Architecture-level Simulations with Rapid Power Estimations for Security
Processors with Multiple Power Domains *

Chung-Wen Huang Yung-Chia Lin Yi-Ping You Jeng-Kuen Lee Ting-Ting Hwang

Department of CS, The National Tsing Hua University, Hsinchu 300, Taiwan
{ewhuang,yclin,ypyou} @pllab.cs.nthu.edu.tw, {jklee,tingting } @ cs.nthu.edu.tw

Abstract— The power dissipation is the concern for SoC de-
signs and embedded systems to extend battery life. Techniques
like dynamic voltage scaling (DVS), power gating (PG), and mul-
tiple domain partitioning help provide mechanisms to reduce dy-
namic and static powers. Based on those techniques, the control
system can be system software or hardware monitors. In ether
cases, energy estimations in the architecture level are needed to
facilitate the design space explorations of architecture and soft-
ware scheduling designs for energy reductions. In this paper, we
propose an architecture-level simulation environment for secu-
rity processors with power estimation. The simulation environ-
ment includes a transaction-level modeling (TLM) simulator im-
plemented in SystemC with multiple power domains, an analyti-
cal model, a workload generator, power parameter banks, versa-
tile outputs, and succinct GUIs. Architecture developers can use it
to evaluate different architecture configurations and retrieve per-
formance results and power estimations. System software devel-
opers can use these tools for experiments in devising power-aware
scheduling methods on security processors for power dissipation
reduction.

I. INTRODUCTION

The low power issues reside in SOC designs and embed-
ded systems either with the plug power supply or with the bat-
tery power supply. To reduce energy consumption and keep
the performance improving, the researchers develop kinds of
power saving mechanisms. Engineers in the integrated cir-
cuit process continue improving the semiconductor material,
reducing the die size, lowering the supply voltage, and provid-
ing the standard cell library with multiple supply voltages or
threshold voltages. The EDA companies and IC design houses
are working with clock gating, power gating, multiple frequen-
cies, and multiple power domain partitions. The techniques of
multiple power domain is popular seen at the board level de-
sign where the supply voltages and frequencies are different
among the CPU, memory, PCI bus, IDE, SCSI, and other key

*The work was supported in part by NSC-93-2213-E-007-025, NSC-93-
2220-E-007-020, NSC-93-2220-E-007-019, MOE research excellent project
under grant no. NSC93-2752-E-007-004-PAE, MOEA research project under
grant no. 93-EC-17-A-03-S1-0002, no. 94-EC-17-A-01-S1-034 and an Intel
research grant.

components. Recently, there are some companies [2, 9] im-
plementing this techniques in their SoC platforms to improv-
ing the energy saving. For the system software, we propose
control algorithms with lower energy consumption to analyze
the efficient usage of operations. Also the power-aware com-
piler techniques are evaluated to be useful as the low power
scheduling, instruction replacement, data/instruction locality,
and power control instructions.

As energy estimations in the architecture level are needed
to facilitate the design space explorations of architecture and
software scheduling designs for energy reductions, we illus-
trate how to give such an estimation in the architecture level
with a case study. A configurable security processor (SP)
is used in this paper to illustrate the architecture level sim-
ulation and to estimate the energy consumption with differ-
ent architecture configurations. SPs are designed to acceler-
ate the computation-intensive algorithms like data encryption,
user authentication, hash function, and the data compression.
To guard data communications against malicious hackers, var-
ious network devices, like broadband access devices, and re-
mote storage servers integrate SPs as accelerators. Especially
in the wireless transmission where data are exposed in public
domains, SPs are needed to ensure safety communications.

The security processor we presented is a SOC platform
which has a DMA transfer module, a controller, an inter-
nal bus, several channels, and versatile crypto-engines. Our
simulators are grown with developing the security processor.
To evaluate the performance and perform design space ex-
ploration, the simulators are written in SystemC. SystemC
can models the HW/SW co-design at the (untimed) functional
level, transaction level [13], and the pin level (RTL level). The
transaction level is suitable for platform design and the soft-
ware/architecture verification. Therefore, in the simulator we
model the bus and controller at cycle accurate transaction level
and the crypto-engines at timed transaction level. Under this
scheme, it is apt to add new cryptographic algorithms as the
crypto-engines. Moreover, with the hardware development, the
coefficients of performance and power are updated.

