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ABSTRACT
With the increasing demand for machine learning inference on
mobile devices, more platforms are emerging to provide AI infer-
ences on mobile devices. One of the popular ones is TVM, which is
an end-to-end AI compiler. The major drawback is TVM doesn’t
support all manufacturer-supplied accelerators. On the other hand,
an AI solution for MediaTek’s platform, NeuroPilot, offers inference
on mobile devices with high performance. Nevertheless, NeuroPilot
does not support all of the common machine learning frameworks.
Therefore, we want to take advantage of both sides. This way, the
solution could accept a variety of machine learning frameworks,
including Tensorflow, Pytorch, ONNX, and MxNet and utilize the
AI accelerator from MediaTek. We adopt the TVM BYOC flow to
implement the solution. In order to illustrate the ability to accept
different machine learning frameworks for different tasks, we used
three different models to build an application showcase in this work:
the face anti-spoofing model from PyTorch, the emotion detection
model from Keras, and the object detection model from Tflite. Since
these models have dependencies while running inference, we pro-
pose a prototype of pipeline algorithm to improve the inference
performance of the application showcase.

CCS CONCEPTS
• Software and its engineering → Compilers; • Computer
systems organization → Heterogeneous (hybrid) systems;
Pipeline computing.
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1 INTRODUCTION
Due to the booming of machine learning, there are more and
more machine learning frameworks that offer convenience for re-
searchers or developers, such as TensorFlow[1], Keras[10], and
PyTorch[15], etc. However, without an AI compiler, various ma-
chine learning frameworks cannot be used end-to-end. In this sense,
TVM[3] appears to bridge the gap between machine learning frame-
works and applications and back-ends. Since inference needs to
run on edge devices like mobile phones, Mediatek has released
NeuroPilot[4], a cross-platform framework for deploying AI mod-
els from well-known frameworks to edge devices.

Nevertheless, both NeuroPilot and TVM have some drawbacks.
TVM is an open-source framework that provides common front-
end and back-end functionality, but TVM does not support all
manufacturer-supplied hardware, such as the MediaTek AI acceler-
ator for mobile devices. NeuroPilot, made by Mediatek, on the other
hand, does not support as many machine learning frameworks as
TVM. Thus, taking advantage of both sides becomes an extremely
valuable idea, which could ultimately lead to a win-win outcome.

A TVM BYOC (Bring Your Own Codegen) flow provides the
opportunity for the scenario. Researchers and developers can focus
on their familiar framework by using a BYOC flow, which connects
different runtimes through external CodeGen and runtime. It is
also beneficial to developers and hardware backend providers to
be able to embrace a community-wide perspective. Prior work has
used TVM BYOC flow to use NNAPI for AI inference on mobile
devices via NNAPI accelerator[11], with the similar idea, another
prior work aimed to support NNEF execution model for NNAPI[2].
All these studies aimed to connect different frameworks to enable
better AI. This work, We leveraged TVM BYOC to bridge the gap
between TVM and NeuroPilot. First, we calculate the parameters
for each TVM relay OP and then convert the relay AST to the
corresponding Neuron IR type. We also map each TVM relay OP to
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Neuron IR. We then use BYOC flow to generate runtime for TVM
and NeuroPilot. In this way, the solution flow could accept more
front-end machine learning frameworks from TVM frontend and
use the back-end targets provided by NeuroPilot.

To further demonstrate the usage of our flow, we build an applica-
tion showcase.(Figure 1) This application consists of three different
machine learning models which run different tasks and are from
different machine learning frameworks. The first model is a mo-
bilenet quant model from Tflite, which runs object detection jobs
and boxes each object in each frame of a video. On top of that, an
anti-spoofing model[6] is employed to distinguish fake faces from
real ones. The model uses a Convolutional Neural Network (CNN)
based framework for presentation attack detection, with deep pixel-
wise supervision. Last but not least, we apply an emotion detection
model to extract the emotion of the chosen faces. The TVM BYOC
flow allows us to leverage models from different machine learning
frameworks, which makes our application showcase unique.

In our application showcase, the three models are dependent
upon each other. That is, only the faces collected by object detection
models and judged as real faces by the face anti-spoofing models
could be detected for the emotions. Due to the numerous back-ends
provided byMediatek NeuroPilot, including mobile CPU, GPU or AI
accelerators, we developed an early pipeline prototype to improve
application performance.

