
Register Allocation for VLIW DSP Processors
with Irregular Register Files ?

Yung-Chia Lin, Yi-Ping You, and Jenq Kuen Lee

National Tsing Hua University
Hsinchu 30013, Taiwan

Abstract. A variety of new register file architectures have been devel-
oped for embedded processors in recent years, promoting hardware design
to achieve low-power dissipation and reduced die size over traditional uni-
fied register file structures. This paper presents a novel register allocation
scheme for a clustered VLIW DSP processor which is designed with dis-
tinctively banked register files in which port access is highly restricted.
With the specific register file organizations considered to decrease the
power consumption because of fewer port connections, not only does the
clustered design make register access across clusters an additional issue,
but the switched access nature of the register file demands further inves-
tigations into optimizing register assignment for increasing instruction
level parallelism. We propose a heuristic algorithm to obtain preferable
register allocation that is expected to well utilize the irregular register file
architectures. Experiments were done with a developing compiler based
on the Open Research Compiler (ORC), and the results showed that
the compilation with the proposed approach delivering significant per-
formance improvement, comparable to a simulated annealing approach
which is considered not as a near-optimal but an exhaustive solution.

1 Introduction

The high computing power required by today’s numerous embedded applica-
tions, which cannot be sufficed by typical RISC embedded processors and low-
end DSP with little parallelism, continuously propels the investigation into the
efficient parallel-architectures of DSP. In the design of DSP for embedded pro-
cessing with greater parallelism, power consumption and chip die size are always
to be the significant concerns on top of higher processor performance. Exploit-
ing instruction-level-parallelism by VLIW architectures is the current trend for
designing a high-performance DSP processor, which usually requires a large num-
ber of registers in a unified file to optimize resource utilization in the instruc-
tion scheduling with minimizing slow memory traffic. Such a common approach
for register file design, like Intel’s Itanium VLIW processors, is not feasible for
? The work was supported in part by NSC under grant no. 94-2220-E-007-019 and 94-2

220-E-007-020, by Ministry of Economic Affairs under grant no. 94-EC-17-A-01-S1-
034, and by MOE research excellent project under grant no. 94-2752-E-007-004-PAE
in Taiwan.

embedded DSP processors due to the design constraints of power dissipation
and chip die size. Furthermore, under the consideration of the circuit design,
larger number of registers that are accessible by all functional units demand
more number of ports which intensely hinder the access time for such a register
file, restricting the possible processor cycle duration and adding the difficulty
of the design [4]. To solve this weakness, a variety of decentralized register file
architectures have been developed for embedded processors in recent years, pro-
moting hardware design to achieve low power dissipation and reduced die size
over traditional unified register file structures.

One of the techniques to decentralize a unified register file is employing clus-
tering concept to partition register files for different groups of functional units.
For example, Texas Instruments TMSC6x DSP [14] series use homogeneous clus-
tered architectures with partitioned register banks and CEVA’s CEVA-X [2]
architectures utilize heterogeneous clustered architectures with partitioned reg-
ister files. Another technique to improve power dissipation without potentially
performance degradation is using an irregular access restricted design of regis-
ter file structures, such as windowed register files [12] and hierarchical register
files [13]. Unfortunately, due to the more specific accessing features and irregular
constraints that are usually held by processors incorporating such partitioned
register file organizations, more appropriate code generation, register allocation,
and instruction scheduling schemes than conventional compilation techniques
are in great demand to attain optimal performance.

This paper describes a novel register allocation scheme for a clustered VLIW
DSP processor, known as Parallel Architecture Core (PAC) DSP [3,9,10], which
is designed with distinctively banked register files in which port access is highly
restricted. The PAC DSP employs a heterogeneous design that equips one singu-
lar scalar unit (for light-weight arithmetic, address calculation, and program flow
control), plus two data stream processing clusters in which each one contains a
pair of load/store unit and ALU/MAC unit with powerful SIMD capabilities;
every unit in the clusters collocates three varied types of register files, providing
different accessing manners and constraints, and the scalar unit has its own acces-
sible register file deployed. The major specialty of the register file architectures
featured by the PAC DSP processor is that it incorporates a so-called ping-pong
register file structure [8], which is divided into two banks and in which banks can
only be restrictedly accessible in a mutual-exclusive way, as a semi-centralized
register file among clusters and functional units within a cluster. With this de-
sign to decrease the power consumption because of fewer port connections, not
only does the clustered design make register access across clusters an additional
issue, but the switched access nature of the ping-pong register file raises our
interest in investigating further register assignment to increase instruction level
parallelism.

