
Switching Supports for Stateful Object
Remoting on Network Processors

Chung-Kai Chen, Yu-Hao Chang, Yu-Tin Chen, Chih-Chieh Yang and Jenq-Kuen Lee
Department of Computer Science, National Tsing-Hua University, Taiwan

Email:{ckchen, yhchang, ytchen, ccyang}@pllab.cs.nthu.edu.tw
jklee@cs.nthu.edu.tw

Abstract— Distributed object-oriented environments
have become important platforms for parallel and
distributed service frameworks. Among distributed
object-oriented software, .NET Remoting provides a
language layer of abstractions for performing parallel
and distributed computing in .NET environments. In
this paper, we present our methodologies in supporting
.NET Remoting over meta-clustered environments.
We take the advantage of the programmability of
network processors to develop the content-based switch
for distributing workloads generated from remote
invocations in .NET. Our scheduling mechanisms
include stateful supports for .NET Remoting services.
In addition, we also propose scheduling policy to
incorporate work-flow models as the models are now
incorporated in many of tools of grid architectures. The
result of our experiment shows that the improvement
of EFT is from 5% to 21% when compared to ETT
and is from 8% to 34% when compared to RR
while the stateful task ratio is 50%. Our schemes are
effective in supporting the switching of .NET Remoting
computations over meta-cluster environments.

I. I NTRODUCTION

Distributed object-oriented environments have be-
come important platforms for parallel and dis-
tributed service frameworks. Among distributed
object-oriented software, .NET Remoting provides a
framework that allows objects to interact with each
other across the boundaries. In the .NET Remoting
Framework, channels are used to transport messages
to and from remote objects, and the .NET Remoting
infrastructure provides two types of channels that
can be used to provide a transport mechanism for
the distributed applications - the TCP channel and
HTTP channel. TCP channel is a socket-based trans-
port that utilizes the TCP protocol for transporting
the serialized message stream across the .NET Re-
moting boundaries while HTTP channel utilizes the
HTTP protocol for transporting the serialized message
stream across the Internet and through firewalls. As
other networking applications, such as HTTP, server
cluster is deployed for serving tremendous request. To
leverage the request load among servers and optimize
the cluster utilization, it is necessary to apply a load
balancing mechanism in server clusters.

With the initial deployments of component services
on grid environments, there are more exciting and
challenging issues ahead in the runtime aspects of
optimizations for component architectures on grids.
Meanwhile, the arrival of network processors provides
aggregate computation and I/O bandwidth. It looks
promising to explore possible runtime optimization
and paradigms for addressing the issues with the
deployments of network processors. Among IXP plat-
forms for network processing, IXP 1200 provides
6 micro-engines for packet switching, IXP 2400
provides 8 micro-engines for packet optimizations,
and IXP 2800 provides 16 micro-engines to deliver
performance of OC 192 (10 Gb/S). Interesting appli-
cation aspects of runtime component switching are
given below. For example, there are currently four
software frameworks for grid services known as Java
RMI, CCA service [6], .NET remoting, and OGSA
remoting. For software compatibility and the re-use of
resources of different frameworks, it should be inter-
esting to explore runtime transcoding among different
services. Second, it comes the idea of runtime adap-
tations of software components and re-configurations
of systems to respond to enviroment changes and
service traffics [2], [3]. As the network processor is
a good candidate for gateways in terms of switching
speeds and bandwidth, it is interesting to see how
the software can work for network processors to
address these issues. Note that network processors are
with heterogeneous computing engines and memory
hierarchies. Issues remain open on how to utilize
network processors effectively for the switching of
high-level applications. Finally, we need the load-
balancing dispatcher for component services for serv-
ing tremendous request. In addition, a combination
of three scenarios above might be possible. In our
research work, we are studying issues with such
scanarios by exploring the capabilities of network
processors [4]. As a first step toward this idea, we
try out with the issue of load-balancing dispatchers
for .NET remoting services with network processors
in this work.

