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Abstract

When performing aggressive optimizations and parallelization to exploit features of advanced ar-
chitectures, optimizing and parallelizing compilers need to quantitatively assess the profitability of
any transformations in order to achieve high performance. Useful optimizations and parallelization
can be performed if it is known that certain points-to relationships would hold with high or low
probabilities. For instance, if the probabilities are low, a compiler could transform programs to perform
data speculation or partition iterations into threads in speculative multithreading, or it would avoid
conducting code specialization. Consequently, it is essential for compilers to incorporate pointer analysis
techniques that can estimate the possibility for every points-to relationship that it would hold during
the execution. However, conventional pointer analysis techniques do not provide such quantitative
descriptions and thus hinder compilers from more aggressive optimizations, such as thread partitioning
in speculative multithreading, data speculations, code specialization, etc. This paper addresses this
issue by proposing a probabilistic points-to analysis technique to compute the probability of every
points-to relationship at each program point. A context-sensitive interprocedural algorithm has been
implemented based on the iterative data flow analysis framework, and been incorporated into SUIF
and MachSUIF. Experimental results show this technique can estimate the probabilities of points-to
relationships in benchmark programs with reasonable small errors, about 4.6% in average. Furthermore,
the current implementation cannot disambiguate heap and array elements. The errors will be further
significantly reduced when the future implementation incorporates techniques to disambiguate heap and
array elements.
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I. INTRODUCTION

There have been considerable efforts on pointer analysis by researchers [1], [2], [3], [4],

[5], [6], [7], [8], [9], [10], [11], [12]. Some of them have proposed various algorithms to

perform points-to analysis, i.e. to compute all possible points-to relationships at every program

point. They categorize points-to relationships into two classes: definitely-points-to relationships,

which hold for all executions, and possibly-points-to relationships, which might hold for some

executions. However, the information gathered by these algorithms based on this classification

does not provide the quantitative descriptions needed for modern compiler optimizations, e.g.

data speculation, code specialization etc., and thus has hindered compilers from more aggressive

optimizations. Possibly-points-to relationships cannot tell how likely the conditions will hold for

the executions, and consequently compilers have to make a conservative guess and assume the

conditions hold for all executions. This paper addresses this issue by proposing a probabilistic

points-to analysis approach to give a quantitative description for each points-to relationship to

represent the probability that it holds.

When performing aggressive optimizations and parallelization to exploit features of advanced

architectures, optimizing and parallelizing compilers need to quantitatively assess the profitability

of any transformations in order to achieve high performance. The probabilistic points-to analysis

technique is designed to provide the quantitative information to let the compilers formulate

the cost functions of transformations, many of which will show a profit when certain points-to

relationships hold with high or low probabilities. Therefore, compilers can determine whether

it is beneficial to perform optimizations and parallelization if they can differentiate the points-

to relationships within these ranges from the rest. Experimental results show there are many

opportunities for optimizations and parallelization since over 80% of the points-to relationships

in the benchmark programs hold within the probability ranges 0%∼10% or 90%∼100%.

One application is to guide data speculation on advanced architectures. For example, IA-

64 [13], which relies on static scheduling, provides hardware support for speculative motion of
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loads across possibly aliasing stores. This allows the loads to be executed early but with poten-

tially incorrect values. The hardware in conjunction with software provides a recovery mechanism

to recover from any mis-speculation. This feature allows a compiler to generate optimal code by

breaking memory dependences, which are often on performance critical paths. However, a mis-

speculation on such architecture typically incurs a large recovery penalty. Therefore, to properly

guide data speculation, it is important for a compiler to derive the aliasing probability for a pair

of data speculation candidates (i.e. a load and a store) and compare an amortized recovery cost

with the benefit of a ‘good’ speculation. A probabilistic memory disambiguation approach was

proposed for numeric applications [14]. However, the problem remains open for pointer-induced

memory references.

foo(int a, int b, int c) {

int *p; ...

p = ..

if( a < b ) { p = &c; }

c = ...; /* st */

... = *p /* ld */

}

Above is an example of using aliasing probability to guide data speculation. Before the if-clause,

p does not point to c, but it does so in the if-clause. After the if-clause, a store to c is followed

by a load from ?p. Assume that the load is on a critical path, and hence a compiler wants to

schedule the load before the store. However, since ?p may alias with c, a compiler would not be

able to do so without a support like data speculation (alternatively comparing the base addresses

of the load and store or some code duplication). The compiler must be able to estimate the

aliasing probability between the load and the store and hence how often p points to c. If the

amortized recovery cost outweighs the benefit of the shortened critical path after moving the
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load across the store, this data speculation is unprofitable and should not be performed.

Probabilistic pointer analysis is also important to thread partitioning in speculative multithread-

ing [15], [16], [17], where potentially dependent threads from a single application are running

on parallel hardware. Although the hardware ensures correctness through recovery when the

dependences between threads actually occur at run time, the key to achieve high performance

under this model is to have minimal dependence violations during the execution. A compiler has

the challenging task to estimate the likelihood of dependences so that it can maximize the number

of threads for parallel execution but minimize the chance of dependence violations between

threads. Therefore, probabilistic pointer analysis is an important technology to guide thread

partitioning for general applications in the speculative multithreading model. It has been shown

that a compiler can achieve speedups by executing speculative threads when the possibilities of

conflicts are low and can avoid slowdown by turning off thread speculation if the possibilities

are high [18].

Probabilistic pointer analysis can also be useful in code specialization [19]. Many program

variables are observed to be ”quasi-invariant” at run time, where the distribution of the values

is skewed with a small number of values occurring most of the time. Knowledge of such

frequently occurring values can be exploited by a compiler to generate code that optimizes

for the common cases without sacrificing the ability to handle the general case. People have

resorted to value or expression profiling to recognize such quasi-invariant behavior. Probabilistic

pointer analysis can eliminate the need of some instrumentation points in the expensive value

profiling when the recognition of quasi-invariance is hindered by memory aliasing. In addition

to the above applications, probabilistic pointer analysis can facilitate optimizations for pointer-

based objects on distributed shared memory parallel machines and compiler optimizations with

memory hierarchies as well.

This paper presents a probabilistic points-to analysis approach as the groundwork for the ag-

gressive optimizations and parallelization mentioned above. This approach enhances the existing
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pointer analysis techniques by giving quantitative descriptions which represent the probabilities

that points-to relationships might hold. A context-sensitive interprocedural algorithm has been

developed based on the iterative data flow analysis framework, and been implemented by incor-

porating SUIF [20] and MachSUIF [21]. Experimental results show this technique can estimate

the probabilities of points-to relationships in benchmark programs with reasonably small errors,

about 4.6% in average. Furthermore, the weighted average errors based on execution frequencies

are 3.68%.

The remainder of the paper is organized as follows. Section II specifies the problem and

Section III presents the algorithm for probabilistic points-to analysis to solve the problem.

Section IV extends the algorithm to handle interprocedural analysis. Experimental results will be

presented in Section V and the related work is compared in Section VI. Section VII concludes

this paper.