We propose a heuristic algorithm, named as Ping-pong Aware Local Favor-
able (PALF) register allocation, to obtain preferable register allocation that is
expected to well utilize the irregular register file architectures in PAC DSP.
The algorithm involves the proper consideration of various characteristics in ac-

cessing different register files, and attempts to minimize the penalty caused by
the interference of register allocation and instruction scheduling, with retaining
desirable parallelism over ping-pong register constraints and inter-cluster over-
heads. Experiments were done with a developing compiler for the PAC DSP
based on the Open Research Compiler (ORC), and the results indicate that the
compilation with the proposed approach delivers significant performance im-
provement, comparable to a simulated annealing approach which is considered
not as a near-optimal but an exhaustive solution.

The sections of this paper are organized as follows. In section 2 we will in-
troduce the processor architecture and register file organizations of PAC VLIW
DSP. Section 3 will brief the complicated issues caused by the severe correlation
between code generation, register allocation, and instruction scheduling in PAC
architectures. The proposed PALF register allocation scheme will be addressed
in section 4 which is followed by an illustrative sample in section 5. The experi-
mental results of our evaluation and related discussion are detailed in section 6.
Finally, section 7 concludes this paper.

2 Ping-pong Register Files with Clustered Architectures

This section overviews the PAC DSP VLIW architecture and its irregular register
file design.

2.1 PAC DSP Architectures

The PAC DSP originally features a clustered VLIW architecture which boosts
scalability, and a large number of registers which are arranged as innovative
heterogeneous and distinct partitioned register file structures. Being unlike sym-
metric architectures of most DSP processors available nowadays, the PAC DSP
processor is constructed as a heterogeneous five-way issue VLIW architecture,
comprised of two integer ALUs (I-unit), two memory load/store units (M-unit),
and the program sequence control unit/scalar unit (B-unit) which is mainly
in charge of control flow instructions like branch and jump. Each unit has its
own executable subset of instruction set and each executable instruction has its
own register accessibility and constraints. The M- and I-units are organized in
pairs, and each pair contains exactly one M-unit and one I-unit to form a clus-
ter arrangement with associated register files. It is apparent that each cluster
is logically appropriate for one data stream processing, and the current design
of PAC DSP consists of two clusters to support maximum workload capacity
of two concurrent data stream. But the scalability of the cluster design in PAC
DSP could allow the processor to easily involve more clusters to handle larger
data processing workload demand. The B-unit consists of two sub-components,
the program sequence control unit, and the scalar unit, due to the hierarchical
decoder design for variable-length instruction encoding in PAC DSP. The pro-
gram sequence control unit primarily takes charge of operations of control flow
instructions. The scalar unit, which is capable of simple load/store and address

arithmetic, is placed separately from data stream processing clusters, with its
own register file. The overall architecture is illustrated in Fig. 1.

����������	
���
�

Local Registers (A)

�	
���
�
����
�

Global Registers (D)

Local Registers (AC)

cluster 2

�
��	�����
	���
���
�

Local Registers (A)

�	
���
�
����
�

Global Registers (D)

Local Registers (AC)

cluster 1

����������	
���
�

�	��	����
��
��

����	�����
�

�����	���
�

Local Registers (R)

Constant Registers (C)

Constant Registers (C)

Fig. 1. The PAC DSP architecture illustration

2.2 Irregular Register Files and Access Constraints

As shown in Fig. 1, registers in PAC DSP are organized into several distinct par-
titioned register files and placed as cluster structures, to reduce wire connections
between functional units and registers so that chip area and power consumption
may be decreased. All units in the processor have their dedicated local register
files attached: they include R-register file, AC-register file, and A-register file,
which are only accessible by B-unit, I-unit, and M-unit, respectively. In each
cluster comprised of M-unit and I-unit, a global register file named as D-register
file is designed to be shared by the pair of M- and I-units in each cluster. The
internal of the D register file is further partitioned into two banks to utilize the
instructional port switching technology in order to reduce more wire connec-
tions between the M- and I-units. This technology, being referred to the name
as ‘ping-pong register file structure’, is that decreasing the register bank port
connection which limits the accessibility of the two bank; in each cycle, the two
functional units can only access to different banks. Each instruction bundle en-
codes the information of which bank is to be accessed for each functional unit
in the cycle so that the hardware can do port switching between D-register file
banks and functional units, to attain the purpose of data sharing within a clus-
ter. By using the concept of overlapping two different data-stream operations in
a cluster, we may minimize the occasion that M- and I-units access the same
data at the same time; therefore, the access constraints of ‘ping-pong register file
structure’ should cause little impact on performance. The advantage of such a
‘ping-pong register file structure’ design is believed to consume less power due to
its reduced read/write ports [13] while retaining the data communication capa-
bility. Figure 2 illustrates the constraints of the ping-pong register file. Besides
local register files and global register files, each cluster contains an additional

D1~D7

D8~D15

M-unit

I-unit

D8~D15

D1~D7

M-unit

I-unit

..........X

Ping-pong Bit of a Cluster

Instruction Encoding :

0 1

Fig. 2. The access constraint of the ping-pong register file structure

constant register file which is shared by both M- and I-units as one of the read-
only operand sources usable by certain instructions. Only M-units can initialize
the data in the constant register file.