Figure 1: Execution flow of the application showcase. For
each frame, the frame would be passed through a face de-
tector and an object detector in order to detect a human
and a face, then the frame would be passed through an anti-
spoofing model to determine the real one from the fake. In
the end, an emotion detection model is used to detect emo-
tions.

2 BACKGROUND
2.1 MediaTek NeuroPilot
In recent years, a number of AI applications have been used in
mobile devices and smart vehicles. The use of AI in the cloud or edge
computing has also been discussed. Many companies have therefore
developed their own platforms to run AI inference on edge devices.
Intel, for example, offers an end-to-end AI framework on the edge
computing called OpenVINO[7]. MediaTek also released NeuroPilot,
their platform for running AI inference on mobile devices.

Even though we all know the importance of edge computing,
there are still many challenges to overcome. Most of these chal-
lenges stem from physical limitations, such as power and heat prob-
lems. For this reason, NeuroPilot relies on hardware fromMediaTek
to resolve the problems. TVM does not easily support hardware of
this kind, so we want to bridge the gap between them in order to
get the best of both worlds.

NeuroPilot has two core concepts that are directly related to our
work: Runtime and Compiler. As for the Compiler part, it provides
high-level IR to accept various machine learning frameworks as
well as mapping many AI operations. Furthermore, the compiler
also provides an Execution Planner mechanism to assign operators
to back-end targets. The Runtime will infer the output binary after
the Compiler has completed its work.

2.2 TVM
TVM is an open-source end-to-end machine learning compiler
framework. It works like a traditional compiler like LLVM[12],
which is composed of three phases, the front-end, the interme-
diate representation, and the back-end. The ease of use and con-
venience in running an end-to-end AI solution have made TVM
more and more popular, also some researches have developed tools
for developing projects based on TVM, including NNBlocks[5]. A
major difference between TVM and NeuroPilot is that TVM’s fron-
tend accepts a variety of machine learning frameworks, including
TensorFlow[1], Keras[10], PyTorch[15], as well as the open standard
ONNX[14]. In TVM, there are two intermediate representations
(IR). One is relay IR[17], and the other is TIR.

Figure 2: A brief overview of TVM BYOC architecture. As
a starting point, the TVM front-end will accept AI models
from a variety of frameworks. After that, TVM converts the
AI model into graph-level IR, relay IR. During this process,
we employ a partitioning algorithm to divide the graph into
two parts, one for TVM and one for MediaTek NeuroPilot.
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A relay IR is a high-level IR that describes a whole machine
learning model, including all the AI operations that will be used by
the model but does not elaborate on how each operation is going
to be implemented. TIR, on the other hand, describes how all AI
operations are to be implemented. This makes relay IR a great level
for optimizing since we don’t have to be concerned with details,
but the data flow. On TVM Relay IR, we could perform node fusion,
node permutation, or even partition on the nodes. For the rest of
the paper, we utilize the TVM BYOC flow to manipulate TVM and
NeuroPilot. As for TVM, we used TVM Relay IR to perform graph
partition and transformation.

3 NEUROPILOT SUPPORT FOR TVM
3.1 Utilizing the BYOC flow in TVM
According to our previous description, TVM is an open-source AI
compiler framework that supports well-known front-end machine
learning frameworks as well as various back-end targets.

Nevertheless, if a hardware manufacturer wishes to release its
own hardware target, such as a machine learning accelerator, the
provider may not be able to provide the same programming inter-
face that could be integrated into current machine learning frame-
works, such as TensorFlow, Pytorch, or MXNet.

Therefore, TVM BYOC was born to provide a solution to the
problem. As its name suggests, BYOC stands for bring your own
code generation for your accelerator, so this flow could use an ex-
ternal compiler and runtime to infer AI models. Figure 2 illustrates
the high-level architecture. From the outset, the TVM front-end
would accept AI models from various frameworks. Afterward, TVM
converts the AI model to the graph-level IR, relay IR. In this process,
we implement a partitioning algorithm to partition the graph into
TVM’s built-in part and the external part for MediaTek NeuroPilot.
In the last step, we created an AI model library and deployed it
across different back-ends including servers and AI accelerators on
mobile devices.

