memory spilling or register file spilling.

2: If register file spilling does, determine which register file

3: to be spilling position. */

4: procedure chooseSpill(liveRange, method)
5: spillCand ← NONE

6: minCost ← MAX

7: bestLiveRange ← NONE

8: dupLiveRange ← beforeMove(liveRange)
9: changed ← TRUE

10: while changed = TRUE do
11: for all regF ile do
12: free ← numFreeRegs(regF ile, dupLiveRange, method)
13: cost ← regFileSpillCost(dupLiveRange, regF ile)
14: if free > 0 and cost < minCost then
15: spillCand ← regF ile
16: minCost ← cost
17: bestLiveRange ← dupLiveRange
18: end if
19: end for
20: dupLiveRange ← moveFirstDefLastUse(dupLiveRange)
21: if dupLiveRange = dupLiveRange then
22: changed ← FALSE

23: end if
24: end while
25: if bestLiveRange 6= NONE then
26: liveRange ← bestLiveRange
27: else
28: liveRange ← liveRange
29: end if
30: afterMove(liveRange, dupLiveRange)
31: if spillCand 6= NONE then
32: regFileSpill(liveRange, spillCand)
33: else
34: memSpill(liveRange)
35: end if
36: end procedure

37: /* Get the communication cost between the register files. */

38: procedure regFileSpillCost(liveRange, regF ile)
39: src ← liveRange.regF ile
40: dst ← regfile
41: cost ← commCost[src][dst]
42: return cost
43: end procedure
44: procedure regFileSpill(liveRange, regF ile)
45: <Similar to spilling in the Chaitin-style allocator,

46: but replace all loads/stores with copy-ins and copy-outs.>

47: end procedure

48: procedure memFileSpill(liveRange)
49: <Same as spilling in the Chaitin-style allocator>

50: end procedure

Expression Rematerialization on Distributed Register Files 11

live ranges with same register file. We call the graph the local interference graph.
However, the local interference graph is not sufficient for register file spilling,
which employs inter-regster-file communication to act as the spill-in and spill-
out. To overcome this issue, we would like to include the global interference graph
into the allocator. Unlike the local interference graph built on interference within
a register file, the global graph build on interference across register files.

With the global interference graph, the global interference degree can provide
rough estimation of the register pressure. Though, the first estimation, called the
GID method, of the global interference degree seems conservative for register file
spilling. Therefore, we propose the second estimation in which we enhance the es-
timation with the register availability, called the GID/RA method. Algorithm 1
reveals the details the two methods of register pressure estimation. The pro-
cedure numFreeRegs returns the number of free registers. If the number is
higher, the register pressure is lower. At first, the procedure retrieves the regis-
ter set for each register file. While both methods checks the global interference
degree later, only the GID/RA method checks the register availability, which is
computed on the colored global live ranges and presents coloring outcome in this
iteration.

With the register pressure estimation, register file spilling can use it to de-
termine whether it is worthy to utilize other regsiter files. Algorithm 3 describes
the main flow of register file spilling. The first loop calls moveFirstDefLas-
tUse in Algorith 2 to sink the first definition or hoist the last use into all
the possible positions. For each of the potential live ranges, the procedure uses
chooseSpill, numFreeRegs and regFileSpillCost to estimate the register
pressure and spill cost of each register file, and records which live range can be
the most benifitial in these estimation. Here, the higher value returned by num-
FreeRegs means lower register pressure. If numFreeRegs’s of all the register
files are zero, memory spilling is more suitable for the live range than register file
spilling. Otherwise, there is one register file candidate at least for spilling. When
register file spilling is the choice, the procedure selects the suitable register file
for spilling, whose regFileSpillCost is minimum among the register files with
positive numFreeRegs in the previous estimation.

4 Experiment

This section describes our preliminary experiments on register file spilling. All
the experiments were performed with Open64-based compiler and on the cycle-
accurate instruction set simulator, provided by STC/ITRI (SoC Technology Cen-
ter of Industrial Technology Research Institute) in Taiwan, of the PAC DSP.

4.1 Infrastructure Design

Our compiler has many tuned optimizations for the PAC DSP. Some are intro-
duced for the complicated communication. Because the PAC DSP has a clustered
organization with distributed register files, the data movement between register

12 Chung-Ju Wu, Chia-Han Lu, and Jenq-Kuen Lee

files in PAC DSP can be classified into intra-cluster and inter-cluster communi-
cations. In that case, the common cluster-assignment problem for VLIW proces-
sors [17–19] does not directly apply to this design. Complicated communication
scheme in the PAC DSP makes it desirable to have RFA in handling communi-
cations. including PALF-LRFA [11,12], LC-GRFA [27,28], and SA-RFA [29].