3 Optimizing Allocating with Irregularity

For architectures supporting instruction-level-parallelism, effective register al-
location with scheduling is always one of the crucial issues to optimize code
performance. Register allocation and instruction scheduling are typically done
in separate phases for most compiler infrastructures to decrease the complexity
of these two combinatorial optimization problems. For separate orders of pro-
cessing register allocation and instruction scheduling, interference between these
two processes should be considered to determine a suitable performing sequence
based on the architectural features of the target machine. If register allocation
is done after instruction scheduling, we may always get unfeasible register allo-
cation for a certain schedule, particularly on architectures with heterogeneous
design and irregular constraints. Therefore, performing register allocation before
instruction scheduling is more favorable for PAC architectures in our compiler
development than other target machines. Since register allocation may create ad-
ditional dependencies and restrictions that impacts the later scheduling due to
the register usage and liveness, register allocation is required to be optimized so
that the instruction-level-parallelism could still be achieved after the allocation.

Comparing to other platforms, PAC architectures introduce severe issues to
be dealt with register allocation. First, the access constraints of ping-pong regis-
ter file structures restrict the scheduling of two instructions that use the global
D-register files in the same cluster in a cycle no matter if they have depen-
dencies or not. Second, inserting additional data communication code into the
original program will frequently be required while exploiting instruction-level-
paralllelism because of the highly-partitioned register files and their accessibility.
A pair of explicit instructions must be issued together, for instance, to trans-
fer data from one cluster to another cluster, which use the internal routing

data-path of the memory interface unit and occupy two slots in an instruction
bundle. Both of the issuing slots occupation and execution latency will affect the
scheduling of the two-cluster programs that need inter-cluster communication.
Intra-cluster data communication code insertion is also a common case after the

lw D0, A0

sw D9, A0

add D9, D8, AC0

add D1, D0, AC1

cycle: 1
cycle: 2
cycle: 3

mov AC1, D9

M-unit I-unit

Insert a copy instruction to transfer the value of D9 to AC1
so that the addition of D9 and D0 can be executable!

Fig. 3. An example of intra-cluster communication insertion

register allocation that utilizes more register files to optimize the scheduling, like
the example shown in Fig. 3. To properly handle these issues with register alloca-
tion, we propose a heuristic approach to adapt general graph coloring techniques
for each register files and attain a profitable solution for PAC compilers.

4 Ping-pong Aware Local Favorable Register Allocation

In this section we present a register allocation algorithm which, given a de-
pendency DAG (Directed Acyclic Graph) [1] that describes the compilation re-
gions, heuristically determines the proper register file/bank assignment and em-
ploy state-of-the-art graph-coloring register allocation for each assigned register
file/bank in PAC architectures.

4.1 Overview

The overall register allocation algorithm proposed is shown in Fig. 4. Our ap-

Maximal
Localization

Register File
Assignment

Ping-pong
Register Bank
Assignment

Cluster
Assignment

Communication
Code Insertion

Post-pass
Register

Allocation

Build
CRTA-DDG

2-Cluster Code?
Yes

No

Fig. 4. The flowchart of LFRA scheme

proach requires building an extended data dependence DAG, called the Compo-
nent/Register Type Associated Data Dependence Graph (CRTA-DDG), which
preserves the information of the execution and storage relationship for irregular
constraint analysis, in addition to the original partial order imposed by instruc-
tion precedence constraints. Nodes in a CRTA-DDG represent instructions of

the input code block, with the component-type association (that indicates which
functional unit is preferred to be scheduled for this node) and the register-type
association (that annotates the appreciated physical register file/bank, to where
the operands/results will be allocated); the edges linked between the nodes rep-
resent data dependency that serializes the execution order to be followed in the
scheduled code sequence. An example code sequence and its CRTA-DDG are
shown in Fig. 5, where a TN (TemperaryName) of register type is referred as
a virtual register required to be allocated to a physical register in the machine-
level IR used by ORC. The advantage of using CRTA-DDG is that it clarifies

3

211: movi TN1, 5

2: movi TN2, 6

3: add TN3, TN1, TN2

Fig. 5. A simple code with its CTRA-DDG

the allocation and schedule restrictions for each node with the consideration on
complex constraints in PAC architectures, while the well-developed graph parti-
tioning methods may still easily be applied to our register allocation algorithms.
The main PALF register allocation scheme could be organized into five phases
as follows:

1. Build the CRTA-DDG and perform the preferable functional unit assign-
ment to the default execution type of each instruction by the “maximal
localization” analysis.