3.2 Compile Relay sub-modules into equivalent
IR in NeuroPilot

In order to use external compilers in TVM BYOC flow, TVM Relay
IR must be converted into its NeuroPilot equivalent. Regarding how
to perform this task, TVM provides a built-in structure that can be
employed to traverse the AST of Relay IR, called ExprVistor. Using
ExprVisitor, we perform three steps to traverse AST and map the
OP between TVM and NeuroPilot.

To begin, we need to convert the parameters into tensor-oriented
expressions. In particular, in order to generate IR and mapping for
the QNN models, which have operator-oriented representations,
we must first convert them. Adding to this, we defined a NodeEntry
structure to store the inputs and outputs of each Node while using
post-order DFS to traverse the Relay AST and construct the IR in
NeuroPilot. Our final step is to map the relay operations into IR in
NeuroPilot representations using the dictionary and object that con-
tains the logic to convert the relay operations into IR in NeuroPilot.
With this relationship and the NodeEntry, we are able to roughly
convert the entire relay module to its Neuron IR counterpart. The
above steps are listed in Listing 1 where we utilize NodeEntry to
store information, and also use a dictionary to record.

1 def visit_var(var):

2 node_entry = NodeEntry ()

3 neuron_input = convert_to_neuron(var)

4 node_entry.inputs = [neuron_input]

5 node_entry.outputs = [neuron_input]

6 node_entry_dict[var] = node_entry

7

8 def visit_tuple(tuple):

9 node_entry = NodeEntry ()

10 for field in tuple.fields:

11 visit(field)

12 node_entry.inputs.add(field.outputs)

13 node_entry.outputs.add(node_entry.inputs)

14 node_entry_dict[tuple] = node_entry

15

16 def visit_call(call):

17 node_entry = NodeEntry ()

18 for arg in call.args:

19 visit(arg)

20 node_entry.inputs.add(arg.outputs)

21 op_name = get_op_name(call)

22 op_handler_dict[op_name]

23 .create_op(call , node_entry)

24 node_entry_dict[call] = node_entry

Listing 1: This is a brief explanation of how we implement
TVM Relay’s IR to IR conversion in NeuroPilot. ExprVisitor
is used in TVM, and we have defined a structure called
NodeEntry to store data inputs and outputs. Furthermore, a
post-order DFS is used to traverse the Relay AST and build
the corresponding IR.

3.3 Augment QNN flow in TVM BYOC
In order to keep pace with the developments in machine learning,
we are striving to deploy machine learning models to edge devices.
In any case, the models would be too large to fit inside the edge de-
vices. As a result, some previous research has attempted to thin the
AI models. The Quantized Neural Network[9] is a famous method
that trains models with low precision weights and activations.

Figure 3: A high level view of the design structure. The graphs
are partitioned at the computation graph level, which is built
over the TVM stack. Previously, our team enabled NNAPI
flow as we adopted NeuroPilot, and now we are targeting
Mediatek NeuroPilot.
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In this manner, the precision will decrease slightly, but the mod-
els will be relatively smaller, which is more suitable for use at the
edge. To keep up with this trend, we also implemented QNN con-
version. To accomplish this, some issues must be overcome. Firstly,
since Relay Qnn is operator-oriented, the quantization parameters
will only appear on the input of the operator with the prefix qnn,
however, in Neuron these parameters will need to be carried across
all Tensors. Moreover, it is important to note that even if the model
has been pre-quantized, there are still some non-qnn options. When
visiting such an output, we pass the output quantization parameters
directly to the input and continue passing them.

In the following section of this paper, we will present our appli-
cation showcase, as well as use a quentized Mobilenet SSD model
to illustrate the effectiveness of augmenting QNN flow.

4 APPLICATION SHOWCASE
Based on the shoulders of giants, TVM offers a BYOC flow to adopt
domain-specific AI accelerators provided by different vendors. Our
team’s previous work has used TVM BYOC flow to use NNAPI for
AI inference on mobile devices via NNAPI accelerator[11].

NNAPI is an Android C API designed for running computation-
ally intensive operations for machine learning on Android devices.
This was followed by the creation of another flow that incorporated
more back-ends such as NeuroPilot. When viewed from a higher
perspective, all of these concepts can be seen in Figure 3. We parti-
tion graphs at the computation graph level, which is built above
TVM stack. Previous work of our team enabled NNAPI flow as we
adopted NeuroPilot.