The remainder of this paper is organized as follows. Sec-
tion II introduces the hardware architecture of security pro-
cessor and basic functions of individual crypto-engines. Sec-
tion III describes the implementations of simulator with multi-
ple voltage domain and configurable functions. The simulation

=
I AHB Slave Channel #0 Main Controller
‘ e
R Channel #1 Decoder
3 2 -
2 Microp:) S
% (Clhzomnz 52 Sequencer 2 En
< = ;_g
E AHB Master Channel #3 Resource 3 g
8 Manager E 2
£ E ©
Transfer
IEfe Internal bus | Transfer /L -
Master | Engine
~_ Descriptor based DMA RS

Fig. 1. Scalable architecture of security processor

tool flow and the experiments are presented in Section IV. Fi-
nally, the conclusion is given in Section V.

II. ARCHITECTURE OF THE SECURITY PROCESSOR

The main feature of our security processor is the scalable
architecture. To achieve this feature, the internal buses are
constructed inside this security processor. Therefore, versa-
tile crypto-engines can be integrated into the SP by adopting
the compatible bus interface wrappers. The other configurable
parameters include the number of external buses, transfer en-
gines, channels, and the internal buses. In the SP, a descriptor-
base DMA controller is implemented to interpret the descrip-
tors and manipulate the crypto-engines to perform proper cryp-
tographic operations. The processing flow and cryptographic
operations are handled by descriptors to reduce the control sig-
nals from the main processor. The descriptor is a data structure
which contains the type of en-/de-cryption functions, the en-
cryption key, the length of data, and pointers that indicate the
data addresses. The descriptor also has a pointer to the next
descriptor, so the DMA module could utilize the link list of
descriptors to gather data without much overhead.

Fig. 1 illustrates a security processor design with one ex-
ternal bus, one descriptor-base DMA, four channels, one in-
ternal bus, two AES engines, two HMAC engines, one RSA
engine, and one random number generator (RNG) engine. The
main controller has a slave interface of external bus which ac-
cepts the control signals and returns the operation feedback via
the interrupt port. In the main controller, there is an instruc-
tion decoder module and microprogram sequencer in charge
of the descriptor decoding, and the resource allocation mod-
ule distributes the resources as the descriptor demands. The
DMA module integrates master interfaces of external bus with
the channels and the transfer engines. Each channel stores the
header of its processing descriptor. Transfer engines pass the
data to dedicated crypto engines via the internal bus. The in-
ternal buses are designed to support multiple layers for high
speed data transmission. Because the execution time of the
crypto engine may be varied, the crypto engine will signal the
main controller when the operations are done. The AES en-
gine [14] supports the standard AES encryption and decryp-
tion with 128-, 192- and 256-bit keys, with both ECB and CBC
modes. The RSA engine [15] performs the modular multipli-
cation based on an enhanced word-based Montgomery algo-

Start

Q
D
K]
»
v . S, s;
: '\System Bus ; '\ System Bus j
& S _" Se _':
g iyl i
Lem T - -2

v 7 \
! InnerBus ; & InnerBus ;
., N

[S
" o B2
Request resource ' AES)
o 4
’

——_—— ~

\
'
S _/ Release resource

Sa=-

Fig. 2. The AES operation on descriptor-based security processor

rithm, supporting scalable keys of the length up to 1024 bits.
The HMAC [12] engine proposes an area-efficient integrated
SHA-1/MDS5 core. The RNG engine is a pseudo random num-
ber generator that consists of five linear feed-back shift regis-
ters with different structures and data scrambling in the output.

Although the original bus interfaces of our SP architecture
are dedicated for accessing memory, they could be modified
as network entrance interfaces. Together with package pro-
cessing modules and physical MACs, the SPs can process data
directly from the network. The similar architectures can be
seen from Motorola MPC180/190 [6], Broadcom BCM5823,
and Hifn 7954 series [7], except one thing that these SPs use
wired connections instead of the internal buses.