2. Assign operands/results (required to be allocated to physical registers) of
each node in the CRTA-DDG to the desirable register files.

3. Partition the operands/results assigned to the global ping-pong register files
to the preferred register banks by the strategy of optimizing ping-pong par-
allelism.

4. Partition the nodes in the CRTA-DDG into two clusters properly if the
“compiling for two-clusters” option is set.

5. Insert nodes of required communication code to avoid invalidity caused by
the register file/bank assignment and cluster-partitioning, followed by the
physical register allocation for each register file.

4.2 Maximal Localization

Assume a set of v nodes V = {n1.n2, . . . , nv} with r TNs R = {t1, t2, . . . , tr}
are in a given CRTA-DDG, G = (V, R,E), and the dependencies of these nodes
are represented by e directed edges, each of which is denoted by (ti, tj), whereas
1 ≤ i ≤ r, 1 ≤ j ≤ r, ti ∈ R and tj ∈ R. An operand or result referred by an
instruction is represented as a TN; a TN of register type is a virtual register

required to be allocated and a TN of immediate type is converted to a literal
value of assembly format. Assigning a node n to use u type of functional units is
denoted by nu, u ∈ {M, I,B} and assigning a TN t to be allocated in the register
file namely f is denoted by tf , f ∈ {D,A, AC, R, C}. If we define TN(k) is the
TNs of the node nk, we will make a functional unit assignment of v nodes that
may utilize as many local register files as possible by the strategies as follows.

– We prefer to utilize M-unit and I-unit as more as possible than B-unit due
to the fact that more instruction-level-parallelism may be exploited between
instructions of M-unit and I-unit by intra-cluster manner or inter-cluster
manner. M-unit and I-unit also have more register resources, which are ben-
eficial to optimize scheduling, comparing to B-unit.

– Since M-unit has direct accessibility to memory and inter-cluster communi-
cation, if both M-unit and I-unit are capable of executing an instruction, we
have much favor to M-unit because it may cause fewer communication code
to be inserted in the final phase of PALF register allocation.

– Instructions using the same local register file in the same cluster cannot be
executed in parallel forever so that if two instructions have a data depen-
dency, allocating the data in local register files will never be worse than
in global register files. Also, instructions with less global register file usage
should have less interference between scheduling and register allocation.

By the strategies stated above, we use the following steps to greedily assign
the v nodes to the appropriate functional unit denoted as u, by the priority of
u ≡ M , u ≡ I, u ≡ M , u ≡ I, . . . , and finally u ≡ B:

1. Let Ψ be the set of nodes unassigned to any functional unit.
2. Select a maximal set of s nodes S = {np1 , np2 , . . . , nps} ⊆ Ψ that could be

assigned to use the same functional unit denoted as u, whereas ∀npq , 1 ≤ q <
s, ∃(ti, tj), 1 ≤ i ≤ r, 1 ≤ j ≤ r, ti ∈ TN(pq), tj ∈ TN(pq+1) so that produces
a precedence ordering to make these s nodes unable to be parallelized.

3. Assign all s nodes to u, denoted as S = {np1
u, np2

u, . . . , nps
u} and remove

S from Ψ .
4. Repeat steps 1–3 until Ψ = ∅.

4.3 Register File Assignment

After determining the functional unit type of all instructions, we are ready for
assigning the register file used for each TN in G. The sequence of assignment
includes: locating the TNs that must be allocated in global D-register files first to
avoid unnecessary communication code caused by data sharing between different
functional units, and then letting other TNs be allocated to the proper local
registers associated to their functional unit assignments. While we assign all TNs
to either of global register files or local register files, we may optionally try to
use constant register files instead of global or local register file in assignments of
the TNs that are capable of this replacement, to aggressively reduce the possible

register pressure of global and local register files if the compiler option is set to
utilize the constant registers by software developers.

The assignment steps are detailed as follows.