II. BACKGROUND

A. Problem Specifications

The goal of probabilistic points-to analysis is to compute the probability of each points-to

relationship that might hold at every program point. For each points-to relationship, say that p

points to v (denoted as a tuple 〈p, v〉), it computes the probability that pointer p points to v

at every program point s during the program execution. In other words, a probability function

P(s, 〈p, v〉) is computed for each points-to relationship 〈p, v〉 at every program point s by the

following equation

P(s, 〈p, v〉)
def
=

E(s, 〈p, v〉)

E(s)

where E(s) is the number of times s is expected to be visited during program execution and

E(s, 〈p, v〉) denotes the number of times the points-to relationship 〈p, v〉 holds at s [22]. When

P(s, 〈p, v〉) is equal to 1, the points-to relationship 〈p, v〉 always holds every time the program

point s is visited. On the other hand, if it is equal to 0, then p will never point to v at s.
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Consequently, if the probability is between 0 and 1, p might point to v at some instances when

the program control reaches s, while p might not point to v at other instances.

Points-to relationships at every program point can be visualized by constructing a points-to

graph [5], [8], where each points-to relationship is represented by a directed edge from one node

to another node. Consequently, computing the probability function for every points-to relationship

is equivalent to assigning a probability to the corresponding edge of the graph. Furthermore, all

the possible values of the probability function for each probabilistic points-to relationship will

be the real numbers ranging from 0 to 1, according to the above equation.

The probability function can be overloaded to compute the possibilities for the set of points-to

relationships at every program point, if the set is represented by a vector. Specifically, if A is

the set of points-to relationships at s, the probability function for A at s will be

P(s, A)
def
= {P(s, 〈p, v〉) | 〈p, v〉 ∈ A}

= {
E(s, 〈p, v〉)

E(s)
| 〈p, v〉 ∈ A}

Such an overloaded probability function returns a vector, the ith element of which contains the

result of the probability function for the ith points-to relationship in A.

B. Location Sets and Program Representations

Memory locations are represented by location sets [11], each of which is a triple of the form

(b, f, s) where the base b is the name for a block of memory, f is an offset within that block,

and s is the stride. A location (b, f, s) represents the set of locations {f + i× s | i ∈ N} within

block b. For instance, (p, 0, 0) denotes a variable p, (r, f, 0) refers to a field f in a record r,

and (a, 0, w) represents a set of array elements a[i] (w is the size of each element).

Programs will be represented by control flow graphs (CFGs) whose edges are labeled with a

static assigned execution frequency [22] or an actual frequency from profiling. These frequencies

on the CFG edges can be easily converted into branching probabilities of conditionals and loops,
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and vice versa [23]. In addition,an empty node will be added at the entry of every loop as the

header node.

C. Normalization Assumptions

Programs will be normalized such that each pointer assignment statement is one of the four

basic pointer assignment statements listed in the following table [8]:

Address-of Assignment p = &q

Copy Assignment p = q

Load Assignment p = ?q

Store Assignment ?p = q

In addition, every of the first three basic pointer assignments, i.e. statements with the form

p = · · ·, will be preceded by a nullifying assignment of the form p = nil. Similarly, every store

assignment statement will be preceded immediately by an indirect nullifying assignment with

the form ?p = nil.

III. PROBABILISTIC POINTS-TO ANALYSIS

The conventional points-to analysis can be formulated as a data flow framework [2], [24], [25].

The data flow framework includes transfer functions, which formulate the effect of statements

on points-to relationships. Suppose the sets of points-to relationships at the program points right

before and after S, i.e. Sin and Sout , are INS and OUTS , respectively. Then the effect of S on

points-to relationships can be represented by the transfer function FS:

OUTS = FS (INS)

The probabilistic points-to analysis can be formulated as a data flow framework as well. If

the sets INS and OUTS are represented by vectors, the vector of probability functions of the

points-to relationships in OUTS can be computed by an overloaded transfer function FS:

P(Sout , OUTS) = FS(P(Sin , INS))

= FS({P(Sin , 〈p, v〉) | 〈p, v〉 ∈ INS})
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FS returns a vector with the ith element representing the probability function of the ith points-to

relationship in OUTS .

A. Basic Pointer Assignment Statements

Figure 1 summarizes the process of computing the set of points-to relationships OUTS at

the end of every basic pointer assignment statement S by the conventional points-to analysis

techniques [5], [8], [11]. Every points-to relationship is associated with an attribute rel, which

can be either true or false, to specify that the relationship is either a definitely-points-to

relationship or possibly-points-to relationship. The transfer functions in Figure 1 are presented

under the assumption of normalization. That is, every pointer assignment statement will be

preceded by a nullifying assignment, e.g. S1 : p = q will be transformed into the following

two contiguous statements S1′ : p = nil; S1 : p = q. Consequently, the set KILLS1 of the

following data flow computation

OUTS1 = FS1(INS1) = GENS1 ∪ (INS1 − KILLS1)

will be handled by S1′ while GENS1 is generated by S1.

S OUTS = FS(INS)

p = &q INS ∪ {(〈p, q〉, true)}

p = q INS ∪ {(〈p, v〉, rel) | (〈q, v〉, rel) ∈ INS} rel ∈ {true, false}

p = ?q INS ∪ {(〈p, v〉,
∨

x(relx
1
∧ relx

2
)) | ∀x ((〈q, x〉, relx

1
), (〈x, v〉, relx

2
) ∈ INS)}

?x = q INS ∪ {(〈p, v〉, rel1 ∧ rel2) | (〈x, p〉, rel1), (〈q, v〉, rel2) ∈ INS}

p = nil INS − {(〈p, v〉, rel) ∈ INS}

?x = nil INS − {(〈p, v〉, rel) | (〈x, p〉, rel), (〈p, v〉, rel) ∈ INS}

∪ {(〈p, v〉, false) | (〈x, p〉, false), (〈p, v〉, rel) ∈ INS}

Fig. 1. Computing the Set of Points-to Relationships

In contrast to simply associating an attribute to distinguish definitely-points-to relationships

from possibly-points-to relationships, the probabilistic points-to analysis computes a probability

function for every points-to relationship 〈p, v〉 at each program point s to estimate the possibility

that 〈p, v〉 would hold every time s is visited at runtime. Figure 2 presents the formula to
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compute the probability function P(Sout , 〈p, v〉) of every points-to relationship 〈p, v〉 ∈ OUTS

at exit of statement S. Note that the table only shows the probability functions of the points-

to relationships that are affected by S. The results of the probability functions at Sout for the

points-to relationships that are not affected by S will be the same as those at Sin . That is, if

〈x, y〉 is not influenced by S, then P(Sout , 〈x, y〉) = P(Sin , 〈x, y〉).