In addition to RFA, the copy propagation in the original Open64 could also be
modified [26]. Due to the non-uniform distributed register file structure in the
PAC DSP, conventional copy propagation might degrade the performance. In
the modified optimization, the communication cost model was derived for copy
propagation, which was based on the cluster distance, register port pressure,
and movement type of register sets. The model was used to guide data flow
analysis for better performance on the PAC DSP architecture. Moreover, since
the PAC DSP has other architecuture features, other optimizations like software
pipelining [30], loop nest optimization, and subword optimization, have been
also improved for the processor.

Global Register File Assignment

Global Register Allocation

Local Register File Assignment

Local Register Allocation

Register File Assignment

includes three major subphases:

 1. Cluster assignment

 2. Register file assignment

 3. Communication code insertion

Expression Rematerialization
with Register File Spilling

 includes three major algorithms:

 1. Register Pressure Estimation

 2. Code Motion of Def & Use

 3. Register File Spilling

Fig. 4. Expression Rematerialization in Open64 compiler infrastructure

Since this compiler is derived from Open64 compiler, it divides register al-
location into Global Register Allocation (GRA) and Local Register Allocation
(LRA) as well. The mentioned RFA has to be extended into GRFA and LRFA
for GRA and LRA, respectively. Then our work is an extension built in GRA
and LRA, as shown in Figure 4

4.2 Experimental Result

The spilling methods are implemented in LRA, and we use Figure 5 and Figure 6
to illustrate our experimetal result on the DSPStone [23] benchmark suite. In the
figures, it compares the speedup and the numbers of memory loads/stores and
register copies under the three methods: memory spilling, register file spilling
with the GID method, and register file spilling with the GID/RA method. They

Expression Rematerialization on Distributed Register Files 13

were mentioned in Section 3.2 and the last two were estimated on global in-
terference graph. In Figure 5, the fisrt column of Figure 5 specify the programs
compiled. The second and third columns give the number of memory loads/stores
and register copies for memory spilling. The fourth column shows the speedup of
the program, also for memory spilling. Note that in the results we use memory
spilling as the baseline for the speedup. The columns from the fifth to the tenth
give the same information as column 2, 3, and 4 for register file spilling with the
GID method and register file spilling with GID/RA method respetively. As to
Figure 6, we use the figure to emphasize the speedup under different methods.

For example, the resuls of fir2dim is shown in the seventh row. With memory
spilling, register allocation in compiling fir2dim needs 464 memory loads/stores
and none of register copies. When register file spilling with GID is used, the
number of loads/stores is reduced to 342 and that of copies is increased to 118.
Compared to memory spilling, fir2dim get 109% speedup. Then, when register
file spilling with GID/RA is used, the number of loads/stores is reduced to 334
and that of copies is increased to 126, and the speedup is increased to 109%.

Figure 5 shows that register file spilling tranfers part of loads/stores into
copies. Thus, due to less lateny required for copies, register file spilling causes
less cycles in total and higher speedup. For n complex updates, the GID/RA
method transfers more loads/stores into copies than the GID method. As it
transfer more into copies, the GID/RA method can provide better speedup.
Register file spilling could improve lesser performance caused by unbalanced
register file assignment. Some have unbalanced register file assignment among
register files, such as n complex updates. Since the unbalanced assignment would
centralize live ranges into one or two register files and make them of high pres-
sure, these programs are suitable for register file spilling. For n complex updates,
the GID and GID/RA methods adjust the unbalance and boosts the speedup of
n complex updates to 150% and 160% respectively.

memory register speedup memory register speedup memory register speedup

biquad_N_sections 32 0 100% 18 14 107% 18 14 107%

biquad_one_section 13 0 100% 0 13 101% 0 13 101%
complex_multiply 23 0 100% 0 23 110% 0 23 110%

complex_update 9 0 100% 0 9 101% 0 9 101%
convolution 0 0 100% 0 0 100% 0 0 100%

dot_product 0 0 100% 0 0 100% 0 0 100%
fir2dim 464 0 100% 342 118 109% 334 126 109%

fir 2 0 100% 0 2 100% 0 2 100%
lms 0 0 100% 0 0 100% 0 0 100%

mat1x3 8 0 100% 0 8 110% 0 8 110%
matrix1 0 0 100% 0 0 100% 0 0 100%
matrix2 0 0 100% 0 0 100% 0 0 100%

n_complex_updates 63 0 100% 21 43 150% 11 53 160%
n_real_updates 0 0 100% 0 0 100% 0 0 100%

real_update 0 0 100% 0 0 100% 0 0 100%

Program
Memory Spilling Reg File Spilling (GID) Reg File Spilling (GID/RA)