1. Let Ω be the set of TNs that are not assigned to any register file.
2. ∀(ti, ti), 1 ≤ i ≤ r, whereas ti ∈ TN(l) ∩ TN(m), 1 ≤ l ≤ v, 1 ≤ m ≤ v with

either ∃nl
Inm

M or ∃nl
Mnm

I . Assign ti to global D-register files, denoted as
ti

D.
3. Remove all ti

D, 1 ≤ i ≤ r from Ω.
4. Assign ti ∈ Ω, 1 ≤ i ≤ r to the associated local register file of u, whereas

ti ∈ TN(z), ∀nz
u, 1 ≤ z ≤ v, u ∈ {A,AC, R} .

4.4 Node Partitioning for Ping-pong Bank Assignment

To optimize the register allocation for ping-pong register files, we employ a par-
titioning procedure to determine which bank of ping-pong register file structures
should be used for each TN assigned to D-register allocation. The partitioning for
ping-pong bank assignment is developed to increase the opportunity of paralleliz-
ing ping-pong bank access in the schedule; we will assign TNs whose associated
instructions may interfere slightly with each other to different banks of D-register
files. Let ∆ be the set of w TNs, whereas ∀ti ∈ ∆, 1 ≤ i ≤ r,∃(tiD, ti

D) that
ti

D ∈ TN(p) ∩ TN(q) with assignments of np
M , 1 ≤ p ≤ v and nq

I , 1 ≤ q ≤ v.
We partition ∆ into two groups, X and Y , by the following methods, according
to the threshold number λ of w:

– Build a new graph G∗ = (V ∗, E∗), whereas V ∗ ≡ ∆ and each edge (tiD, tj
D)

of E∗ represents a node nz, 1 ≤ z ≤ v if TN(z) ⊇ {tiD, tj
D}, 1 ≤ i 6= j ≤ r.

– If w is larger than λ, we apply stat-of-the-art multi-level k-way graph par-
titioning algorithms on G∗ to get X and Y with the minimal number of
(tiD, tj

D) in G∗, whereas ti
D ∈ X, 1 ≤ i ≤ r, tj

D ∈ Y, 1 ≤ j ≤ r and the size
of the two groups is about equivalent.

– If w is smaller than or equal to λ, we partition ∆ into two groups directly
by their dependencies, moderating the communication code insertion be-
tween different ping-pong banks because the benefit of potential parallelism
between too few instructions may not affordable to the degradation of any
additional communication.

Currently the threshold λ is set as the total number of D-register banks.

4.5 Node Partitioning for Cluster Assignment

Depending on the compilation options set by software developers, compilers may
generate code that utilizes two-clusters for performance optimizations or code
that uses only one-cluster for low-power optimizations. In generating code that
will be scheduled onto two clusters, we employ an iterative partitioning method
based on cost-models to get a two-cut-sets of total graph G by the scheme as
follows:

1. Given a CRTA-DDG G = (V,R, E), partition G by native disjunction into
k parts, G =

⋃
G†i, 1 ≤ i ≤ k, whereas G†i ∩G†j = ∅, ∀i 6= j, 1 ≤ i ≤ k, 1 ≤

j ≤ k.
2. Group G†1, . . . , G†k into two separate sets, G◦ and G•, whereas G◦ and

G• are approximately balanced in overall schedule length by a cost-model
consists of the factors in instruction number, critical path length, and de-
pendency degree.

3. If any of G◦ and G• is an empty set, or the difference of estimations in the
cost-model by step 2 for G◦ and G• is larger than a threshold, we try to
find out some nodes that are feasible to be moved from the group with the
longer predicted schedule length into the other group by evaluating another
communication cost-model.

4. Annotate all edges in G across G◦ and G• with the mark of pending inter-
cluster communication code insertion.

4.6 Communication-Insertion/Postpass Register Allocation

If there are pending inter-cluster communication code generated in the last
phase, we will insert the corresponding instructions. Moreover, for each edge
(ti, tj), 1 ≤ i ≤ r, 1 ≤ j ≤ r, whereas ti ∈ TN(a), 1 ≤ a ≤ v and tj ∈ TN(b), 1 ≤
b ≤ v, if the two nodes, na

u and nb
u† , whereas u 6= u†, we should check if the

allocated registers with the edge (ti, tj) violate the constraints of PAC architec-
tures. Finally, according to the register file assignments for all r TNs of v nodes
in G, we apply register allocation based on graph-coloring heuristics for each
register file to allocate each TN of register type to a physical register.