S P(Sout , 〈p, v〉)

p = &q

{

1 q ≡ v

0 otherwise

p = q P(Sin , 〈q, v〉)

p = ?q
∑

x P(Sin , 〈q, x〉) ×P(Sin , 〈x, v〉)

?x = q P(Sin , 〈x, p〉) ×P(Sin , 〈q, v〉) + P(Sin , 〈p, v〉)

p = nil 0

?x = nil (1 −P(Sin , 〈x, p〉)) ×P(Sin , 〈p, v〉)

Fig. 2. Computing the Probability Functions

1) Address-of Assignment S : p = &q: Statement S : p = &q introduces a definitely-points-

to relationship 〈p, q〉, i.e. 〈p, q〉 will hold at Sout with a probability of 1. Consequently, the

probability function P(Sout , 〈p, v〉) will be 1 if q ≡ v, and 0 otherwise.

2) Copy Assignment S : p = q: According to Figure 1, a copy assignment S : p = q will

generate new points-to relationships of p by copying all the points-to relationships of q. Therefore,

if 〈q, v〉 ∈ INS with a probability function P(Sin , 〈q, v〉), then the probability function of 〈p, v〉

will be P(Sin , 〈q, v〉).

3) Load Assignment S : p = ?q: Pointer p will point to v after S is executed when q points

to some other pointer x and x points to v before S is executed. As a result, the probability that

p points to v at Sout will be P1 × P2 if q points to x and x points to v with probabilities of P1

and P2, respectively. Since there might be more than one such pointer x at Sin , the probability

function of 〈p, v〉 at Sout should be
∑

x P(Sin , 〈q, x〉) × P(Sin , 〈x, v〉).

4) Store Assignment S : ?x = q: Pointer p will point to v at Sout when x points to p and

q points to v before S is executed. Another possibility would be that p points to v before S.
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Therefore, the probability function of 〈p, v〉 at Sout will be P(Sin , 〈x, p〉) × P(Sin , 〈q, v〉) +

P(Sin , 〈p, v〉).

5) Nullifying Assignment S : p = nil: A nullifying statement S : p = nil kills all points-to

relationships of p, and hence p will not point to v after S is executed. That is, P(Sout , 〈p, v〉) = 0.

6) Indirect Nullifying Assignment S : ?x = nil: If x points to p at Sin with the probability

function P(Sin , 〈x, p〉) = 1, then S will kill all points-to relationships of p. On the other hand, if

P(Sin , 〈x, p〉) = 0, no points-to relationships of p will be killed. In other words, the possibility

of any points-to relationships of p will be reduced by a factor of 1−P(Sin , 〈x, p〉). Consequently,

if p points to v with a probability function P(Sin , 〈p, v〉) at Sin , the probability function at Sout

will be (1 − P(Sin , 〈x, p〉)) × P(Sin , 〈p, v〉).

B. Meet Operator u

Although the domain of the probabilistic points-to analysis is not a semilattice, the notion

of meet operations is used to represent the actions of merging probability functions at join

nodes. Suppose the probability functions of the points-to relationship 〈p, v〉 at the program

points B1out and B2out right after B1 and B2 in the control flow graph shown in Figure 3

are P(B1out , 〈p, v〉) and P(B2out , 〈p, v〉), respectively. Then the possibility function of the

points-to relationship 〈p, v〉 at the join node will be

P(Joinin , 〈p, v〉)

= P(B1out , 〈p, v〉) u P(B2out , 〈p, v〉)

def
=

P(B1out , 〈p, v〉) × E(B1) + P(B2out , 〈p, v〉) × E(B2)

E(B1) + E(B2)

where E(B1) and E(B2) are the numbers of times B1 and B2 are expected to be visited during

program execution.

Similarly, the meet operator u can be overloaded to handle sets of probabilistic points-to
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Join

Fig. 3. Meet Operation

relationships:

P(Joinin , INJoin)

= P(B1out , OUTB1) u P(B1out , OUTB2)

= {P(B1out , 〈p, v〉) u P(B2out , 〈p, v〉) | 〈p, v〉 ∈ INJoin}

where OUTB1, OUTB2, and INJoin are the sets of points-to relationships at program points B1out ,

B2out and Joinin respectively, and Joinin = OUTB1 ∪ OUTB2.

C. Conditionals

The most commonly used conditionals is the if-then-else construct. Suppose OUTThen and

OUTElse are the sets of points-to relationships at the exit points Thenout and Elseout of Then

and Else branches respectively, while pt and pf are the branching probabilities of Then and Else

branches respectively and pt + pf = 1. Then the possibility function of the points-to relationship

〈p, v〉 at the merge point Joinin of the Then and Else branches can be computed by the meet

operation:

P(Joinin , 〈p, v〉) = P(Thenout , 〈p, v〉) u P(Elseout , 〈p, v〉)

= pt × P(Thenout , 〈p, v〉) + pf × P(Thenout , 〈p, v〉)

D. Loops

Since a loop can iterate an arbitrary number of times, it can be imaged as if there were an

infinite number of outgoing edges leaving from the exit point of the loop body and then joining

the header node. Specifically, the back edge of the loop shown in Figure 4(a) in fact represents
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(b) Imaginary CFG
Fig. 4. Loops

the infinitive number of out-edges of the loop body B, as shown in Figure 4(b). Furthermore,

if the branching probability of entering the loop is pt, then the expected frequency that B will

be visited at the ith iteration is pi
t, i.e. E(B[i]) = pi

t where B[i] denotes B at the ith iteration.

Therefore, the vector of probability functions for the set of points-to relationships INHeader at at

the entry of the header node will be

P(Headerin , INHeader)

= P(B0out , OUTB0) u P(B[1]out , OUTB[1]) u

P(B[2]out , OUTB[2]) u · · · u P(B[n]out , OUTB[n]) u · · ·

= P(B0out , OUTB0) u (
∞l

i=1

P(B[i]out , OUTB[i]))

∼ P(B0out , OUTB0) u P(Bout , OUTB)

The approximation is made because the probabilistic points-to analysis is implemented based

on an iterative data flow framework. In other words, the set of points-to relationships OUTB at

Bout is the result of meet (union) operations on all the points-to relationships that can reach

Bout until OUTB converges, i.e.

OUTB = OUTB[1] u OUTB[2] u · · · u OUTB[n] u · · ·

= OUTB[1] ∪ OUTB[2] ∪ · · · ∪ OUTB[n] ∪ · · ·
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Furthermore, the expected frequency of BOUT is the sum of the expected frequencies of BOUT [i]

being visited at all iterations, i.e. E(BOUT ) =
∑∞

1 E(B[i]OUT ). Therefore, E(BOUT ) = pt +

p2
t + · · ·+ pn

t + · · · = pt/(1 − pt), if there are no statements branching out the loop.

In order to find a solution of the above equation, a symbolic probability will be assigned to each

probability function as its result at the entry of the header node. Since the probability functions

P(Bout , OUTB) will be computed by the transfer function FB with the vector P(Bin , INB) as its

argument, the vector returned by P(Bout , OUTB) will be functions of these symbolic probabili-

ties. As a result, the equation P(Headerin , INHeader) = P(B0out , OUTB0) u P(Bout , OUTB) is

in fact an equation system, and the values of symbolic probabilities can be computed by solving

the equation system.