To illustrate the kernel operations of SPs, Fig. 2 shows an
AES operation in the architecture. At first, the user program
calls the encryption libraries which pack the processing data
as descriptors and activate the SP. When the controller of SP
is aware of a start signal, it retrieves the memory address of de-
scriptors and makes a channel ready to receive the descriptor
information. At the ”Setup channel data” phase, the main con-
troller continually arranges the transfer engine and the master
interface of external bus to get the descriptor information into
the channel.

Next, in the ”AES operation” phase, after sequentially re-
questing the AES cryptographic engine, inner bus, transfer
engine, and master interface of external bus, the transfer en-
gine will read data from memory and fill in the buffer into the
AES cryptographic engine. Once data transmission is done,
the main controller releases the requested resources except the
AES crypto engine. When the operation of AES engine is
done, it will send a signal to the main controller. As the main
controller is aware of this state, it enters the ”Store result”
phase. It will request the inner bus, transfer engine and exter-
nal bus master interface for storing the output data. The main
controller then releases all the resources. The steps and phases
in Fig. 2 can also be interleaved.

Operation Phase
Architecture Core Simulation Statistics Human Friendly
Generation Collection Output
Software
Architecture Driver
Configuration
> Dynamic
Security [y Data
P Processor Collection
rower | ly! Simulation
Libraries *
. Generate log
> R%UIF i file & stack
Calculation X
diagrams

Fig. 3. Security processor simulation platform

III. SECURITY PROCESSOR SIMULATION METHODOLOGY

This section describes the simulation of the configurable se-
curity processor presented in the Section II. We will introduce
the full view of the simulation platform and the detailed mod-
eling of the SP. After illustrating the performance simulation,
we show a rapid power estimation methodology of a refined ar-
chitecture of the SP with multiple voltage/frequency domains.
We use SystemC as the design language and construct the ar-
chitecture and operations of the SP.

In Fig. 3, the simulation platform was separated into ~Ar-
chitecture Generation”, ’Core Simulation”, ”Statistics Collec-
tion”, and the "Human Friendly Output”, according to the op-
eration phase. In the ”Architecture Generation” phase, there
are two functions including the architecture configuration and
the power library loading. The configuration support helps
generate a configuration file consisting of the processing abil-
ity, the frequency level, the operating voltage, and the amount
of each component. The library consists of the memory capac-
itance per unit, the average capacitance of each component, the
operating voltages, and the frequency ratios in different volt-
ages. The software driver and SP simulation are parts of “Core
Simulation” phase. The software driver simulates the func-
tions among the CPU, the SP, and the external memory. It fills
the memory with encryption data from bench files. The bench
files consist of the SP descriptors and the arrival time of de-
scriptors. When the data arrival is catched in the simulation,
software driver sends signals to notify the SP that encryption
data is ready. When the SP simulation starts, the dynamic data
collection continues to collect the information of the SP simu-
lator. If the designers need to know the detailed of operations,
the dynamic data collection can be used to generate the value
change dump (.VCD) file which can be viewed in waveform
tools as shown in Fig. 4. We have a sample code for dumping
out the resource allocation table shown below.

if (ved_on)

{
char stbuf[20];
sc_string NAME = "trace_file";
sprintf (stbuf, "(%d)", (int)order);

Add Signal | Add Bus
Add Clock | Add Space!