In this paper, we address the issues in supporting

.NET Remoting over meta-cluster environments. We
take the advantage of the programmability of net-
work processors to develop the content-based switch.
Stateful supports for .NET Remoting services are
also incorporated. Our work has .NET Remoting
applications classified into two separate channels in
one application, one is for stateful, and another is for
stateless. We then try to dispatch jobs for stateless
applications, and also for the scheduling of stateful
invocations. In addition, we also incorporate work-
flow models for tasks to be scheduled into our
frameworks. This is due to many of the tools of
grid architectures now are with work-flow model sup-
ports [6]. In the first step of our scheduling policy, we
perform scheduling policy for statful jobs in the work-
flow models. With the initial placements of processor
allocations, we then perform the scheduling policy for
stateless applications in the second phase. Timeout
constraints for stateful tasks are incorporated so that
it might roll back processor assignments for stateful
tasks during the second phase. This mechanism gives
load-balancing for stateless tasks while also performs
load-balancings of stateful tasks when the timing
constraints are met. Our work, to our best knowledge,
is the first work to address issues in supporting
.Net remoting services for both stateful and stateless
methods with network processor supports.

The rest of this paper is organized as follows.
Section II presents presents the frameworks for meta-
cluster supports for .NET Remoting with the as-
sistance of IXP network processors. Next, Section
III presents load-balancing schemes for work-flow
models. Experimental results are then presented in
Section IV. Finally, Section V concludes this paper.

II. EFFICIENT SWITCHING SUPPORT FOR.NET
REMOTING

For meta-cluster supports with .NET remoting, the
workload dispatcher is generally needed. Loading bal-
ancing mechanism is divided into centralized [5] [1]
and distributed [7] versions. We focus on the cen-
tralized version in our work. The centralized mode
installs a gateway in front of the cluster. The gateway
parses incoming request and makes appropriate rout-
ing decisions according to specific request attribute
(such as source IP address and URL) and server
workload feedbacks. The bottleneck for the .NET
remoting dispatchers often occurs in the gateway
because it needs high computation power to process
a huge number of remoting requests. In addition, if
the application is stateful, the gateway will consume
additional cost to keep the coherence of sessions.
We demonstrate how to distribute workloads of .NET
remoting with the assistance of IXP 1200 network
processors.

Fig. 1. The system architecture of using network processors as
the remoting service gateway.

A. Remoting Switch

We take advantage of the programmability of net-
work processor to develop the content-based switch.
Figure 1 shows the system architecture of our design.
The network processorNP serves as the gateway of
remoting services hosted on each backend servers. All
TCP channel connections of remoting going to the
servers are brokered by the network processor. It uses
its special hardware architecture to do fast TCP/IP
header rewriting for directing packets back and forth.
A TCP connection table is maintained in the memory
space of the network processor to keep track of the
connection information. It includes the IP and port
information of the client and the connected server for
each connection.

As a gateway of the backend servers, the job of
NP is to dispatch remoting invocations concerning the
load-balancing issues and the session semantics. For
stateless remoting services,NPchooses the least load
server to dispatch invocations; for stateful remoting
services,NP has to make sure that invocations be-
longing to the same session will be dispatched to
the same server. In Figure 1,RO1, RO2 and RO3
are all remoting objects that contain the intended
operations for remote invocations. TheRO1-ref ,
RO2-ref and RO3-ref in the client side are the
TransparentProxy objects referring toRO1, RO2and
RO3 respectively. Both the proxy object and the
remoting object use a channel object to manage
network connections for data transportation. In this
system, we design and deploy a pair of extended
channel objects to automatically distribute remoting
invocations into different TCP connection ports ac-
cording to their service types. By doing this,NP can
identify the service types through the examination
of the destination port of incoming request packets.
On the distribution of services on different ports, we
use a map data structure to record the assigned port
for each remoting service. All stateless services are
bound to the port number large thanc , wherec is a
selected constant. This map information can be a part

Fig. 2. A packet processing flow organized by ACEs.

of the remoting service deployment configurations
and is accessible by the clients and the servers.
We describe the distribution mechanism done by the
channel objects below.