Consider a very simple loop with only one points-to relationship 〈p, v〉. A symbolic probability

P is introduced at the header entry, i.e. P(Headerin , 〈p, v〉) = P , and hence P(Bin , 〈p, v〉) =

P . Suppose P(B0out , 〈p, v〉) = 1, E(B) = 10, and P(Bout , 〈p, v〉) = FS(P(Bin , 〈p, v〉)) =

0.9P . Then the symbolic probability P can be solved:

P(Headerin , INHeader ) = P(B0out , OUTB0) u P(Bout , OUTB)

P = (1 × 1 + 10 × 0.9P ) / (1 + 10)

P = 0.5

E. Example

Since the probabilistic points-to analysis is implemented based on an iterative data flow

framework, the solution of the equation system will be solved when the sets in a loop are

converged. Consider the program and its corresponding CFG shown in Figure 5. Every points-

to relationship 〈p, v〉 at each program point s is associated with its probability function, and

hence is denoted by a tuple with the form [〈p, v〉, P(s, 〈p, v〉)]. The tuple can be called as a

probabilistic points-to relationship.

The set of probabilistic points-to relationships OUTS2 before entering the loop contains [〈p, v〉, 1]
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Iteration 1 Iteration 2 Iteration 3

Statement INSi INSi INSi

OUTSi OUTSi OUTSi

S1′ : p = nil; - - -

- - -

S1: p = &v; - - -

[〈p, v〉, 1] [〈p, v〉, 1] [〈p, v〉, 1]

S2′ : q = nil [〈p, v〉, 1] [〈p, v〉, 1] [〈p, v〉, 1]

[〈p, v〉, 1] [〈p, v〉, 1] [〈p, v〉, 1]

S2: q = &u; [〈p, v〉, 1] [〈p, v〉, 1] [〈p, v〉, 1]

[〈p, v〉, 1] [〈q, u〉, 1] [〈p, v〉, 1] [〈q, u〉, 1] [〈p, v〉, 1] [〈q, u〉, 1]

S3: while(...) [〈p, v〉, P1] [〈q, u〉, P2] [〈p, v〉, P1] [〈q, u〉, P2] [〈p, v〉, P1] [〈q, u〉, P2]

[〈p, u〉, P3] [〈q, v〉, P4] [〈p, u〉, P3] [〈q, v〉, P4]

[〈p, v〉, P1] [〈q, u〉, P2] [〈p, v〉, P1] [〈q, u〉, P2] [〈p, v〉, P1] [〈q, u〉, P2]

[〈p, u〉, P3] [〈q, v〉, P4] [〈p, u〉, P3] [〈q, v〉, P4]

S4: if(...) [〈p, v〉, P1] [〈q, u〉, P2] [〈p, v〉, P1] [〈q, u〉, P2] [〈p, v〉, P1] [〈q, u〉, P2]

[〈p, u〉, P3] [〈q, v〉, P4] [〈p, u〉, P3] [〈q, v〉, P4]

[〈p, v〉, P1] [〈q, u〉, P2] [〈p, v〉, P1] [〈q, u〉, P2] [〈p, v〉, P1] [〈q, u〉, P2]

[〈p, u〉, P3] [〈q, v〉, P4] [〈p, u〉, P3] [〈q, v〉, P4]

S5′ : p = nil; [〈p, v〉, P1] [〈q, u〉, P2] [〈p, v〉, P1] [〈q, u〉, P2] [〈p, v〉, P1] [〈q, u〉, P2]

[〈p, u〉, P3] [〈q, v〉, P4] [〈p, u〉, P3] [〈q, v〉, P4]

[〈q, u〉, P2] [〈q, u〉, P2] [〈q, v〉, P4] [〈q, u〉, P2] [〈q, v〉, P4]

S5: p = q; [〈q, u〉, P2] [〈q, u〉, P2] [〈q, v〉, P4] [〈q, u〉, P2] [〈q, v〉, P4]

[〈p, u〉, P2] [〈q, u〉, P2] [〈p, u〉, P2] [〈p, v〉, P4] [〈p, u〉, P2] [〈p, v〉, P4]

[〈q, u〉, P2] [〈q, v〉, P4] [〈q, u〉, P2] [〈q, v〉, P4]

S6: else

S7′ : q = nil; [〈p, v〉, P1] [〈q, u〉, P2] [〈p, v〉, P1] [〈q, u〉, P2] [〈p, v〉, P1] [〈q, u〉, P2]

[〈p, u〉, P3] [〈q, v〉, P4] [〈p, u〉, P3] [〈q, v〉, P4]

[〈p, v〉, P1] [〈p, v〉, P1] [〈p, u〉, P3] [〈p, v〉, P1] [〈p, u〉, P3]

S7: q = p; [〈p, v〉, P1] [〈p, v〉, P1] [〈p, u〉, P3] [〈p, v〉, P1] [〈p, u〉, P3]

[〈p, v〉, P1] [〈q, v〉, P1] [〈p, v〉, P1] [〈p, u〉, P3] [〈p, v〉, P1] [〈p, u〉, P3]

[〈q, v〉, P1] [〈q, u〉, P3] [〈q, v〉, P1] [〈q, u〉, P3]

S8: [〈p, v〉, 0.1P1] [〈p, v〉, 0.1P1 + 0.9P4] [〈p, v〉, 0.1P1 + 0.9P4]

[〈q, v〉, 0.1P1] [〈q, v〉, 0.1P1 + 0.9P4] [〈q, v〉, 0.1P1 + 0.9P4]

[〈p, u〉, 0.9P2] [〈p, u〉, 0.9P2 + 0.1P3] [〈p, u〉, 0.9P2 + 0.1P3]

[〈q, u〉, 0.9P2] [〈q, u〉, 0.9P2 + 0.1P3] [〈q, u〉, 0.9P2 + 0.1P3]

[〈p, v〉, 0.1P1] [〈p, v〉, 0.1P1 + 0.9P4] [〈p, v〉, 0.1P1 + 0.9P4]

[〈q, v〉, 0.1P1] [〈q, v〉, 0.1P1 + 0.9P4] [〈q, v〉, 0.1P1 + 0.9P4]

[〈p, u〉, 0.9P2] [〈p, u〉, 0.9P2 + 0.1P3] [〈p, u〉, 0.9P2 + 0.1P3]

[〈q, u〉, 0.9P2] [〈q, u〉, 0.9P2 + 0.1P3] [〈q, u〉, 0.9P2 + 0.1P3]

Fig. 5. Example
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and [〈q, u〉, 1]. Consequently, symbolic probabilities P1 and P2 are introduced at the entry of

the loop, and hence the set INS3 consists of [〈p, v〉, P1] and [〈q, u〉, P2]. Statement S5: p = q;

of the if branch kills the [〈p, v〉, P1] tuple and creates a new tuple [〈p, u〉, P2], while statement

S7 : q = p; of the else branch removes the [〈q, u〉, P2] tuple and introduces [〈q, v〉, P1] to the

set OUTS7. Assume the branching probabilities of the if and else branches are 0.9 and 0.1

respectively, as shown in the CFG. Merging the two branches, the set of probabilistic points-to

relationships OUTS8 at the exit point of the loop will be comprised of the tuples [〈p, v〉, 0.1P1],

[〈q, v〉, 0.1P1], [〈p, u〉, 0.9P2], and [〈q, u〉, 0.9P2] after iteration 1.