10.19us | 10.19us /10.00us

ielay | Setiip | Saiiple
Huld | Text | Make i —— | ——

i || TR vt Jinsat] e | ol e L
= =|>=|]|~ == Zi

10.05us 10.10us 10.15us 10.20)
o [y i i

-

SystemC.clock(d)
EystemC.valid_CH(1)
SystemC.valid_CH(Z)
)
)
)

SysternC.valid_TE(D
SystemnC.valid_TE(1
SystermnC.valid_TE(

System . valid_RSAD)

: DT T A

Fig. 4. A simplex waveform view from WaveFormer Pro

// trace file creation
sc_trace_file *tf

= sc_create_vcd_trace_file (NAME + stbuf);
// External Signals

sc_trace(tf, clock, "clock(0)");
NAME = "valid_CH";
for (int i = 0; i< num_CH; i++)

{
sprintf (stbuf, "(sd)", 1i);
sc_trace(tf, simulator.cp->cont->valid_CH[i],
NAME + stbuf);

Then the simulation result of the performance and the en-
ergy consumption will become an input of a log file to a
graphic generator at the "Human Friendly Output” phase. The
organization of the SP simulator is shown at Fig. 5. Under the
simulator, we have four modules: the crypto processor, exter-
nal buses, external memory, and the clock generator. The clock
generator distributes every module with user assigned frequen-
cies. The external memory is connected with the crypto pro-
cessor with the external buses. The accessing ports of external
memory and the number of external buses are configurable.
The external bus and memory operations are simulated in func-
tional equivalence with specified delays of the read/write op-
erations. The follow is the sample code of the read operation
of the memory. The memory_rwait() pauses the operation in a
selected delay and counts the reading times.

int M_MODULE: :read()
{
if(in_d_address == NULL)
{
cerr<<"READ address error!";
exit(1);
}
memory_rwait (1);
length.write(in_d_address->datal[pair_num]);
memory_rwait (in_d_address->datal [pair_num]) ;
data.write(in_d_address—->datap[pair_num]);
return 0;

bi

The crypto processor consists of crypto modules, DMA
transfer engines, channels, a controller module, and internal
buses. We set the controller, DMA transfer engines, channels,
and the internal buses at the same operating frequency and volt-
age. The frequency and voltage of the crypto modules are con-
figurable. The internal buses are configurable and simulated
as simplified AMBA AHB buses [1] without the BURST and

SKEM

Crypto Processor F Crypto Modules P

AES ‘

H
PREM H RsA ‘
H

RNG ‘

Memory ‘ Channel ‘

double wait_time[6] [6]
= {

//Voltage: 0, 1,1.2,1.5,1.8,1.98

{0, 15, 20, 35, 63, 100}, // <=0
{o, 0, 5, 25, 50, 80}, // <=1
{o, 3, 0, 10, 30, 60}, // <=1.2
{o, 8, 5, 0, 16, 45}, // <=1.5
{0, 17, 12, 8, 0, 30}, // <-1.8
{0, 28, 20, 15, 8, 0}y }y; // <-1.98

Clock Generator

{ RNG

HASH HMAC ‘

Controller F# Déﬂcnp&or ‘ MDS5 ‘
Dispatcher

Resource
Internal Bus ‘ { Allocator ‘

Fig. 5. Organization graph of the SP simulator

External Bus ‘ {DMATTMS&Y
Engine

SPLIT mode. The arbitrator of internal buses control the traf-
fic between transfer engines and the crypto modules. The SP
has several DMA transfer engines that move descriptors from
external memory and save them in the channels. If a descriptor
indicates the specified crypto module, the controller will put
the request to the waiting queue of a specified crypto module.
Otherwise the controller will pick a free crypto module from
the resource table.

We classify the crpto modules into the secret key encryp-
tion module (SKEM), public key encryption module (PKEM),
the random number generation module (RNG), and the hash
function module (HASH). They are functions simulated as the
level shifters [2,5] that upgrade or downgrade the voltage level
among the crypto engines and other modules. In addition, they
provide the local frequency assignments to each crypto engine.