• Client Channel Object When the
SyncProcessMessage or
AsyncProcessMessage method of the
client channel object is called in order to start
a remoting invocation, it analyzes the parameter
IMessage object to fetch the remoting service
name. The mapped port for that remoting
service is looked up by the map and is used for
sending request packets.

• Server Channel ObjectWhen the server chan-
nel object is first instantiated, it looks up the
map for all the currently used ports for remoting
services. Then it opens corresponding server
sockets on these ports to listen to connections.

B. Programming Network Processors

In the following, we introduce the framework use
to programming the network processors. Intel pro-
vides a set of tool, IXA (Intel Exchange Archi-
tecture)SDK, to develop IXP1200 application which
contains toolchains for both StrongARM and Mi-
croengine. To encapsulate and modularize individ-
ual tasks in the packet processing flow, IXA SDK
define a type of software block, Active Component
Element(ACE), constructed by C/C++ language. Each
ACE performs its own task and forwards the packet(or
drops) to the next ACE in the chain. We bind the
ACEs together using targets to define the packet
processing flow of the application as Figure 2 shows.
An ACE is a normal C program encapsulated by
IXA SDK. The ACE structure was defined as Figure
3 shows. Function ixinit() and ix fini() were left
for ACE programmer to override. After an ACE
starts and performs internal initialization, the main
program calls the programmer’s ixinit function to
complete the initialization. The main program then
enters an event loop. The Inteleventloop function
will dispatch the exception and timer event to their
corresponding handler function which was also writ-
ten by programmer. Once the event loop terminates,
the code calls the programmer’s ixfini function to
release resources. Finally, the main program performs
internal cleanup and exits.

Main() {
Intel_init();
//core component of an ACE
ix_init();
//Perform internal initialization
Intel_event_loop();
//Call user’s initialization
ix_fini();
//perform internal event loop
Intel_fini();
//Call user’s termination function
exit();
//Terminate the Linux process

}

Intel_event_loop(){
do forever{

E = getnextevent();
if(E is termination event)

Return to caller;
else if (E is exception event)

Call exception handler function;
else if (E is timer event)

Call timer handler function;
}

}

Fig. 3. Conceptual structure of the main program in an ACE

The whole system implementation is divided into
two parts, one is the control system executed in
StrongARM core and the other one is the data path
system executed in microengines. The control system
is implemented in ANSI C code; its feature includes
downloading the microcode to microengines, main-
taining the related tables in SRAM and SDRAM, and
determining the routing path for new remoting re-
quest. Figure 4 gives a code segment for rewriting the
packet header. The functions have prefix started with
“ix ” are SDK library provided by Intel. Variables
“iphdr” and “tchhdr” are pointers to ip header and
tcp header of a packet, respectively.

The data path system is implemented in microcode,
a kind of assembly codes designed for microengines
of IXP 1200. The functionality of a data path system
includes parsing and rewriting the packet header and
delivering the exception packet to StrongARM core.
The communication between StrongARM core and
microengines is achieved by a resource manager and
scratch memory. Figure 5 gives a code segment for
extracting ip and tcp header. The syntax, “.local”, is
a directive to declare a register for later usage. Macro
“xbuf extract” extracts a numeric byte field from the
transfer register buffer, “$$ipheader”, to a general-
purpose register.

III. L OAD BALANCING MECHANISMS

We now present a scheduling method which in-
corporates work-flow models for task scheduling. A

ix_tcphdr_src_port_write(tcphdr, current->ip_dport);
ix_tcphdr_dest_port_write(tcphdr, current->ip_sport);
ix_tcphdr_seq_write(tcphdr, seq));
ix_tcphdr_ack_write(tcphdr,ack));
ix_tcphdr_flags_write(tcphdr, ACK_SYN_MASK));
ix_checksum_calc_segment_checksum(iphdr, (void*)tcphdr, &chksum,1);

Fig. 4. C programs for rewriting packet headers.