Fig. 5. Speedup and numbers of memory loads/stores and register copies

14 Chung-Ju Wu, Chia-Han Lu, and Jenq-Kuen Lee

����������������������������������
S
p
e
e
d
u
p

Memory Spilling Reg File Spilling (GID) Reg File Spilling (GID/RA)

Fig. 6. Speedup chart

5 Conclusion

Embedded DSP processors are currently designed for high instruction level par-
allelism. The techniques used in their designs commonly tend to include a clus-
tered/distributed register files architecture. Although this raises impact for de-
vising compiler optimizations, it provides an optional destination for spill code
in the register allocation phase.

In this work, we developed and implemented a new heuristic approach of spill
code reduction for PAC VLIW DSP processors with highly-distributed register
files. The approach called register file spilling utilizes differences of register pres-
sure between register files. Global interference graph and register availibility are
used to assist register file spilling in register file spilling decision. As it transfers
memory loads/stores into register copies and causes less cycles in spilling, regis-
ter file spilling increases performance up to 125%. The experimental evaluation
of the benchmark programs indicates that our methodology is able to achieve
expression rematerialization which effectively reduces spill code to improve the
performance. Since the method is designed for LRA, our future work would focus
on an extened method for GRA.

References

1. David Chang and Max Baron: Taiwan’s Roadmap to Leadership in Design.
Microprocessor Report, In-Stat/MDR, December 2004.

Expression Rematerialization on Distributed Register Files 15

2. T.J. Lin, C.C. Chang. C.C. Lee, and C.W. Jen: An Efficient VLIW DSP Architec-
ture for Baseband Processing. Proceedings of the 21th International Conference
on Computer Design, 2003.

3. Tay-Jyi Lin, Chie-Min Chao, Chia-Hsien Liu, Pi-Chen Hsiao, Shin-Kai Chen,
Li-Chun Lin, Chih-Wei Liu, Chein-Wei Jen: Computer architecture: A unified
processor architecture for RISC & VLIW DSP. Proceedings of the 15th ACM
Great Lakes symposium on VLSI, April 2005.

4. A. Capitanio, N. Dutt, and A. Nicolau: Partitioned Register Files for VLIW’s: A
Preliminary Analysis of Tradeoffs. Proceedings of the 25th Annual International
Symposium on Microarchitecture (MICRO-25), pages 292–300, Portland, OR,
December 1–4 1992.

5. Ravi Sethi: Complete register allocation problems. SIAM Journal on Computing,
1975.

6. G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P.W.
Markstein: Register allocation via coloring. Computer Languages, 6:47-57, 1981.

7. G.J. Chaitin: Register allocation and spilling via graph coloring. Proceedings of
the ACM SIGPLAN 1982 Symposium on Compiler Construction, pages 201-207,
1982.

8. D. Bernstein, D.Q. Goldin, M.C. Golumbic, H. Krawczyk, Y. Mansour, I.
Nahshon, and R.Y. Pinter: Spill code minimization techniques for optimizing
compilers. Conference on Programming Language Design and Implementation,
1989.

9. P. Briggs, K.D. Cooper, and L. Torczon: Rematerialization. Conference on
Programming Language Design and Implementation, 1992.

10. S. Kurlander and C. Fisher: Zero-cost range splitting. Conference on Program-
ming Language Design and Implementation, 1994.

11. Yung-Chia Lin, Yi-Ping You, Jenq-Kuen Lee: Register Allocation for VLIW DSP
Processors with Irregular Register Files. International Workshop on Compilers
for Parallel Computing, January 2006.

12. Yung-Chia Lin, Yi-Ping You, Jenq-Kuen Lee: PALF: Compiler Supports for
Irregular Register Files in Clustered VLIW DSP Processors. Concurrency and
Computation: Practice and Experience, 2007:19:1-16, Wiley, 2007.