AES Cryptographic Module

Connection Ports Functions

/finitial AES

void setup();

/ltransfer the data in_out to internal bus
void data_inout ();

/Iperform AES operations

void do-aes();

/[calculate the energy consumption
void sum_energy();

//record the hamming distance of data
void bus_ham(sc_uint < 32 > data);

/fports to clock generator

sc-in-clk aes_clk;

//ports to internal bus

sc_out < sc_uint < 32 >> x HRDATA;
sc-inout < bool > * HREADY;

sc-in < sc_uint < 32 > «* HADDR_s;
sc-in < bool > x HWRITE_s;

sc_in < sc_uint < 32 > *x > x HWDATA s;
//ports to controller

sc-inout < bool > x AES_ start_setup;
sc_in < sc_uint < 32 >> x AES_setup;
sc.out < sc_uint < 32 >> CM.interrupt;
sc_inout < bool > CM_INT _start;

sc_in < sc_uint < 32 >> CM_INT_owner;

TABLE 1
THE CONNECTION PORTS AND FUNCTIONS OF AES MODULES

We have the connection ports and the implemented func-
tions of AES crypto engine shown in the Table. I. The port
connected to the SKEM is the local clock of AES operation.
The ports to the internal buses provide data transitions under
32-bit width AHB bus. The rest of the ports are connected to
the controller and signal the AES to start or interrupt the con-
troller to gain encryption results. The sefup() function identi-
fies the type of en-/de-cryption, the key size, and the operation
mode of AES algorithm. We also have a delay table in this
function that support operation voltages at 0V, 1V, 1.2V, 1.5V,
1.8V, and 1.98V.

According to the table, the setup() function will pause in
a chosen time to simulate the delay of voltage scaling and
power gating. The data_inout() simulates the AHB wrap-
per that supports the data transmission, and we have the
bus_ham(sc_uint < 32 > data) function to record the ham-
ming distance of data transmission. The do_aes() performs the
AES operations in the timed transaction level model and the
sum_energy() calculates the energy during the AES operations
according to power libraries. The following code segment de-
scribes behavior for the AES module to receive encryption key
from the internal bus to the registers. The energy consumption
is recorded at the same time.

for(int i = 0; 1 < length; i++)

{
key[4*i+0] = HWDATA_s.read() [1i].range(31,24);
key[4*i+1] = HWDATA_s.read() [1i].range(23,16);
key[4*1+2] = HWDATA_s.read()[i].range(15,8);
key[4*1+3] = HWDATA_s.read() [i].range(7,0);
bus_ham (HWDATA_s.read()->range(31,0));
wait ();
sum_energy () ;

}

The ideas of the bus_ham(sc.uint < 32 > data) and
sum_energy() functions are according to the energy equa-
tion. For the high level power estimation of chip components,
the estimation result is data sensitive and scalable with the
component size which influences the capacitance. The ba-
sic energy consumption equation is £ = C X Vde for a full
charge/discharge of a component, where E is the energy, C is
the capacitance, and V,, is the supply voltage. The modified
equation with the data sensitive is described below:

Energy =ax C x de

where a is the switching activity. To gain the switching activi-
ties, we have bus_ham(sc_uint < 32 > data) function to moni-
tor the data variations. When the SP simulation starts, the func-
tions record the difference of data values in every cycle. The
capacitance of each component is built in the power libraries
and accessed by the sum_energy() function. The capacitance
information is from the synthesis result of the SP design based
on UMC 0.18 CMOS process with 1.8V operating voltage. Af-
ter we have the energy summation, the power can be obtained
from the equation:

Power = o x C x de X f=Energy X f = Energy/Tl.me

where the Power is from Energy plus f(frequency) and the
frequency is the inverse of execution time. Therefore, we have
the energy amount and can report the average power of each

=101 x]

7 Pover-SIM w11

ESA |4Eg | IBue | Channel | Coniol | Clack |

Module Number [01 - vad [15 =] ¥
Memory buffor capmoitance: |2 oFbit
Mg capacitance: |2231 oF Freq. vatio [07957078

BATE
SAVE_ALL

=

Fig. 6. Power library tool support read and modification

component. To make it easily to modify the power libraries,
we build a library construction tool in Fig. 6. The library
tool shows libraries in a succinct GUI. When the user fill the
main power information, it will automatically generate the rest
power information in the back ground. The frequency is re-
lated to the V,;,; according to the equation.