.local nsrc ndst nsport ndport chksum_delta seq
xbuf_extract(nsrc, $$ip_header, 0, NSIP)
xbuf_extract(ndst, $$ip_header, 0, NDIP)
xbuf_extract(nsport, $$ip_header, 0, NSPORT)
xbuf_extract(ndport, $$ip_header, 0, NDPORT)
xbuf_extract(chksum_delta, $$ip_header, 0, DT)
xbuf_extract(seq, $$ip_header, 0, SEQ)

.endlocal

Fig. 5. Microcodes for parsing TCP packet headers.

work-flow of tasks is represented as directed acyclic
graph (DAG) [8], [9], [10]. An example of such a
graph is shown in Figure 6. Nodes represent applica-
tion tasks and edges represent data communication.
The computation costs and communication costs are
stored in an×1 andn×n matrix, respectively. In the
example graph, tasksn4, n6, n8, n9, n10 are stateful
tasks associating with two different services. The
graph also comes with information to mark the state-
ful tasks when the timeout constraint for expiration is
raised. In this case, the successors in the stateful tasks
can be redirected to other servers for load balancing.
This timeout information is presented as the dotted
line of the edge. In our example graph, the edge
between tasksn4 and n8 is with timeout edge. We
assume every server can execute maximumk tasks in
parallel. Tasks will be queued until the running tasks
are less thank in a server and the computation cost
will be n times of the original execution time of a
task when there aren tasks executed on a server.

We have defined several attributes for task schedul-
ing. The rank of the tasks represent the priorities of
the scheduling order. Therank(ni) is the approxima-
tion of the length of the longest path from the task
ni to the exit task. The rank of taskni is defined by

rank(ni) = wi + max
nj∈succ(ni)

(ci,j + rank(nj)), (1)

wherewi is the computation cost of taskni, succ(ni)
is the set of the immediate successors of taskni, ci,j

is the communication cost of edge(i, j). According to
the rank, we schedule tasks by decreasing order of a
rank.

Our scheduling algorithm presents a two-phase
scheduling policy. In the first phase, we perform a pre-
scheduling for all stateful tasks, and then we perform

Fig. 6. a task graph with 11 tasks.

scheduling for stateless tasks in the second phase. In
our first phase, we first mark all the stateful tasks by
traversing the graph. If the edge before the task is
marked as timeout, all the tasks following the edge
will be recognized as a new stateful group. After
separating the stateful tasks into different groups, we
can then schedule each group one by one. We use the
following equation to estimate the load of the stateful
tasks which have been scheduled to the server.

Load(si) =
∑

∀gj has been scheduled to si

{
∑

∀nk∈gj

Rk},

(2)
where si is the i-th server, Rk is the remaining
computation time of tasknk, andgj is thej-th group

4

of the stateful task groups. We also have

AddLoad(si, gt) = Load(si) + {
∑

∀nk∈gt

Rk}. (3)

In order to balance the group load of the state-
ful tasks, we use the AddLoad function to calcu-
late the total computation cost of each group when
adding a new scheduled group. We then dispatch
them to servers by picking up the minimum one.
The scheduling algorithm is illustrated in the routine
Phase1 Stateful Scheduler() of Figure 7.

After all the stateful tasks have been scheduled, we
subsequently schedule the stateless tasks by the order
generated by rank. The phase2statelessscheduler
routine in Figure 7 presents the algorithm for the
second phase of the scheduling. When a stateful task
leaves the queue and prepare to be executed, we
check the timeout value of the stateful group which
was separated by the given timeout mark. To see the
timeout will happen or not, if not, we will redirect the
rest stateful tasks to the original server to keep the
correctness of the stateful service. In this case, we
also indicate the roll-back of the scheduling results
for stateful tasks, and re-run the stateful scheduler in
the phase one for the remaining stateful tasks. For
a stateless task, we use the following function to
estimate the finish time of the stateless task executing
on the servers.