5 A PALF Register Allocation Example

In the following, we give a small example to illustrate how the PALF register
allocation works. Fig. 6(a) shows the CRTA-DDG of an input program frag-
ment: each rectangle labeled with its component-type association represents an
operator, each circle represents an operand, or a TN in ORC, and each edge
presents a data dependency between two operands; moreover, the color of a cir-
cle indicates the register-type association of the operand: green circles represent
constant TNs, dark blue circles represent dedicated TNs, such as stack pointer
TNs, and white circles represent register TNs whose register file is not assigned
yet. Our goal is to determine an appropriate register file assignment — and
thus a proper functional unit assignment and a feasible cluster assignment — in
consideration of ping-pong register constraints and inter-cluster overheads.

Fig. 6(b)–6(g) illustrate the process of the first phase of the PALF register
allocation scheme, the maximal localization. The main concept of the maximal
localization is performing a greedy functional unit assignment that attempts to
utilize as many local register files as possible and to distribute operations to M-
and I-unit, roughly in equal amounts, as well in order to increase instruction
level parallelism. It prefers that all nodes on a critical path, i.e., the path with

the maximum number of nodes, in the graph operate on the same functional
unit so that their operands could be stored on local register files. Therefore, the
maximal localization repeats the following process until all nodes in the graph
are assigned with their own functional unit: it finds out the longest data-flow
path, in which each node can be operated on M-unit, or I-unit, and its functional
unit is not assigned yet, and enforces all nodes in the path to be operated on
M-unit, or I-unit. In addition, the functional unit assignment alternates between
M- and I-unit after each iteration to keep the amounts of nodes with M- and I-
unit balanced. Fig. 6(b)–6(g) show the processing scenario. Rectangles with red
border represent the nodes in the longest data-flow path and those with dark
red border represent the nodes that have been assigned a functional unit.

Now we are ready for the register file assignment. Noticed that a register
file assignment without considering ping-pong register constraints will harm in
performance significantly as mentioned in Section 2. We must ascertain which
TNs might create ping-pong conflicts and then attempt to eliminate or diminish
the conflicts. The proposed approach is as follows. We first determine which
edges connect two TNs that are operated on different functional units — the
TNs must be allocated to a global register file so as to be accessed for the two
operations — and then partition the TNs on those edges into two groups: one for
ping-register assignments and the other for pong-register assignments. The rest
of the unassigned register TNs are allocated to the corresponding local register
files. Fig. 6(h) and 6(i) give the results of register file assignments: TNs with light
blue, pink, and yellow color are allocated to ping, pong, and the corresponding
local register files, respectively.

Next, we partition the nodes with M- and I-unit into two parts for the cluster
assignment to take advantages of the two-cluster property of PAC DSP. Based
on the approach described in Section 4.5, two critical paths, in which nodes
are bordered with dark red and dark blue color, and their adjacent nodes are
discovered. Fig. 6(j) presents the result of the cluster assignment: nodes with
purple, sky blue, and orange color are assigned to cluster 1, cluster 2, and scalar
unit, respectively. Fig. 6(k) gives the final result after inserting communication
operations among cluster 1, cluster 2, and scalar unit. Fig. 6(l) is the same with
Fig. 6(k) but each node is numbered for later explanations.

Fig. 7(a) and 7(b) illustrate the VLIW schedule of the running example
for PAC DSP processor, respectively. Fig. 7(a) shows the schedule of a naive
single-cluster approach that always assign an operation to M-unit if possible and
always allocate the operand(s) of a M- or I-unit to the ping, or pong, register
file if possible; Fig. 7(b) gives the schedule after performing the proposed PALF
register allocation. The results show that the naive approach takes 19 cycles to
complete the program with 1.1 of ICP (instructions per cycle), but the PALF
approach only takes 11 cycles, in which the value of ICP is 3.4 for the first five
cycles and 2.1 for overall. Noticed that it will take a 3-cycle delay for inter-cluster
communications on PAC DSP.

M/I

M

M/I

M/I

M/I

M/I
 M/I

M

I
M/I

M/I

M

M/I

M/I

M/I
M
 B

B

B

M
 M/I

M/I

M/I
 M/I

M

I

M/I

M

M/I

M/I

M/I
M
 B

B

B

M

M

M

M
 M/I

M/I

M/I
 M/I

M

I

M/I

M

M
 B

B

B

M

M

M

I

I

I

M
 M/I

M/I

M/I

M

I

M/I

M

M
 B

B

B

M

M

M

I

I

I

M
M
 M/I

M

I

M/I

M

M
 B

B

B

M

M

M

I

I

I

M

I

I
M
 M/I

M

I

M

M
 B

B

B

M

M

M

I

I

I

M

I

I
 M

M

M

I

M

M
 B

B

B

M

M

M

I

I

I

M

I

I
 M
I
 M

M

I

M

M
 B

B

B

M

M

M

I

I

I

M

I

I
 M
I

(a)
 (b)
 (c)