Frequency =k x (Vyq — Vth>2/vdd

where the V; is the threshold voltage. To calculate the relative
frequency, we estimate the utmost frequency of crypto mod-
ules in the original hardware design at the V;; = 1.8 V. With
the V;;, information from CMOS libraries, the coefficient k is
obtained. Therefore, if the operating voltage changes during
the simulation, we can have the specified module run in an
adaptive frequency.

IV. EXPERIMENT RESULTS

The SP simulation platform can be used in various ways
for architecture and scheduling policy designs on both perfor-
mance and power. We illustrate such usages with two experi-
ments, one on the design space exploration (DSE) toolkits to
point out the bottleneck of an architecture design, and one on
using the power controls of multiple power domain. The SP
simulation platform gives estimations for different designs.

@ ‘ Workload Genergator ‘
Configuration L ¢

Analytical Model .
—* Evaluator |,/ SPSimulator
' :

SP Architecture
Exploration
Driver

Fine-Grain
Result

Coarse-Grain
Result

—b‘ Data Evaluation

Fig. 7. Design space exploration toolkit

7000 @ Simulator (3 RSA)
6000 [B Analytical Model (3 RSA) —
O Simulator (5 RSA)

O Analytical Model (5 RSA)

5000 [

4000

3000 [—

2000 —
1000 | —
0 L

1 2 3 4 5
NUM of AES modules

Exec. Time (us)

Fig. 8. Performance simulation results of multiple RSA and AES modules

A. Experiment 1: DSE toolkits

We have built a toolkit based on our SP simulation platform.
It integrates the simulator and the analytical model evaluator
into the unified design space exploration interface as shown
in Fig. 7. The analytical model [10, 11] of the SP was devel-
oped as a simple and appropriate solution for rapid illustration
of architectural behavior in the distributed parallel processing
design of SOC, which is extended based on super-computer
behavior modelings [3, 4, 8]. The architecture configuration
describes the architecture parameters accepted by the SP ar-
chitecture exploration driver and used for both the analytical
model and the SP simulator. The workload generator provides
the statistics of workloads to the analytical model evaluator
and descriptor data to the SP simulator. The descriptor data re-
source can be automatically generated by the workload gener-
ator itself or by measures of real applications. The data evalua-
tion tool in the DSE toolkits performs the comparison between
the coarse grain result from the analytical model and fine grain
result from the SP simulator.

To evaluate the architecture design, we set up both the SP
simulator and the analytical model with the same parameters
of hardware configurations. The input workload for the SP
simulator is measured by SSH activities on a real server and
then condensed to emulate higher workload in 1000 us. In
the analytical model, we use the averages of the same input
workload. The working frequency of SP and external bus is
simulated at 133MHz. Fig. 8 shows the execution results for a
configuration of the SP architecture in 1 internal bus, 2 trans-
fer engines and 10 channels. We have the 3 RSA module con-
figuration and the 5 RSA module configuration. The number
of AES modules is increasing with the extending of X-axis.
The Y-axis is the simulation time according to the SP clock
generator. The internal AHB bus has the same frequency to
the external bus. The RSA modules operate in 100MHz and
each of them provides 3.17Mbps processing rate. The AES
modules operate in 100MHz and each of them supports up to
706Mbps processing rate. By profiling the operations of a SSH
server, the raw data workload is 3.2Gbps, and the AES encryp-
tion data request rate and the RSA demands are 100:1. With
the result in Fig. 8, we realize in the configuration (AES mod-
ule = 1) that the workload costs over 6800 us to be finished.
When the number of AES increases to 2, the time is decreased
to be less than 4000 us. It’s because the lacks of AES mod-

6000
O Simulator (704 Mbps)
B Analytical (704 Mbps) I
0O Simulaor (1067 Mbps)

O Analytical (1067 Mbps)

5000 [

S
IS
S
S
3

I

3000 [

Exec Time (us)

2000 [

1000

1 2 3 4 5 6
NUM of AES modules

Fig. 9. Performance simulation results of different frequency AES modules

ules presents performance bottlenecks in the first case. Next,
the performance bottleneck is again unveiled by the compari-
son of configurations in 3 and 5 RSA modules between 2 AES
case and 3 AES case. In the 3 AES configuration, the simu-
lation time is around 4000 us in 3 RSA models configuration,
but the simulation time is reduced to 2500 us in 5 RSA models
configuration. AES module dominates performance with this
configuration. Finally, when the AES modules increase from 3
to 5 there is no further performance gained in Fig. 8. The per-
formance bottleneck at this stage belongs to other resources
such as the transfer engines, bus transfer rate, and controller
overheads.