EFT (ni, sj) = Exec(wi, avail[sj], k)+

max
nm∈pred(ni)

(AFT (nm) + cm,i), (4)

wherepred(ni) is the set of immediate predeces-
sor tasks of taskni, and avail[sj] is the earliest
time at which serversj is ready for task execution.
AFT(nm) is the actual finish time of the tasknm.
Exec(wi, avail[sj], k) is the execution cost of task
ni with computation costwi executed on the server
sj which can parallel execute at most k tasks from
time avail[sj]. And we choose the server with the
minimum EFT to schedule. The last paragraph of the
second routine in Figure 7 illustrates this idea.

Now we use the algorithm to schedule our sample
graph. We assume each server can execute two tasks
in parallel, and there are three servers. According to
the first phase, we need to schedule the stateful tasks
by equation 2. We traverse the graph to find out the
stateful tasks and separate them into groups, note that
there is a timeout mark between taskn4 andn8. We
therefore can separate them into three groups which
are g1 = {n4, n9}, g2 = {n6, n10}, andg3 = {n8},
and then scheduleg1, g2, andg3 to servers1, s2, and
s3, respectively by equation 2. Once the stateful tasks
have been scheduled, the rank of eack task needs to
be calculated to decide the scheduling order.

Fig. 8. The result of the sample application using our scheduling
algorithm.

By the second phase of EFT algorithm. We
need to calculate the dispatching order by us-
ing equation 1, the ranks of tasks are{n1 =
93, n2 = 77, n3 = 63, n4 = 71, n5 = 53, n6 =
57, n7 = 43, n8 = 32, n9 = 31, n10 =
27, n11 = 8}. Then we sort the rank by decreas-
ing order to get the scheduling order, which is
< n1, n2, n4, n3, n6, n5, n7, n8, n9, n10, n11 >. Once
the scheduling order is obtained, the tasks can be
scheduled subsequently. By choosing the task with
highest rank, taskn1 will be scheduled first. We
use the EFT (equation 4) to find out the minimized
execution time on servers. Because taskn1 has no
predecessor, the result of EFTs is equal to 8:(∀si,
EFT (n1, si) = Exec(8, avail[si], 2) + 0 = 8. The
avail[si] is 0, because the taskn1 is the first task
of each server.) By the scheduling order, the next
task n2 is also a stateful task whose EFTs need to
be calculated: (EFT (n2, s1)= Exec(15, avail[s1], 2)
+ max{AFT (n1) + c1,2} = 15 + (8+0) = 23;
EFT (n2, s2) = 15 + (8+18) = 41; andEFT (n2, s3)
= 15 + (8+18) = 41.) From such results, we can
schedule the taskn2 to servers1 which has the min-
imum EFT value. The taskn4 is the next task to be
scheduled by the order. Since the taskn4 is a stateful
task, we dispatch taskn4 to the servers1 which was
decided previously. Next, we calculate the EFT value
of task n3:(EFT (n3, s1)= Exec(7 ∗ 2, avail[s1], 2)
+ max{AFT (n1) + c1,2} = 14 + (18+0) = 32;
EFT (n3, s2) = 7 + (8+12) = 27; andEFT (n3, s3)
= 7 + (8+12) = 27.). As the result, we will dispatch
it to servers2. According to the algorithm, we can
dispatch the rest of tasks and get a simulated result
of the sample graph shown in Figure 8. The timeout
of task n8 will not happen when the application is
executed, it should be redirected to the servers1 to
keep the stateful tasks correctness. The final schedule
length of the sample graph is 86.

IV. EXPERIMENTS

Here we experiment with our workload algorithms
EFT by simulations. We have constructed a software

Algorithm: The EFT load-balancing algorithms with work-flow information to handle both stateful and stateless tasks.

Input: A task graphG with the computation cost, communication costs, and the stateful groups.

Phase1Stateful Scheduler(){
while there is a unscheduled group gi do

for each server sj do
Compute the AddLoad(sj , gi).

Assign the tasks of gi to the server sk that minimizes AddLoad(sk,gi).
end while

}
Phase2StatelessScheduler(){

while there is a un-scheduled task in the graphdo
Find the highest ranked task among un-scheduled tasks, say ni, for scheduling
if task ni is stateful{

if (the timeout constraint for expiration is raised for task ni)
and ((the current time) - (the time for last done task of this group))< TIMEOUT {

Assign the tasks of the group to the server which the task of this group has been scheduled.
Revise this scheduling information to call Phase1statefullScheduler() to re-do remaining stateful tasks.