As we were developing our application, we discovered an inter-
esting github repository, which is the open model zoo provided
by Intel OpenVINO[7]. They provided many pre-trained models
and combined some subsets to develop various applications which
could be applied in reality. Nonetheless, they would first convert
the models into their specific IR and binary files. These files would
not be used by us since we must accept models from TVM and
convert to IR for NeuroPilot. In addition, if we used their specific
representation of models, we could not perform model tuning and
optimization.

Considering this, we compiled models from different machine
learning frameworks such as Tensorflow, PyTorch, and tflite around
a variety of tasks to be our application showcase. By doing so, we
would be able to first prove the concept of our flow, and then
perform further optimization based on this basis.

4.1 Face Anti-spoofing model
The first model is responsible for preventing face spoofing. As we
all know, we have face detection, object detection kinds of models
that can box where a human is located. However, it appears that
the presentation attacks are using fake faces rather than real faces.
Thus, many face anti-spoofing models appear to address this issue.
Deep Pixel-wise Binary Supervision[6] is one of the solutions we
will employ in our application.

This model comes from Pytorch, and the details of how we use
it can be found in Listing 2. We first create the Pytorch model, then
accept the model into TVM via a method in relay.frontend, then
partition the graph into IR in NeuroPilot and run inference. In order

to verify the accuracy of our results, we also ran Pytorch’s original
method to see if the output was the same, which indicates we had
a correct answer.

1 def build_model(torch_path):

2 model = DeePixBiS ()

3 model.load_state_dict(torch.load(torch_path))

4 model.eval()

5

6 return model

7

8 def build_on_tvm(model , use_nir):

9 # We grab the TorchScripted model via tracing

10 ...

11 scripted_model = torch.jit.trace(model , input_data).

eval()

12

13 # Import the graph to Relay

14 # -------------------------

15 # Convert PyTorch graph to Relay graph. The input

name can be arbitrary.

16 ...

17 shape_list = [(input_name , input_shape)]

18 mod , params = relay.frontend.from_pytorch(

scripted_model , shape_list)

19

20 ...

21 # Partition model to IR in neuroPilot

22 mod = nir.partition_for_nir(mod , params)

23 ...

24

25 # Build the model execution library

26 with tvm.transform.PassContext(opt_level =3):

27 lib = relay.build(mod , target=target , params=

params)

28

29 # Graph Module in TVM

30 m = graph_executor.GraphModule(lib["default"](dev))

31 ...

32

33 def inferencing (...):

34 ...

35 # Set inputs

36 ...

37 m.set_input(input_name , tvm.nd.array(faceRegion))

38 # Execute

39 m.run()

40 # Get outputs

41 tvm_output = m.get_output (0)

42 ...

Listing 2: Source code for accepting a Pytorch model,
dividing the grapth into IR with NeuroPilot and running
the inference.

4.2 Object detection model
In terms of the object detection models, since the task is a very
common one that everyone is familiar with, we initially adopt two
types of models. In the first case, we have the Yolov3[16] model,
which is the most commonly used model in object detection tasks.
Yolov3 is based on the Darknet framework, which was developed
especially for Yolo to improve its performance. By using this model,
we can determine the location of the object in our application.
The implementation is almost identical to that of the anti-spoofing
model. We would just include another simple implementation as
part of Listing 3.
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1

2 def build_on_tvm ( model , use_nir ):

3 ...

4 # Import the graph to Relay

5 mod , params = relay.frontend.from_darknet(net , dtype=

dtype , shape=data.shape)

6

7 # Setup target to run in TVM

8 target = tvm.target.Target (...)

9 dev = tvm.cpu(0)

10

11 # Partition the grapth to NeuroPilot

12 mod = nir.partition_for_nir(mod , params)

13

14 ...

15 # The same steps as the previous model

Listing 3: The source code for adopting the Yolov3 darknet
model, partitioning the graph, and performing inferences.