We also have experiments in considering the effects of
the operating frequency and the number of modules. We
set a configuration that the system is operated at 100Mhz
and the AES modules are operated in 100MHz(704Mbps) or
150MHz(1067Mbps). The workload is 2.8Gbps with only
AES encryption data. Fig. 9 shows that one 1067Mbps AES
module assembled in the SP can improve around 28% of one
706Mbps AES module. When the number of AES module
increases, the performance gap is narrowed. When the AES
module module increases to 6, the simulation time approxi-
mates to 1000us.

B. Experiment 2: Power-aware Scheduling

In this experiment, we address the variable voltage controls
of the SP simulation platform. To utilize the power control
features, we use a scheduling algorithm [11] to re-organize the
descriptor sequence and insert the power controls in the de-
scriptors. The power controls include the voltage scaling and
the power gating. The power gating denotes the specified mod-
ules to clamp operating voltage V4 and the voltage scaling sets
the operating voltage to the specified module.

We implement a randomized security task generator to gen-
erate benchmark descriptor files for the simulator. The gener-
ator can generate the simulated OS-level de-/en-cryption jobs
and each job has randomized operation type, randomized data
size, randomized keys and content, randomized arrival time,
and randomized deadline, according to a settable configuration
of job arrival distribution type, job number, job density, ratio
of distinct operation types, job size variance, and job deadline
variance. Each generated job is then converted by the generator
to numerous descriptors executable by the simulator. The gen-

Energy Consumption of RSA
Operations

pJ
7.500E+12

O Dynamic B Static O Overhead

6.000E+12

4.500E+12]

3.000E+12

1.500E+12

0.000E+00 f 1 1 1 f
P

NP‘P NP‘P NP‘P NP‘P NP‘ P NP‘P

6

7 8 9 10 11 12

Fig. 10. Energy simulation result of RSA modules

7 Energy Consumption O AES dynamic B AES static

p without RSA Operations | O Misc O Overhead
1.60E+09
1.20E+09
8.00E+08
4.00E+08
0.00E+00

NP‘ P NP‘ P NP‘ P NP‘ P NP‘ P NP‘ P NP‘ P NP‘ P NP‘ P NP‘ P NP‘ P NP‘ P
1 2 3 4 5 6 7 8 9 10 11 12

Fig. 11. Energy simulation result of SP except RSA modules

erated benchmarks consist of 12 sets files with different task
generator configurations listed in Table II. They are mainly di-
vided into three types of arrival distributions. Each distribution
type has three sets with different task slackness, which are de-
pendent on job density and job deadline range: the first set has
the high density and short deadline; the second has the high
density and long deadline; the third has the low density and
long deadline. We have generated 100 distinct descriptor files
for each set and computed their average energy consumptions
from the results of the simulator.

The average energy consumptions of SP are separated
into RSA modules (Fig. 10) and the other components
(Fig. 11). The NP means that descriptors proceed without
power scheduling and the P means with the power scheduling
support. The static means the energy consumption from the
the static power and the dynamic means the means the energy
consumption when the components are executing. The Misc is
the energy consumption of the channels, controller, and the in-
ternal bus. The Overhead is the delay energy consumption due
to the voltage scaling time and the voltage clamping time. The
experiments results show that the average energy reduction is
up to 37% achieved by the power-aware scheduling scheme.
Again our energy simulator in the architecture level provides a
tool for evaluating different voltage scheduling policies.