}
else do

Assign the stateful request to the server assigned at phase one
and update the session table.

end if
}
else{/* Schedule stateless tasks */

for each server sj do
ComputeEFT(ni, sj).

Assign request ni to the server sk that minimizesEFT of request ni.
}
Update the connection table

end while
}

Fig. 7. The EFT load-Balancing algorithm for the application with a work-flow graph.

simulator that emulates the network processor dis-
patching behavior for scheduling random tasks. The
work-flow graphs of tasks are generated by a general
graph generator with several parameters:

• Number of nodes v: The number of nodes
(tasks) in the graph.

• Shape of graph s: We use this parameter to
control the shape of graphs. The levels of gener-
ated graphs form a normal distribution with the
mean value equal to

√
v/s. The nodes of each

level also form a normal distribution with the
mean value equal to

√
v ∗ s.

• Out degreeO: Out edges of each node. We use
this parameter to control the dependence degrees
between two tasks.

• Communication to computation ratio CCR:
It is the ratio of the communication cost to
computation cost. We can generate computation-
intensive application graphs by assigning low
values toCCR.

• Number of stateful task groups: It denotes the
number of stateful service groups. We can also
control the height of each stateful task group by
supplied parameters.

Parameter Value
V 25, 50, 100, 200, 400
S 1
O 2, 3, 4
CCR 0.3
Stateful groups 2, 4, 8
Stateful task ratio 0.25, 0.5

TABLE I

PARAMETER SETS USED INFIGURE 9 AND FIGURE 10

In order to demonstrate the benefits of our EFT
algorithm on dealing with stateful tasks, we use the
parameters as listed in Table I. Under the parameter
settings in Table I, we show the performance results
of two different stateful task ratio 25% and 50%
in Figure 9 and Figure 10, respectively. We use
500 graph instances for evaluating each parameter
setttings. The x-axis gives different distribution of
task nodes. It includes the amount of tasks and the
amount of stateful groups as specified in Table I.

We take Round-robin (RR) and Estimated Task
Time (ETT) algorithm which was proposed for appli-
cation without work-flow to compared with our EFT
alogirhtm.

60%

65%

70%

75%

80%

85%

90%

95%

100%

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

Different distribution of task nodes

Sc
he

du
le

 le
ng

th
RR

ETT

EFT

25 100 200 40050

60%

65%

70%

75%

80%

85%

90%

95%

100%

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

Different distribution of task nodes

Sc
he

du
le

 le
ng

th
RR

ETT

EFT

25 100 200 4005025 100 200 40050

Fig. 9. Performance of EFT scheme with work-flow information
(25% stateful tasks in each graph).

60%

65%

70%

75%

80%

85%

90%

95%

100%

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

Different distribution of task nodes

Sc
he

du
le

 le
ng

th

RR

ETT

EFT

25 100 200 40050

60%

65%

70%

75%

80%

85%

90%

95%

100%

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

Different distribution of task nodes

Sc
he

du
le

 le
ng

th

RR

ETT

EFT

25 100 200 4005025 100 200 40050

Fig. 10. Performance of EFT schemes with work-flow information
(50% stateful tasks in each graph).

In Figure 9 and Figure 10, the results with ETT [12]
and EFT are normalized over the results of Round-
robin (RR). We can see that the EFT algorithm has
significant performance improvement over ETT and
RR. The improvement goes higher with bigger task
graph and higher stateful task ratio. While the stateful
task ratio is 25%, the improvement of EFT is from
2.76% to 12.63% when compared to ETT and is from
9.31% to 34% when compared to RR; While the
stateful task ratio is 50%, the improvement of EFT is
from 5% to 21% when compared to ETT and is from
8% to 34% when compared to RR. This phenomenon
can be explained by the pre-known knowledge of
work-flow graphs and the specific handling of stateful
tasks in EFT. In phase 1 of the EFT algorithm, it will
first consider the scheduling of stateful task groups. It
pre-assigns the stateful groups into back-end servers
according to the group computation load. In phase 2,
we also provide a mechanism for stateful task groups
to timeout and rescheduling. This produces a more
fine-grained load-balancing scheduling.