Two symbolic probabilities P3 and P4 are introduced in the set of probabilistic points-to

relationships INS3 at iteration 2, since two more points-to relationships are now merged into

the loop entry. After iteration 2 is executed, the set OUTS8 will contain [〈p, v〉, 0.1P1 + 0.9P4],

[〈q, v〉, 0.1P1 + 0.9P4], [〈q, u〉, 0.9P2 + 0.1P3], and [〈p, u〉, 0.9P2 + 0.1P3].

No more symbolic probabilities are declared when iteration 3 starts, and no new tuples are

created by any statements at iteration 3. That is, all the sets of probabilistic points-to relationships

converge after 3 iterations of execution. Now the equation system can be solved to obtain the

values of the symbolic probabilities. Suppose the loop body is executed 9 times. P(S3in , INS3) =

P(B2out , OUTB2) u P(B8out , OUTS8) represents the following equation system:

P1 = (1 + 9 × (0.1P1 + 0.9P4))/(1 + 9)

P2 = (1 + 9 × (0.9P2 + 0.1P3))/(1 + 9)

P3 = (9 × (0.9P2 + 0.1P3))/(1 + 9)

P4 = (9 × (0.1P1 + 0.9P4))/(1 + 9)

The values of the symbolic probabilities will be P1 = 0.19, P2 = 0.91, P3 = 0.81, and P4 = 0.09

after the equation system is solved. In other words, the probabilistic points-to relationships in

INS3 at loop entry will be [〈p, v〉, 0.19], [〈q, u〉, 0.91], [〈p, u〉, 0.81], and [〈q, v〉, 0.09].
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F. Analysis

The unique feature that distinguishes the probabilistic points-to analysis from the conventional

points-to analysis techniques is that the probabilistic points-to analysis associates a probability

function for every points-to relationship. In other words, the probabilistic points-to analysis

basically computes the set of points-to relationships at every program point following the same

set of the rules conducted by most existing conventional points-to analysis techniques [2], [5],

[8], [11], as outlined in Section III-A. The difference is that the probabilistic points-to analysis

will go one step further — computing the probability function of every points-to relationships.

Therefore, the probabilistic points-to analysis can be divided into two phases: identifying the sets

of points-to relationships and computing the probability function of every points-to relationship.

1) Termination: The first phase of the probabilistic points-to analysis is simply the conven-

tional points-to analysis. As mentioned by the previous work of other researchers, the points-to

analysis can be implemented by applying the well-known iterative or interval-based techniques

[2], [5], [6], [8], [11]. Since the number of pointer variables are finite, the number of relationships

will be finite. The only exception is the heap objects, which might be infinite. However, all points-

to analysis techniques employ ways to represent the heap objects with finite representations,

e.g. a single heap object [5], imposing k-limit rules [6], location sets [11], or sparse graphs [2].

Consequently, the number of points-to relationships is finite and hence the process will definitely

terminate.

The second phase of the points-to analysis is to compute the probability function of every

points-to relationship when the sets of points-to relationships converge. As described in Sec-

tion III, a symbolic probability will be introduced for every points-to analysis at the merging

points with back edges, and the results of probability function will be represented by an equation

system of these symbolic probabilities. Therefore, this process can be performed by one iteration.

In addition, there are several open-source solvers, e.g. GNU Scientific library (GSL), that can

efficiently solve the symbolic equations to obtain the values represented by these symbolic
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probabilities.

2) Complexity: The time and space complexities of the first phase have be described and

proved by previous work of other researchers [2], [5], [6], [8], [11]. As presented in Section III-

F.1, the second phase takes only one iteration. Therefore, the time complexity of formulating

the equation system in the second phase will be O(N × V ), where N is the maximum number

of points-to relationships and V is the number of nodes on the CFG.

The space complexity of the second phase is O(N 2×V ), since an equation system of symbolic

probabilities will be computed at each CFG node and the equation system can be represented

by a matrix. However, every matrix will be sparse because in most programs every location is

pointed to by close to one pointer [5], [26].

IV. INTERPROCEDURAL ANALYSIS

A. Algorithm

The algorithm for interprocedural probabilistic points-to analysis is developed based on the

algorithm developed by Emami et al. [5]. At each call site, points-to relationships are mapped

from actual parameters to formal parameters by the algorithm, and the results are unmapped

back to the variables in the caller once the called function is analyzed. During the mapping

process, symbolic names (or ghost location sets) will be declared to represent variables outside

the scope of the called functions, i.e. invisible variables [5], [8].

Instead of constructing an invocation graph, this algorithm implements a call stack to keep

track of procedure invocations. The node for an invoked procedure will be pushed into the

stack and popped out of the stack when the invocation ends. Therefore, the contents of the call

stack represent the nodes on the paths from the root of the invocation graph to the currently

active procedure. Furthermore, the contents of the call stack determine the calling context

of the procedure currently being analyzed. If a cycle is created by recursive invocations, an

approximation similar to that done by Emami et al. [5] and Wilson and Lam [11] will be

applied.
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A symbolic probability will be assigned to every points-to relationship at the entry of a

procedure as the value of its probability function. The intraprocedural algorithm outlined in

the previous section can then be applied to compute the probability function of every points-to

relationship at the end of the procedure. The transition of the probability functions from the

procedure entry to the procedure exit represents the effects of the procedure. In other words, the

transformations can be viewed as the transfer function of the procedure under the context. Like

the analysis done by other researchers [8], [11], the transfer function will be cached to avoid

duplicate computations. If the procedure is invoked with the same set of points-to relationships,

maybe with different probability functions, the transfer function can be used to compute the

results by substituting the symbolic probabilities with the values of the probability functions.

B. Handling Recursive Procedures

In addition to the symbolic probability that will be declared for every points-to relationship at

the procedure entry as done for nonrecursive procedures, one matching symbolic probability will

be declared for the points-to relationship at the end of the procedure. The reason to introduce a

new set of symbolic probabilities is because it is not possible to compute the probability functions

directly at the end of a recursive procedure. This set of probabilistic points-to relationships will

be served as the transfer function of the recursive procedure at the current stage.

When a recursive invocation is encountered, the current transfer function, i.e. the set of points-

to relationships with symbolic probabilities at the end of the procedure, will be used to compute

the OUT set of the invocation statement. If new points-to relationships are merged to the entry

of the recursive procedure at later iterations, a pair of symbolic probabilities will be declared

for every new points-to relationship, one for the procedure entry and one for the procedure exit.

Furthermore, the new points-to relationships at the end of procedure will be included as part of

the transfer function. The process will be repeated until none of sets change.