(d)
(e)
(f)

(h)
 (i)

M

M

I

M

M
 B

B

B

M

M

M

I

I

I

M

I

I
 M
I

Constant TN

SP TN

Register TN (register file unassigned)

Register TN (ping register file)

Register TN (pong register file)

Register TN (local register file)

M

I

B

M-unit

I-unit

B-unit

Cluster 1

Cluster 2

Scalar Unit

M

M

I

M

M
 B

B

B

M

M

M

I

I

I

M

I

I
 M
I

8

15

11

18
 13

7

19

1

14

16

6

12

17

3

2

9
 5
4

20
21

22

23

10

(l)

(g)

M

I

M

M
 B

B

B

M

M

M

I

I

I

M

I

I
 M
I

I
B

M

M

M

(k)
 (j)

Fig. 6. A running example for PALF register allocation

(a) naive
 (b) PALF

Cycle 1

Cycle 2

Cycle 4

Cycle 3

Cycle 5

Cycle 6

Cycle 7

Cycle 8

Cycle 9

Cycle 10

Cycle 11

Cycle 12

Cycle 13

Cycle 15

Cycle 14

Cycle 16

Cycle 17

Cycle 18

Cycle 19

8

15

11

18

13

7

19

1
 14

16

6

12

17
3

2

9

5

4
 20
 21

10

8

15

11

18

13

7

19

1

14

16

6

12

17

3
2

9

5

4

20
 21

22
23

10

Cycle 1

Cycle 2

Cycle 4

Cycle 3

Cycle 5

Cycle 6

Cycle 7

Cycle 8

Cycle 9

Cycle 10

Cycle 11

Fig. 7. The VLIW schedule of the running example for PAC DSP

6 Experiment and Discussion

We now examine the effectiveness of the proposed PALF register allocation with
the DSPstone benchmark suite [15] on the PAC DSP processor. The PALF regis-
ter allocation scheme is implemented on ORC infrastructure and the performance
is evaluated with a cycle-accurate instruction set simulator.

Four register allocation schemes are evaluated, namely the traditional regis-
ter allocation, the simulated annealing (SA) register allocation [11], the PALF
register allocation using METIS graph partitioning library [7], implemented with
Kernighan-Lin algorithm, for ping-pong bank assignment, and the PALF regis-
ter allocation using the random scheme — vertices are assigned randomly to sets
in a way that preserves balance — in CHACO graph partitioning library [5] for
ping-pong bank assignment. Fig. 8 illustrates the normalized simulated execu-
tion time, using traditional register allocation as the baseline. It shows that our
PALF approach has average 22.8% and 18.0% reduction in execution time to the
traditional one when using METIS and CHACO graph partitioning library in
the third phase of the PALF register allocation scheme respectively while the SA
register allocation has average 32.5%, which is considered as a lower-bound since
simulated annealing is nearly an exhausted approach. The performance result of
the PALF scheme is close to that of the SA approach for most of the benchmarks.
However, for some cases, like complex multiply, complex update, dot product,
biquad one section, and real update, the performance of PALF is much farther
from that of SA and even worse than that of the traditional. It is observed
that the simulated execution time of those benchmarks are only hundreds of
cycles (from 159 to 497 cycles) which weakens the capability of PALF since the
programs are too small for optimizations in the PALF manner. Excluding the

mentioned benchmarks, the average reductions of PALF-metis and PALF-chaco-
random become 36% and 31.3% which are closer to 43.5% of SA. Furthermore,
the figure also elaborates that performance varies if different graph partitioning
methods in the phase of the ping-pong bank assignment are applied. The result
of PALF-metis is always better than that of PALF-chaco-random. The reason is
that the Kernighan-Lin algorithm in PALF-metis attempts to partition a graph
into two balanced parts with the minimal number of edge cuts but in PALF-
chaco-random the graph is partitioned in a random way. By our definition, an
edge represents a data-flow between a M-unit and an I-unit; if the two TNs
spanned by the edge are allocated to ping and pong register bank respectively,
it might require additional time to propagate the data because of the ping-pong
register constraints.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

co
m

ple
x_

m
ult

ipl
y

co
m

ple
x_

up
da

te

co
nv

olu
tio

n

do
t_

pr
od

uc
t
 fir

fir
2d

im

iir
(b

iqu
ad

_N
_s

ec
tio

ns
)

iir
(b

iqu
ad

_o
ne

_s
ec

tio
n)

lm

s

m
at

1x
3

m
at

rix
1

m
at

rix
2

n_
co

m
ple

x_
up

da
te

s

n_
re

al_
up

da
te

s

re
al_

up
da

te

av
er

ag
e

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Traditional
 SA
 PALF (metis)
 PALF (chaco-random)