V. CONCLUSION

In this paper, we presented our methodologies
in supporting .NET Remoting over meta-clustered
environments. Both stateful and stateless supports
for .NET Remoting services are incorporated. The
result of our experiment shows that the improvement
of EFT is from 5% to 21% when compared to
ETT and is from 8% to 34% when compared to
RR while the stateful task ratio is 50%. Our work
gave a comprehensive study for efficient support of
.NET remoting in the presence of advanced network
architectures such as IXP network processors. Our
proposed scheduling methods include schemes with
or without work-flow information of tasks. Further
efforts to integrate our scheduling policy with CCA
grid environments will be important directions for
future research explorations.

REFERENCES

[1] George Apostolopoulos, David Aubespin, Vinod Peris,
Prashant Pradhan, and Debanjan Saha, Design, Implemen-
tation and Performance of a Content-Based Switch, inPro-
ceedings of IEEE Infocom 2000, Mar. 2000.

[2] Chung-Kai Chen, Cheng-Wei Chen, Jenq Kuen Lee. Specifi-
cation and Architecture Supports for Component Adaptations
on Distributed Environments, Proceedings of the IPDPS
Conference, Santa Fe, April 2004.

[3] Kattamuri Ekanadham, Joefon Jann, Pratap Pattnaik, Ra-
manjaneya Sarma Burugula, Donna Dillenberger. Anatomy
of Autonomic Server ComponentsIBM Research Report,
November 2002.

[4] National Science Council(NSC)Research Excellence Project
http://www.ccrc.nthu.edu.tw/PPAEUII/.

[5] Robert Haas, Lukas Kencl, Andreas Kind, Bernard Metzler,
Roman Pletka, Marcel Waldvogel, Laurent Frelechoux, and
Patrick Droz, IBM Research Clark Jeffries, IBM Corporation,
Creating Advanced Functions on Network Processors: Expe-
rience and Perspectives,IEEE Network, July/August 2003.

[6] Sriram Krishnan, and Dennis Gannon. XCAT3: A Framework
for CCA Components as OGSA Services. InProceedings of
International Workshop on High-Level Parallel Programming
Models and Supportive Environments, April 2004.

[7] G. Teodoro, T. Tavares, B. Coutinho, W. Meira Jr., and D.
Guedes, Load Balancing on Stateful Clustered Web Servers,
in 15th Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD’03), November, 2003.

[8] M. Y. Wu, S. Hariri, and H. Topcuouglu, Performance-
Effective and Low-Complexity Task Scheduling for Hetero-
geneous Computing. IEEE Trans on Parallel and Distributed
SystemsIEEE Trans on Parallel and Distributed Systems,Vol.
13, 260-274, 2002.

[9] Y. Kwok and I. Ahmad,Dynamic Critical-Path Scheduling:
An Effective Technique for Allocating Task Graphs to Mul-
tiprocessors IEEE Trans. Parallel and Distributed System,
Vol.7, no.5, pp. 506-521, May 1996.

[10] M. Wu, W. Shu and J. Gu, Local Search for DAG Schedul-
ing and Task Assignment,Proc. 1997 Int’l Conf. Parallel
Processing, pp. 174-180, 1997.

[11] H. El-Rewini, H.H. Ali, and T. Lewis, Task Scheduling in
Multiprocessor Systems,Computer, pp. 27-37, Dec. 1995.

[12] Yu-Tin Chen, Wang-Jer Wu, Chung-Kai Chen, Jenq Kuen
Lee. Building Java RMI for Meta-Cluster Servers with Net-
work Processor, Compiler Techniques for High-Performance
Computing(CTHPC), 2004.

[13] Intel IXP1200 Network Processor Hardware Reference Man-
ual.