Once the sets converge, the symbolic probabilities at the procedure entry can be obtained by

solving the equation system for the meet operation on the incoming-edges to the entry node.
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V. EXPERIMENTAL RESULTS

A. Platform and Benchmarks

A prototype compiler has been implemented upon the SUIF system [20] and CFG library of

MachSUIF [21] to perform the interprocedural probabilistic points-to analysis. The routines in

the SPAN compiler to associate variables with location sets have been integrated in the compiler

as well [8]. In addition, CAS (Computer Algebra System) GiNaC [27] and GNU Scientific library

GSL have been incorporated to process symbolic and mathematical computations. Figure 6 shows

the structure of the prototype compiler.
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Fig. 6. Structure of Prototype Compiler

Programs are first transformed from the high-SUIF format to the low-SUIF format by SUIF

and represented by CFGs using the CFG library of MachSUIF. All the variables on the CFG

nodes will be associated with location sets by the SPAN routine. The compiler will then

traverse the CFGs to compute the probability function of every probabilistic points-to relationship

at each program point. This section will present the preliminary experimental results of this

implementation.

Several applications have been chosen as the benchmarks, as listed in Table I. The fourth

column contains the number of lines in the source and header files reported by the Unix utility

wc. The fifth column reports the number of CFG nodes which are computed by MachSUIF

CFG library. The sixth column reports the number of user-defined functions. These benchmark
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Program Description Source LOC CFG Nodes Functions

990127-1 Test program from gcc-3.0.1 testsuite. GCC 31 23 1

shuffle The program tests a random number generator netlib.org 713 64 4

using a card shuffling procedure.

20000801-2 Test program from gcc-3.0.1 testsuite GCC 40 26 4

fir2dim DSPstone filter benchmark. DSPStone 152 46 2

misr A program create and use link list. McGill 276 142 5

fft An FFT test program. netlib.org 963 132 7

dhrystone The dhrystone benchmark v2.1. netlib.org 1443 182 12

clinpack This is the Linpack program netlib.org 1385 405 12

(floating-point) rewritten by C.

alvinn This program trains a neural network SPEC92 272 125 8

called ALVINN using back propagation.

queens A program that finds solutions to the netlib.org 363 132 3

eight-queens chess problem.

treeadd This program adds the numbers stored Olden 202 36 4

at each node of a binary tree.

power The Power Pricing benchmark. Olden 818 194 17

hash A program builds a hash table. McGill 257 68 5

TABLE I

BENCHMARK PROGRAMS

outgoing edge assigned probability

Fall-through 1

IF (taken) pt = 0.5

IF (not taken) pf = 0.5

Loop-back edge pt = 0.9

Loop-exit edge pf = 0.1

TABLE II

PROBABILITY OF OUTGOING EDGE STATICALLY ASSIGNED.

programs will then be executed to gather the detailed points-to information at runtime. The

runtime results will be compared with the following three variations of probabilistic points-to

analysis:

• Probabilistic points-to analysis based on static probabilities (PPA-S)
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A probability will be assigned to each outgoing edge of CFG, as listed in Table II, and the

probabilistic points-to analysis algorithm will be executed based on these edge probabilities.

• Probabilistic points-to analysis based on profiling information (PPA-P)

We have developed a profiling tool by SUIF to gather the execution frequency of every

edge in CFG, and probabilistic points-to analysis will be performed based on the profiling

information to compute the probabilities of points-to relationships in selected benchmarks.

• Traditional points-to analysis (TPA)

The probability of each points-to relationship is assumed to be 1.

The discrepancy of the estimated probability for every points-to relationship by these points-to

analysis methods from the probability observed at runtime, i.e. |Pestimated − Pruntime|, will be

measured at the end of each basic block of all procedures. The accuracy of these variations of

probabilistic points-to analysis will be quantified by averaging all the discrepancies gathered at

all basic blocks to obtain the average error

ξ =

n
∑

i=1

|Pestimated(i) − Pruntime(i)|

n

The precision of probabilistic points-to analysis will be quantified by computing variances

gathered at all basic blocs to obtain the standard deviation

σ =

√

√

√

√

√

√

n
∑

i=1

(Pestimated(i) − Pruntime(i))
2

n

where Pestimated(i) is the estimated probability of the ith points-to relationship, and Pruntime(i)

is the runtime profiled probability of the ith points-to relationship.

In addition, weighted version of average errors will be computed to take into the frequencies

of executions into account

ξw =

n
∑

i=1

|Pestimated(i) − Pruntime(i)| × wi

n
∑

i=1

wi

where wn is the frequencies of points-to relationship i.

20



B. Results

Figure 7 and Figure 8 show the average errors and standard deviation of estimated probabilities

of points-to relationships by these methods compared to the profiled probabilities at runtime,

respectively. Table III summarizes the average errors and standard deviation in Figure 7 and

Figure 8 in a tabular format. The numbers in the figures and table show our probabilistic points-

to analysis approach can estimate the likelihood that each points-to relationship would hold with

relatively small errors. Even with statically assigned edge probabilities, the average error of

estimated probabilities by PPA-S compared to the runtime frequencies is about 24%. With the

aid of edge profiling information, PPA-P reduces the average error down to 4.6%. Furthermore,

Figure 9 demonstrates the weighted average errors ξw of PPA-P are even smaller (3.68%) when

taking the execution frequencies into account.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

99
01

27
-1

sh
uff

le

20
00

08
01

-2

fir2
dim misr fft

dh
rys

ton
e

cli
np

ac
k

alv
inn

qu
ee

ns

tre
ea

dd
po

wer
ha

sh

Ave
ra

ge

n9o	p�q	rDs6t�u�vxwKu�yDz	u�t	s6{

| }~��
�~
� ���
�

�"�4���;��"�4���\����4�

Fig. 7. Average Errors

This result is significant since many compiler optimizations rely on the ability to determine

if points-to relationships hold with high or low probabilities. Two statistics will be measured
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Fig. 8. Standard Deviation
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Fig. 9. Weighted Average Errors
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Average Errors Standard Deviation Weighted Average Errors