13. Yung-Chia Lin, Chung-Lin Tang, Chung-Ju Wu, Jenq-Kuen Lee: Compiler Sup-
ports and Optimizations for PAC VLIW DSP Processors. Languages and Com-
pilers for Parallel Computing, 2005.

14. Yi-Ping You, Ching-Ren Lee, Jenq-Kuen Lee: Compilers for Leakage Power
Reductions. ACM Transactions on Design Automation of Electronic Systems,
Volume 11, Issue 1, pp.147-166, January 2006.

15. Yi-Ping You, Chung-Wen Huang, Jenq-Kuen Lee: A Sink-N-Hoist Framework
for Leakage Power Reduction. ACM EMSOFT, September 2005.

16. Peng-Sheng Chen, Yuan-Shin Hwang, Roy Dz-Ching Ju, Jenq-Kuen Lee: Inter-
procedural Probabilistic Pointer Analysis. IEEE Transactions on Parallel and
Distributed Systems, Volume 15, Issue 10, pp.893-907, October 2004.

17. Ellis JR: Bulldog: A compiler for VLIW Architectures. MIT Press: Cambridge,
MA, 1986.

18. Capitanio A, Dutt N, Nicolau A: Design considerations for limited connectivity
VLIW architectures. Technical Report TR59-92, 1993.

19. Ozer E, Banerjia S, Conte TM: Unified assign and schedule: A new approach
to scheduling for clustered register files micro architectures. Proceedings of the
31st Annual International Symposium on Microarchitecture, November 1998.

16 Chung-Ju Wu, Chia-Han Lu, and Jenq-Kuen Lee

20. P. Kolte and M.J. Harrold: Load/Store range analysis for global register alloca-
tion. Proceedings of Programming Language Design and Implementation, 1993.

21. P. Bergner, P. Dahl, D. Engebretsen, and M.O’Keefe: Spill code minimization
via interference region spilling. Proceedings of Programming Language Design
and Implementation, 1997.

22. Akira Koseki, Hideaki Komatsu, and Toshio Nakitani: Spill Code Minimization
by Spill Code Motion Proceedings of Parallel Architectures and Compilation
Techniques, 2003.

23. V. Zivojnovic, J. Martinez, C. Schlager, and H. Meyr: DSPstone: A DSP-oriented
benchmarking methodology. Proceedings of the International Conference on Sig-
nal Processing and Technology, 715–720, 1995.

24. R. Leupers: Instruction scheduling for clustered VLIW DSPs. Proceedings of
International Conference on Parallel Architecture and Compilation Techniques,
pp.291-300, October 2000.

25. Yi Qian, Steve Carr, Philip H. Sweany: Optimizing Loop Performance for Clus-
tered VLIW Architectures. International Conference on Parallel Architectures
and Compilation Techniques, September 2002.

26. Chung-Ju Wu, Sheng-Yuan Chen, and Jenq-Kuen Lee: Copy Propagation Opti-
mizations for VLIW DSP Processors with Distributed Register Files Languages
and Compilers for Parallel Computing, 2006.

27. Chia-Han Lu, Yung-Chia Lin, Yi-Ping You, and Jenq-Kuen Lee: A Local-
Conscious Global Register Allocator for VLIW DSP Processors with Distributed
Register Files International Workshop on Compilers for Parallel Computing,
January 2007.

28. Chia-Han Lu, Yung-Chia Lin, Yi-Ping You, and Jenq-Kuen Lee: LC-GRFA:
Global Register File Assignment with Local Consciousness for VLIW DSP Pro-
cessors with Non-uniform Register Files. Accepted, Concurrency and Computa-
tion: Practice and Experience, Wiley.

29. Yung-Chia Lin, Chung-Lin Tang, Chung-Ju Wu, Ming-Yu Hung, Yi-Ping You,
Ya-Chiao Moo, Sheng-Yuan Chen, and Jenq Kuen Lee: Compiler Supports and
Optimizations for PAC VLIW DSP Processors. Proceedings of the 18th Interna-
tional Workshop on Languages and Compilers for Parallel Computing, 2005.

30. Chung-Kai Chen, Ling-Hua Tseng, Shih-Chang Chen, Young-Jia Lin, Yi-Ping
You, Chia-Han Lu, Jenq-Kuen Lee: Enabling Compiler Flow for Embedded
VLIW DSP Processors with Distributed Register Files. ACM SIGPLAN Notices,
Volume 42, Issue 7, Pages: 146 - 148, 2007. (ACM LCTES 2007 Issue)