Fig. 8. Normalized execution time for various register allocation schemes

7 Conclusion

Embedded DSP processors are currently designed to exploit high instruction-
level-parallelism with technological constraints in terms of cycle time, power
dissipation, and die area. The techniques used in their designs commonly tend
to include a clustered/partitioned architecture and low-power register file struc-
tures. In this work, we developed and implemented a novel heuristic approach
for generating code for PAC VLIW DSP processors that incorporates highly-
partitioned register files with the special ping-pong structure design. At the
heart of this work is a proposed register file/bank assignment scheme which may
integrate with the existing unified register allocation methodologies to provide
a feasible solution. The experimental evaluation of several benchmark programs

indicates that our register allocation scheme for PAC VLIW DSP processors well
utilizes all register files and delivers comparable results to a simulated-annealing
approach which takes very long compilation time inestimable to get near-optimal
solutions.

References

1. Aho, A. V., J. D. Ullman, and R. Sethi: Compilers Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1986.

2. CEVA: CEVA-X1620 Datasheet. CEVA, 2004.
3. David Chang and Max Baron: Taiwan’s Roadmap to Leader-

ship in Design. Microprocessor Report, In-Stat/MDR, Dec. 2004.
http://www.mdronline.com/mpr/archive/mpr 2004.html

4. A. Capitanio, N. Dutt, and A. Nicolau: Partitioned Register Files for VLIW’s: A
Preliminary Analysis of Tradeoffs. Proceedings of the 25th Annual International
Symposium on Microarchitecture (MICRO-25), pages 292–300, Portland, OR, De-
cember 1–4 1992.

5. B. Hendrickson and R. Leland: The Chaco user’s guide, version 2.0. Tech Report
SAND95-2344, Sandia National Laboratories, Albuquerque, NM, October, 1994.

6. R. Ju, S. Chan, and C. Wu: Open Research Compiler for the Itanium Family. Tu-
torial at the 34th Annual Int’l Symposium on Microarchitecture, Dec. 2001.

7. George Karypis and Vipin Kumar: A fast and highly quality multilevel scheme for
partitioning irregular graphs. SIAM J. Scientific Computing, 20(1): 359–392, 1999.

8. T.-J. Lin, C.-C. Lee, C.-W. Liu, and C.-W. Jen: A Novel Register Organization for
VLIW Digital Signal Processors. Proceedings of 2005 IEEE International Sympo-
sium on VLSI Design, Automation, and Test, pages 335–338, 2005.

9. T.-J. Lin, C.-C. Chang. C.-C. Lee, and C.-W. Jen: An Efficient VLIW DSP Archi-
tecture for Baseband Processing. Proceedings of the 21th International Conference
on Computer Design, 2003.

10. Tay-Jyi Lin, Chie-Min Chao, Chia-Hsien Liu, Pi-Chen Hsiao, Shin-Kai Chen, Li-
Chun Lin, Chih-Wei Liu, Chein-Wei Jen: Computer architecture: A unified processor
architecture for RISC & VLIW DSP. Proceedings of the 15th ACM Great Lakes
symposium on VLSI, April 2005.

11. Yung-Chia Lin, Chung-Lin Tang, Chung-Ju Wu, Ming-Yu Hung, Yi-Ping You,
Ya-Chiao Moo, Sheng-Yuan Chen, and Jenq Kuen Lee: Compiler Supports and Op-
timizations for PAC VLIW DSP Processors. Proceedings of the 18th International
Workshop on Languages and Compilers for Parallel Computing, 2005.

12. R. A. Ravindran, R. M. Senger, E. D. Marsman, G. S. Dasika, M. R. Guthaus,
S. A. Mahlke, and R. B. Brown: Increasing the number of effective registers in a
low-power processor using a windowed register file. Proceedings of the 2003 Interna-
tional Conference on Compilers, Architecture, and Synthesis for Embedded Systems
(CASES ’03), 125–136, 2003.

13. S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and J. D. Owens:
Register organization for media processing. International Symposium on High Per-
formance Computer Architecture (HPCA), pp.375-386, 2000.

14. Texas Instruments: TMS320C64x Technical Overview. Texas Instruments, Feb
2000.

15. V. Zivojnovic, J. Martinez, C. Schlager, and H. Meyr: DSPstone: A DSP-oriented
benchmarking methodology. Proceedings of the International Conference on Signal
Processing and Technology, 715–720, 1995.