Programs PPA-S PPA-P TPA PPA-S PPA-P TPA PPA-S PPA-P TPA

99012701 20.49% 6.79% 27.39% 40.00% 21.51% 50.20% 3.64% 1.63% 15.35%

shuffle 17.70% 0.66% 68.39% 26.12% 1.88% 82.23% 20.62% 0.00% 81.77%

20000801-2 29.33% 8.09% 53.68% 46.26% 18.19% 70.45% 13.90% 10.53% 35.53%

fir2dim 10.21% 0.00% 1.42% 22.08% 0.00% 5.13% 4.94% 0.00% 1.31%

misr 24.23% 0.66% 41.31% 46.34% 7.46% 64.19% 2.97% 0.74% 26.50%

fft 12.50% 0.51% 45.45% 24.76% 5.03% 53.89% 10.55% 0.16% 26.59%

dhrystone 19.81% 3.61% 27.80% 41.81% 12.92% 52.68% 7.65% 7.59% 15.03%

clinpack 32.95% 0.01% 61.61% 50.30% 0.06% 73.94% 12.20% 0.32% 56.83%

alvinn 5.36% 2.57% 2.66% 17.89% 15.13% 15.14% 0.38% 0.37% 0.37%

queens 34.85% 0.00% 41.93% 50.22% 0.00% 64.72% 28.49% 0.00% 28.42%

treeadd 46.30% 16.60% 45.83% 60.31% 26.92% 58.32% 46.09% 14.10% 45.61%

power 31.32% 6.55% 33.37% 44.22% 15.50% 56.12% 7.00% 0.38% 9.34%

hash 25.61% 13.94% 37.51% 37.05% 22.64% 55.57% 15.65% 12.01% 28.56%

Overall 23.90% 4.61% 37.57% 39.03% 11.33% 54.05% 13.39% 3.68% 28.55%

TABLE III

AVERAGE ERRORS AND STANDARD DEVIATION

Probability Range PPA-S PPA-P PPA-S PPA-P

0%∼10% 6.75% 90.49%

10%∼20% 16.67% 50.00%
12.85% 91.83%

20%∼30% 30.56% 33.33%

30%∼40% 0.00% 8.33%
45.83% 29.17%

40%∼50% 50.00% 79.69%

50%∼60% 96.25% 72.63%
90.72% 95.16%

60%∼70% 45.45% 0.00%

70%∼80% 13.16% 57.89%
42.86% 44.90%

80%∼90% 0.00% 29.41%

90%∼100% 83.70% 95.80%
83.40% 96.28%

TABLE IV

ACCURACY OF PPA ESTIMATED PROBABILITIES

to demonstrate this analysis can achieve high accuracy and precision in identifying points-to

relationships with high or low probabilities.

• The accuracy percentage in runtime information

Assume Points-toRuntime(l%∼h%) be the set of points-to relationships with runtime-profiled
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Probability Range PPA-S PPA-P PPA-S PPA-P

0%∼10% 56.00% 96.03%

10%∼20% 1.10% 10.34%
56.28% 94.95%

20%∼30% 19.30% 26.09%

30%∼40% 0.00% 7.69%
9.36% 23.73%

40%∼50% 27.12% 28.49%

50%∼60% 47.96% 86.81%
45.67% 88.17%

60%∼70% 9.26% 0.00%

70%∼80% 33.33% 44.00%
30.43% 36.67%

80%∼90% 0.00% 17.86%

90%∼100% 83.95% 98.08%
83.03% 98.01%

TABLE V

CONFIDENCE OF PPA ESTIMATED PROBABILITIES

probabilities within the range l%∼h%. Points-toPPA(l%∼h%) be the set of points-to re-

lationships that are estimated by PPA to hold with the probabilities within the range

from l% to h% and are also in the set Points-toRuntime(l%∼h%). Then the accuracy

percentage within the probability range l%∼h% of PPA is defined as the ratio of the size

of Points-toPPA(l%∼h%) over the size of Points-toRuntime(l%∼h%), i.e.

|Points-toPPA(l%∼h%)|/ |Points-toRuntime(l%∼h%)|

Table IV presents the accuracy of PPA-S and PPA-P within different probability ranges

based on the above definition. The first section of Table IV shows the accuracy percentage

of PPA-S and PPA-P in the probability range 0%∼10% is 6.75% and 90.49% respectively,

while the accuracy of both PPA-S and PPA-P in the range 90%∼100% is 83.70% and

95.80%, respectively.

• The confidence percentage in PPA information

Let Points-toPPA(l%∼h%) be the set of points-to relationships that are estimated by PPA to

hold with the probabilities within the range from l% to h%. Points-toRuntime(l%∼h%) be the

set of points-to relationships with runtime-profiled probabilities within the range l%∼h%

and are also in the set Points-toPPA(l%∼h%). The confidence percentage within the proba-
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bility range l%∼h% of PPA is defined as the ratio of the size of Points-toRuntime(l%∼h%)

over the size of Points-toPPA(l%∼h%), i.e.

|Points-toRuntime(l%∼h%)|/ |Points-toPPA(l%∼h%)|

Table V presents these information within different probability ranges based on the above

definition.

This result demonstrates that the probabilistic points-to analysis can identify the points-to rela-

tionships with high or low probabilities with very high accuracy.
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Fig. 10. Distributions of Points-to Relationship Probabilities

Figure 10 and Table VI list the distributions of probabilities of all points-to relationships

estimated by points-to analysis techniques and profiled at runtime. For most of the benchmarks,

the probability distributions of PPA-P are very close to the profiled probability distributions. The

high or low probabilities occupy most of points-to relationships and these points-to relationships

with high or low probabilities are the most important parts in compiler optimizations. Such

characteristic is important to compiler optimizations.
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990127-1 Runtime 22.36% 1.86% 3.11% 0 0 0 0 4.97% 2.48% 65.22%
PPA-P 16.77% 0 9.94% 0 0 0 1.86% 8.07% 1.86% 61.49%
PPA-S 0.62% 0 3.11% 8.70% 2.48% 1.86% 6.83% 3.11% 0.62% 72.67%

shuffle Runtime 69.05% 0 0 0 0 0 0 0 0 30.95%
PPA-P 69.05% 0 0 0 0 0 0 0 0 30.95%
PPA-S 16.67% 14.29% 11.90% 0 26.19% 0 0 0 0 30.95%

20000801-2 Runtime 45.59% 0 0 0 16.18% 0 0 0 0 38.24%
PPA-P 33.82% 0 11.76% 0 20.59% 0 0 0 0 33.82%
PPA-S 0 11.76% 20.59% 0 2.94% 13.24% 0 5.88% 0 45.59%

fir2dim Runtime 0 0 0 0 0 0 0 3.72% 0 96.28%
PPA-P 0 0 0 0 0 0 0 3.72% 0 96.28%
PPA-S 0 0 0 0 17.72% 0 0 0 3.72% 78.56%

misr Runtime 41.42% 0 0 0 0 0 0 0 0 58.58%
PPA-P 42.01% 0 0 0 0 0 0 0 0 57.99%
PPA-S 17.16% 0 3.55% 0 5.33% 0 0 0 0 73.96%

fft Runtime 12.63% 0 0 0 65.66% 0 0 0 0 21.72%
PPA-P 13.64% 0 0 0 27.78% 36.87% 0 0 0 21.72%
PPA-S 1.01% 0 1.52% 0 88.38% 0 0 0 0 9.09%

dhrystone Runtime 27.65% 0 0 0.22% 0 0 0 0 0 72.12%
PPA-P 21.90% 0.22% 0 0.22% 3.98% 3.76% 0 0 0 69.91%
PPA-S 7.30% 0.22% 0 0 2.43% 2.43% 0 0.22% 3.54% 83.85%

clinpack Runtime 47.83% 0 0 0 23.98% 3.60% 0 0 0 24.60%
PPA-P 47.83% 0 0 0 23.98% 3.60% 0 0 0 24.60%
PPA-S 0 0 0 9.69% 42.73% 4.22% 0 0 0 43.35%