As it is, the Yolov3 models work perfectly when our application
is run on the server side. However, we would like to run our appli-
cation also on mobile devices, which means we need to find another
substitution that will result in a smaller application size. In view of
this, we adopt a Mobilenet model. The model is based on the tflite
framework, which is commonly employed to develop quantized
models, and is more appropriate for mobile devices. The Mobilenet
SSD model was used here so that it would also box the area where
the object is located. In order to reduce the size of our model, we
use a quantized version of our model that converts the weight type
from float32 to int8. Using this type of model, we also examined
the flow of QNN model integration. As a result, we found that the
performance was similar to the original flow.

It is still the case that we build the tflite model first, and then
feed it into TVM with TVM.frontend to further partition the graph
and to perform inference.

4.3 Emotion detection model
The emotion detection model is developed using Keras, a high-
level Tensorflow implementation. The model accepts a face and
determines which of the seven basic emotions of the human face is
angry, disgusted, fearful, happy, neutral, sad and surprised. Since it
was built with Keras, we also promote the ease of running a custom
model with Keras, just as this was a custom inference model. We
will show some of the model layers in our Keras model in Listing 4
and describe the consequences of running the model in our work.

1

2 def build_model(weight_path):

3 os.environ['TF_CPP_MIN_LOG_LEVEL '] = '2'

4

5 # Create the model

6 model = Sequential ()

7 model.add(Conv2D (32, kernel_size =(3, 3), activation='

relu', input_shape =(48 ,48 ,1)))

8 model.add(Conv2D (64, kernel_size =(3, 3), activation='

relu'))

9 model.add(MaxPooling2D(pool_size =(2, 2)))

10 model.add(Dropout (0.25))

11 model.add(Conv2D (128, kernel_size =(3, 3), activation=

'relu'))

12 ...

13 model.load_weights(weight_path)

14 # prevents openCL usage and unnecessary logging

messages

15 cv2.ocl.setUseOpenCL(False)

16 return model

17

18 def build_on_tvm ( model , use_nir ):

19 ...

20 # Import the graph to Relay

21 mod , params = relay.frontend.from_keras(model ,

shape_dict)

22 # Setup target to run in TVM

23 target = tvm.target.Target (...)

24 dev = tvm.cpu(0)

25 # Partition the grapth to NeuroPilot

26 mod = nir.partition_for_nir(mod , params)

27 ...

28 # The same steps as the previous model

Listing 4: The source code for the emotion detection model,
whose output would be one of the seven human emotions.

4.4 Package all models together in the
application

Once the three types of tasks have been completed and verified as
correct, they can be packaged into an application that is dependent
upon each other. The video is fed into the application, after the
video is sliced into frames, each frame would pass two methods,
object detection and face detection. If the object detection model
box overlapped the face detector box, we would consider it as a
possible candidate for a human face, and then we would run a face
anti-spoofing model to distinguish the real from the false. In the
last model the faces would be detected according to their emotional
state. The detailed steps are listed in Listing 5.

1

2 def build_model_on_TVM(use_nir): #Build models used in

application

3 ...

4 anti_spoof_model = anti_spoofing.build_model(

torch_path)

5 anti_spoof_graph_module = anti_spoofing.build_on_tvm(

anti_spoof_model , use_nir)

6

7 ...

8 emotion_model = emotions_inference.build_model(

weight_path)

9 emotion_graph_module = emotions_inference.

build_on_tvm(emotion_model , use_nir)

10

11 ...

12 object_graph_module = yolo_darknet.build_on_tvm(

use_nir)

13

14 ...

15

16 def inferencing (...):

17 ...

18 # read video

19 ret , frame = cap.read()

20 ...

21

22 # face detector & object detector condition

23

24 for (x, y, w, h) in faces:

25 # Determine real faces
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26 anti_out_frame , spoof_face = anti_spoofing.

inferencing (...)

27 if not spoof_face:

28 # Emotion Detection

29 emotion_out_frame = emotions_inference.

inferencing (...)

30

31 ...

Listing 5: The steps of application showcase. Object detection
and face detection would be applied to each frame. We
would consider it a possible human face if the detector box
overlapped the face detector box, after which we would run a
face anti-spoofing model to tell the true faces from the fakes.
Faces were detected based on emotion in the last model.

4.5 Cross compile and deploy to android
As soon as we finish the application on the server side, we would
like to bring it to edge devices, such as Android phones. This can be
accomplished in two ways. The first objective is to develop an an-
droid application that displays the end-to-end result and the second
objective is to develop a binary executable to run the prediction
algorithm. On Android devices, we prefer to use the latter one to
run executable binary files.