V. CONCLUSION

The architecture simulation platform provide the insight of
the performance analysis and power estimation of the secu-
rity processor. It provides the infrastructure of the hardware

Set T [2 [3[4 5] 6] 78T 9TJ1w0TJi1Ji12

Distribution uniform normal | exponential

Job number 300

Jobs/Time(ms) 1500 [375 [1500 [375 [1500 [375 [1500 [375 [1500 [375 [1500 [375

AES:RSA 60:1

Max data size (bytes) 1280

Max AES deadline (ms) 3072 3430 3072 3430 3072 3430

Max RSA deadline (ms) 13312 15872 13312 15872 13312 15872

Dynamic energy reduction (%) | 26.85 | 39.45 | 32.36 | 42.42 | 34.61 | 40.50 | 40.30 | 33.03 | 26.16 | 35.10 | 44.17 | 47.23

Leakage energy reduction (%) | 82.91 | 81.68 | 83.09 | 82.53 | 83.92 | 82.41 | 83.17 | 80.91 | 80.87 | 82.84 | 82.82 | 82.27

Total energy reduction (%) 26.85 | 39.45 | 32.37 | 42.42 | 34.61 | 40.50 | 40.30 | 33.03 | 26.16 | 35.10 | 44.17 | 47.23
TABLE 11

BENCHMARK SETTINGS AND RESULTS

design flow that supports the design space exploration. The
simulation platform is is to be modified and can generate the
simulation result in a reasonable time, that helps the designers
to do experiments on the SP. We will continue making efforts
to improve the simulation details and make the SP simulator to
a more generic simulation platform.

(1]
[2
3

—_ =

[4

=

(5]

(6]

[7
(8]

—

(91
[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

ARM. AMBA. Specification (Rev 2.0), 1999.
ARM. Intelligent Energy Controller Technical Overview, Aug 2004.

D. Atapattu and D. Gannon. Building analytical models into an interac-
tive performance prediction tool. In Proceedings of ACM Supercomput-
ing 89, pages 512-530, November 1989.

F. Bodin, D. Windheiser, W. Jalby, D. Atapattu, M. Lee, and D. Gan-
non. Performance evaluation and prediction for parallel algorithms on
the bbn gpl1000. In Proc. of the 4th ACM International Conference on
Supercomputing, pages 401-403, June 1990.

J.-M. Chang and M. Pedram. Energy minimization using multiple supply
voltages. [EEE Transactions on Very Large Scale Integration (VLSI)
Systems, 5(4), Dec 1997.

N. Gammage and G. Waters. Securing the Smart Network with Motorola
Security Processors, March 2003.

Hifn. 7954 security processor Data Sheet, December 2003.

K. Hwang and F. Briggs. Computer Architecture and Parallel Process-
ing. Mc Graw-Hill, 1984.

INTEL. Intel PXA27x Processor Family Developers Manual, Oct 2004.

Y.-C. Lin, C.-W. Huang, and J.-K. Lee. System-level design space ex-
ploration for security processor prototyping in analytical approaches. In
Asia and South Pacific Design Automation Conf. (ASP-DAC), pages 376—
380, Jan 2005.

Y.-C. Lin, Y.-P. You, C.-W. Huang, J.-K. Lee, W.-K. Shih, and T.-T.
Hwang. Power-aware scheduling for parallel security processors with
analytical models. In Languages and Compilers for Parallel Computing
(LCPC), Sep 2004.

M.-Y.Wang, C.-P. Su, C.-T. Huang, and C.-W.Wu. An hmac processor
with integrated sha-1 and md5 algorithms. In Asia and South Pacific
Design Automation Conf. (ASP-DAC), pages 456—458, Jan 2004.

S. Pasricha. Transaction level modeling of soc with systemc 2.0. Tech-
nical report, Synopsys Users Group Conference, 2002.

C.-P. Su, T.-F. Lin, C.-T. Huang, and C.-W. Wu. A high-throughput low
cost aes processor. IEEE Communications Magazine, 41(12):86-91, Dec
2003.

C.-H. Wang, C.-P. Su, C.-T. Huang, and C.-W. Wu. A word-based rsa
crypto-processor with enhanced pipeline performance. In 4th IEEE Asia-
Pacific Conf. ASIC, Aug 2004.