alvinn Runtime 2.28% 0 0 0 0 0 0 0 0 97.72%
PPA-P 0 0 0 0 0 0 0 0 0 100.00%
PPA-S 0 0 0 0 3.99% 0 0 0 3.99% 92.02%

queens Runtime 41.89% 0 0 0 0 0 0 0 0 58.11%
PPA-P 41.89% 0 0 0 0 0 0 0 0 58.11%
PPA-S 0 0 0 0 38.51% 0 0 0 0 61.49%

treeadd Runtime 20.51% 2.56% 0 0 46.15% 0 0 0 0 30.77%
PPA-P 10.26% 0 12.82% 25.64% 15.38% 0 12.82% 0 0 23.08%
PPA-S 51.28% 10.26% 0 0 7.69% 7.69% 0 0 10.26% 12.82%

power Runtime 28.87% 4.47% 0 0 0 0 0 4.47% 0.69% 61.51%
PPA-P 23.37% 9.28% 0 0 0 3.78% 0.69% 8.93% 8.25% 45.70%
PPA-S 11.68% 17.18% 0 15.81% 11.68% 0 10.31% 0 0.34% 32.99%

hash Runtime 23.74% 0 7.31% 5.02% 1.83% 0.91% 5.02% 7.31% 0 48.86%
PPA-P 30.59% 1.37% 5.48% 0.91% 0.91% 0.91% 0 0 0 55.25%
PPA-S 3.65% 5.02% 9.59% 18.26% 5.02% 16.44% 5.94% 2.28% 0.46% 33.33%

Overall Runtime 26.13% 0.47% 0.58% 0.33% 13.51% 0.86% 0.31% 1.50% 0.17% 56.14%
PPA-P 24.71% 0.86% 1.14% 0.36% 9.53% 5.98% 0.28% 1.56% 0.75% 54.84%
PPA-S 3.78% 2.22% 1.58% 4.95% 25.88% 2.67% 1.50% 0.42% 1.50% 55.50%

TABLE VI

PROBABILITY DISTRIBUTIONS OF POINTS-TO RELATIONSHIPS

C. Discussion

PPA-P can estimate the probabilities of points-to relationships at the end of every basic block

in all procedures in the benchmark programs with small errors. The only exceptions are the

programs treeadd and hash, which have average errors of 16.60% and 13.94% respectively

even with the PPA-P technique. The main reason is that the current implementation cannot

disambiguate heap and array elements. Hence, it cannot correctly estimate the probabilities of

26



points-to relationships in the programs with linked-list structures. The other source of discrepancy

is the edge profiling technique used in this implementation to gather the execution frequencies.

Intuitively, path profiling should provide more accurate information than edge profiling. However,

it is proved that edge profiling is as excellent as path profiling for most programs, even for

programs in SPEC95 with complex conditional control flow [28]. Therefore, profiling is not

critical as handling heap and array elements, and hence extension for the points-to relationship

representation will be incorporated to disambiguate heap and array elements.

Although this experiment was carried out using a single set of input data, PPA-P should still

be able to accurately estimate the probabilities of points-to relationships even if different input

sets are used. There reason is that there is an extremely high correlation for the same programs

even with different input data sets [29].

VI. RELATED WORK

There have been considerable efforts on pointer analysis by researchers [1], [2], [3], [4],

[5], [6], [7], [8], [9], [10], [11], [12]. The proposed techniques compute at program points

either aliases or points-to relationships. They categorize aliases or points-to relationships into

two classes: must aliases or definitely-points-to relationships, which hold for all executions, and

may-aliases or possibly-points-to relationships, which might hold for some executions. However,

they cannot tell which may-aliases or possibly-points-to relationships hold for most executions

and which for only few executions. Such information is crucial for compilers to determine if

certain optimizations and transformations will be beneficial. To the best of our knowledge, the

work by the authors on probabilistic points-to analysis is the first to compute such information.

The most closely related work is the data flow frequency analysis proposed by Ramalingam [22].

It provides a theoretical foundation for data flow frequency analysis, which computes at program

points the expected number of times that certain conditions might hold. The probabilistic points-

to analysis approach proposed in this paper is adapted from Ramalingam’s data flow frequency

analysis. However, this paper focuses on points-to analysis, which is a complicated issue be-
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cause of the dynamic associations property of pointers. Furthermore, this technique performs

the probabilistic points-to analysis on CFGs, eliminating the overhead of generating exploded

graphs [30].

In the work related to data speculations for modern computer architectures, such as IA-64[13],

Ju et al. [14] gives a probabilistic memory disambiguation approach for array analysis and

optimizations. However, the problem remains open for pointer-induced memory references. This

work tries to provide a solution to fill in the open areas. In the work related to compiler opti-

mizations for pointer-based programs on distributed shared-memory parallel machines, affinity

analysis[31] and data distribution analysis[32] are currently able to estimate which processor

an object is resided in. For programs with pointer usages, a pointer will be pointing to a set

of objects with may-aliases. In this case, our analyzer can be integrated with the conventional

affinity analyzer, and the integrated scheme can calculate the amortized amount of objects a

processor owns for a task execution. Thus it will help program optimizations.

This work presents a major enhancement for pointer analysis to keep up with modern compiler

optimizations. Aggressive optimizations, such as thread partitioning in speculative multithread-

ing, data speculations, code specialization, etc, can be performed by compilers to improve

performance on advanced architecture once the compilers are able to quantify the likelihood

of the dynamic associations of pointers. A preliminary work done by the authors was limited

to intraprocedural analysis and based on the interval analysis technique (i.e. the elimination

technique), and hence it can not handle programs with irreducible flow graphs [33]. This work

is implemented based on an iterative data flow technique, and further extended to perform

context-sensitive interprocedural analysis.

In addition, this work has been applied to thread partitioning in the speculative multithreading

model. The result shows that a compiler can achieve speedups by executing speculative threads

when the possibilities of conflicts are low and can avoid slowdown by turning off thread

speculation if the possibilities are high [18].
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VII. CONCLUSIONS

This paper presented the probabilistic points-to analysis that could provide a quantitative

description for each points-to relationship to represent the probability that it would hold. Such a

piece of information is essential since optimizing and parallelizing compilers need to formulate

the cost functions in order to assess the profitability of any transformations. A context-sensitive

interprocedural algorithm has been implemented to compute the probability of every points-to

relationship at each program point based on the iterative data flow analysis framework, and

been incorporated into SUIF and MachSUIF. Experimental results showed this technique could

estimate the probabilities of points-to relationships in benchmark programs with reasonable small

errors, about 4.6% in average and 3.7% in weighted average. In addition, experimental results

showed there were many opportunities for optimizations and parallelization since over 80% of

the points-to relationships in the benchmark programs holded with very high or low probabilities,

where useful optimizations and transformations could be performed. This technique has been

applied to the speculative multithreading architecture to demonstrate that a compiler can achieve

speedups by executing speculative threads when the possibilities are low and can avoid slowdown

by turning off thread speculation if the possibilities are high.
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