To accomplish this, wemust build the TVM runtime library at the
beginning of the process. TVM stack consists of two critical compo-
nents, TVM compiler and TVM runtime. Using TVM compiler, we
could compile and optimize the model and run it on specific targets
using TVM runtime. Therefore, we must build TVM modules on
the server side using the TVM compiler, and then we can use TVM
runtime on the target devices. Based on the above, the only thing
we need to build from TVM is the TVM runtime. This could be
done by cross-compiling the TVM runtime for the architectures of
our devices.

We use TVM’s runtime to run inferencing via inferencing. It
contains all the necessary components. The AI models must also
be exported. The reason for this is that Python cannot run directly
on an Android environment; rather, the library must be exported
and imported through a C++ API that is supplied by TVM(Listing
6). After following the above steps, we are able to set up the input
and run the model inference on an Android environment.

1

2 def build_model_on_TVM(use_nir):

3

4 ...

5 # Setup target

6 target = tvm.target.Target (...)

7 dev = tvm.cpu(0)

8

9 ...

10 mod , params = relay.frontend.from_keras(model ,

shape_dict)

11

12 ...

13 # Partition grapth and setup targets

14 mod = nir.partition_for_nir(mod , params , nir_targets

=[...] , nir_debug=True)

15

16

17 ...

18 with tvm.transform.PassContext(opt_level =0):

19 lib = relay.build(mod , target=target , params=

params)

20

21

22 # After built , export the library for run on android

environment

23 ...

24 lib.export_library(dylib_path , ndk.create_shared)

25

26 ...

Listing 6: The way to export the library.

5 THE SCHEDULING FOR OPTIMIZING
PERFORMANCE

After packaging the models into applications and setting up the
android environment for the models, we were inspired by the Ef-
ficient Video Captioning on Heterogeneous System Architecture
research[8]. This research provides optimization when executing
multiple models. Prior to defining the problem, it is essential to
determine the time it takes for each model to run on the target
devices. As for NeuroPilot’s backend, we used a mobile CPU and a
mobile APU, which is an AI accelerator. Therefore, we have seven
types of permutations: TVM-only, TVM BYOC with mobile CPU,
TVM BYOC with mobile APU, TVM BYOC with both mobile CPU
and APU, NeuroPilot-only with mobile CPU, NeuroPilot-only with
mobile APU, NeuroPilot-only with both mobile CPU and APU,
respectively.

Figure 4: Inference time for different targets. In NeuroPilot-
only, since it does not support as many AI operations as TVM,
there may have been a lack of statistics regarding the infer-
ence time. In the meantime, TVM-only inferences appear
to be taking longer than those using NeuroPilot backends.
Utilizing TVM BYOC flow is, we believe, a solution which
benefits both TVM and NeuroPilot.

The inference time for each of the seven permutations is shown
in Figure 4. There are not all the statistics shown on the NeuroPilot-
only part, because NeuroPilot does not support as many AI op-
erations as TVM, so there may not be any statistics to show the
inference time. It is for this reason that we developed TVM’s BYOC
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functionality for NeuroPilot. Meanwhile, inference time for TVM-
only appears to be longer than others utilizing NeuroPilot back-
ends, which is another reason we believe this is a win-win solution
for both TVM and NeuroPilot.

5.1 Computation Scheduling
Since we discovered that TVM BYOC flow is more efficient than
TVM-only, and because NeuroPilot does not support as many AI
operators as TVM, there is a computation scheduling problem as to
where we should assign the graph to the target that is more efficient.
As shown in Figure 4, both the face anti-spoofing model and the
object detection model are more efficient on the combination of
mobile CPU and APU, while the emotion detection model is more
efficient on APU alone.

Therefore we could assign them to targets that are more efficient,
and this type of computation scheduling is a simple method since
it is on the model-level to perform the scheduling task. Another
perspective is operation-level, which means we should assign the
corresponding efficient targets to each operation. Compared to
the model-level, this is more difficult since we need to break the
models apart and also consider the I/O time while transferring data
between targets. It will be the purpose of our future work to do a
harder computation scheduling algorithm. Additionally, we find
that the inference time of the anti-spoofing model is longer than
the other two. We believe that this is caused by the large number of
subgraphs in the model, which we will further investigate to avoid.

5.2 Pipeline Scheduling
In order to handle pipeline scheduling, we observed that there are
dependencies among the three models intra-frame, and from the
above computation scheduling section, we assigned the various
models to their most efficient targets. Dependencies are as follows;
the anti-spoofing model waits for the output of object detection
model, and the input of emotion detection model is the output of
anti-spoofing model. Another perspective that should be consid-
ered is the resource perspective. Models could not utilize the same
resources at the same time, including mobile CPU and APU.

Figure 5: An early prototype of pipeline scheduling among
the models. The color yellow indicates that we run at
CPU+APU, the color green indicates that we run at APU-
only, and the color blue indicates that we run at CPU only.
By changing the object detection model from CPU+APU to
CPU only, we could guarantee the exclusive use of resources.

Our solution to this problem is to draw upon the concept of
the concatenation algorithm[13], and present an early prototype
for pipeline scheduling, which can be seen in Figure 5. A problem
with the face anti-spoofing model is that we partition it into too
many subgraphs, so we should still use the combination of mobile

APU and CPU. For the object detection model, we have selected
to run it in mobile CPU-only mode. In this manner, we will be
able to ensure exclusive resource usage, that is, we will not use
the same resource simultaneously for multiple models. By doing
so, we would be able to implement a pipeline algorithm that could
parallelize the execution of object detection and emotion detection
models.

6 EXPERIMENTS
Our experiments evaluated a variety of models of the inference time
from the seven permutations, including TVM-only, TVM BYOC
with mobile CPU, TVM BYOC with mobile APU, TVM BYOC with
both mobile CPU and APU, NeuroPilot-only with mobile CPU,
NeuroPilot-only with mobile APU, NeuroPilot-only with both mo-
bile CPU and APU, respectively. Aside from the three models used
in our application showcases, we also tested the inference time of
other models under different conditions. Models include densenet,
inception resnet v2, inception v3, inception v4, mobilenet v2, and
nasnet. Additionally, we test the quantized versions of the models
of Inception v3 and Mobilenet v1 and v2. Table 1 illustrates the
models and their data types, which are either float32 or int8.

Figure 6: Inference time for more models. Results show the
same pattern. There may have been an absence of statis-
tics regarding the inference time in NeuroPilot-only since it
does not support as many AI operations as TVM. TVM-only
inferences appear to be taking longer than those utilizing
NeuroPilot backends. TVM BYOC is an ideal solution that
both TVM and NeuroPilot can enjoy.

Model Data Type
densenet float32
inception resnet v2 float32
inception v3 float32
inception v4 float32
mobilenet v1 float32
mobilenet v2 float32
nasnet float32

Table 1: Models used for testing and their data types.
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Our experiments were performed on OPPO Reno4 Z 5G, with
detailed specifications in Table 2.

OS Android 11
Chipset MediaTek MT6873V Dimensity 800
CPU 4x2.0 GHz Cortex-A76 & 4x2.0 GHz Cortex-A55
GPU Mali-G57 MC4
APU MediaTek APU 3.0

Table 2: Specifications of experiment environment, OPPO
Reno4 Z 5G

The inference time of those is depicted in Figure 6. The results
indicate that TVM is applicable to a variety of machine learning
frameworks and a wide range of AI operations. However, TVM is
not able to make use of vendor-supplied hardware. Hence, combin-
ing them via TVM BYOC flow provides a win-win situation. Aside
from the results of the experiment, we packaged the models into
an application showcase that will allow inferences to be performed
on mobile devices.

7 CONCLUSION
Given the trend of running inference on edge devices, we spot that
it is necessary to bridge the gap between TVM, the popular AI
compiler, and NeuroPilot, which is supported by vendor-supplied
accelerators. The TVM BYOC flow provides us with the opportunity
to enable the solution.

Apart from that, we developed an application showcase that
contains a variety of models derived from various machine learning
frameworks and deployed them to the mobile environment. In order
to optimize our performance, we propose an early idea for a pipeline
scheduling method, and we are currently developing the algorithm
for automatically pipeline scheduling of different models and even
operations within models in order to enhance efficiency.
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